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Preface

In this book I have only made up a bunch
of other men'’s flowers, providing of my own
only the string that ties them together.

M. de Montaigne (1533-1592)

French essayist

Although it is hardly possible to keep up with advances in technology, it is reassuring to know that in science
and engineering, development and innovation are possible through a solid understanding of basic principles.
The theory of signals and systems is one of those fundamentals, and it will be the foundation of much research
and development in engineering for years to come. Not only engineers will need to know about signals and
systems—to some degree everybody will. The pervasiveness of computers, cell phones, digital recording, and
digital communications will require it.

Learning as well as teaching signals and systems is complicated by the combination of mathematical abstraction
and concrete engineering applications. Mathematical sophistication and maturity in engineering are needed.
Thus, a course in signals and systems needs to be designed to nurture the students’ interest in applications,
but also to make them appreciate the significance of the mathematical tools. In writing this textbook, as in
teaching this material for many years, the author has found it practical to follow Einstein’s recommendation
that “Everything should be made as simple as possible, but not simpler,” and Melzak’s [47] dictum that “It is
downright sinful to teach the abstract before the concrete.” The aim of this textbook is to serve the students’
needs in learning signals and systems theory as well as to facilitate the teaching of the material for faculty by
proposing an approach that the author has found effective in his own teaching.

We consider the use of MATLAB, an essential tool in the practice of engineering, of great significance in the learn-
ing process. It not only helps to illustrate the theoretical results but makes students aware of the computational
issues that engineers face in implementing them. Some familiarity with MATLAB is beneficial but not required.

LEVEL

The material in this textbook is intended for courses in signals and systems at the junior level in electrical and
computer engineering, but it could also be used in teaching this material to mechanical engineering and bioengi-
neering students and it might be of interest to students in applied mathematics. The “student-friendly” nature
of the text also makes it useful to practicing engineers interested in learning or reviewing the basic principles of
signals and systems on their own. The material is organized so that students not only get a solid understand-
ing of the theory—through analytic examples as well as software examples using MATLAB—and learn about
applications, but also develop confidence and proficiency in the material by working on problems.

xXi



The organization of the material in the book follows the assumption that the student has been exposed to the
theory of linear circuits, differential equations, and linear algebra, and that this material will be followed by
courses in control, communications, or digital signal processing. The content is guided by the goal of nurturing
the interest of students in applications, and of assisting them in becoming more sophisticated mathematically.
In teaching signals and systems, the author has found that students typically lack basic skills in manipulating
complex variables, in understanding differential equations, and are not yet comfortable with basic concepts in
calculus. Introducing discrete-time signals and systems makes students face new concepts that were not explored
in their calculus courses, such as summations, finite differences, and difference equations. This text attempts to
fill the gap and nurture interest in the mathematical tools.

APPROACH

In writing this text, we have taken the following approach:

1. The material is divided into three parts: introduction, theory and applications of continuous-time signals
and systems, and theory and applications of discrete-time signals and systems. To help students under-
stand the connection between continuous- and discrete-time signals and systems, the connection between
infinitesimal and finite calculus is made in the introduction part, together with a motivation as to why com-
plex numbers and functions are used in the study of signals and systems. The treatment of continuous- and
discrete-time signals and systems is then done separately in the next two parts; combining them is found to
be confusing to students. Likewise, the author believes it is important for students to understand the connec-
tions and relevance of each of the transformations used in the analysis of signals and systems so that these
transformations are seen as a progression rather than as disconnected methods. Thus, the author advocates
the presentation of the Laplace analysis followed by the Fourier analysis, and the Z-transform followed by the
discrete Fourier, and capping each of these topics with applications to communications, control, and filter-
ing. The mathematical abstraction and the applications become more sophisticated as the material unfolds,
taking advantage as needed of the background on circuits that students have.

2. An overview of the topics to be discussed in the book and how each connects with some basic mathematical
concepts—needed in the rest of the book—is given in Chapter 0 (analogous to the ground floor of a build-
ing). The emphasis is in relating summations, differences, difference equations, and sequence of numbers
with the calculus concepts that the students are familiar with, and in doing so providing a new interpreta-
tion to integrals, derivatives, differential equations, and functions of time. This chapter also links the theory
of complex numbers and functions to vectors and to phasors learned in circuit theory. Because we strongly
believe that the material in this chapter should be covered before beginning the discussion of signals and
systems, it is not relegated to an appendix but placed at the front of the book where it cannot be ignored. A
soft introduction to MATLAB is also provided in this chapter.

3. A great deal of effort has been put into making the text “student friendly.” To make sure that the student does
not miss some of the important issues presented in a section, we have inserted well-thought-out remarks—
we want to minimize the common misunderstandings we have observed from our students in the past.
Plenty of analytic examples with different levels of complexity are given to illustrate issues. Each chapter
has a set of examples in MATLAB, illustrating topics presented in the text or special issues that the student
should know. The MATLAB code is given so that students can learn by example from it. To help students
follow the mathematical derivations, we provide extra steps whenever necessary and do not skip steps that
are necessary in the understanding of a derivation. Summaries of important issues are boxed and concepts
and terms are emphasized to help students grasp the main points and terminology.

4. Without any doubt, learning the material in signals and systems requires working analytical as well as com-
putational problems. It is important to provide problems of different levels of complexity to exercise not
only basic problem-solving skills, but to achieve a level of proficiency and mathematical sophistication.
The problems at the end of the chapter are of different types, some to be done analytically, others using
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MATLAB, and some both. The repetitive type of problem was avoided. Some of the problems explore issues
not covered in the text but related to it. The MATLAB problems were designed so that a better understanding
of the theoretical concepts is attained by the student working them out.

5. We feel two additional features would be beneficial to students. One is the inclusion of quotations and
footnotes to present interesting ideas or historical comments, and the other is the inclusion of sidebars that
attempt to teach historical or technical information that students should be aware of. The theory of signals
and systems clearly connects with mathematics and a great number of mathematicians have contributed to
it. Likewise, there is a large number of engineers who have contributed significantly to the development and
application of signals and systems. All of them need to be recognized for their contributions, and we should
learn from their experiences.

6. Finally, other features are: (1) the design of the index of the book so that it can be used by students to find
definitions, symbols, and MATLAB functions used in the text; and (2) a list of references to the material.

CONTENT

The core of the material is presented in the second and third part of the book. The second part of the book
covers the basics of continuous-time signals and systems and illustrates their application. Because the concepts
of signals and systems are relatively new to students, we provide an extensive and complete presentation of these
topics in Chapters 1 and 2. The presentation in Chapter 1 goes from a very general characterization of signals
to very specific classes that will be used in the rest of the book. One of the aims is to familiarize students with
continuous-time as well as discrete-time signals so as to avoid confusion in their processing later on—a common
difficulty encountered by students. Chapter 1 initiates the representation of signals in terms of basic signals that
will be easily processed later with the transform methods. Chapter 2 introduces the general concept of systems,
in particular continuous-time systems. The concepts of linearity, time invariance, causality, and stability are
introduced in this chapter, trying as much as possible to use the students’ background in circuit theory. Using
linearity and time invariance, the computation of the output of a continuous-time system using the convolution
integral is introduced and illustrated with relatively simple examples. More complex examples are treated with
the Laplace transform in the following chapter.

Chapter 3 covers the basics of the Laplace transform and its application in the analysis of continuous-time
signals and systems. It introduces the student to the concept of poles and zeros, damping and frequency, and
their connection with the signal as a function of time. This chapter emphasizes the solution of differential
equations representing linear time-invariant (LTI) systems, paying special attention to transient solutions due
to their importance in control, as well as to steady-state solutions due to their importance in filtering and in
communications. The convolution integral is dealt with in time and using the Laplace transform to emphasize
the operational power of the transform. The important concept of transfer function for LTI systems and the
significance of its poles and zeros are studied in detail. Different approaches are considered in computing the
inverse Laplace transform, including MATLAB methods.

Fourier analysis of continuous-time signals and systems is covered in detail in Chapters 4 and 5. The Fourier
series analysis of periodic signals, covered in Chapter 4, is extended to the analysis of aperiodic signals resulting
in the Fourier transform of Chapter 5. The Fourier transform is useful in representing both periodic and aperi-
odic signals. Special attention is given to the connection of these methods with the Laplace transform so that,
whenever possible, known Laplace transforms can be used to compute the Fourier series coefficients and the
Fourier transform—thus avoiding integration but using the concept of the region of convergence. The concept
of frequency, the response of the system (connected to the location of poles and zeros of the transfer function),
and the steady-state response are emphasized in these chapters.

The ordering of the presentation of the Laplace and the Fourier transformations (similar to the Z-transform
and the Fourier representation of discrete-time signals) is significant for learning and teaching of the material.



Our approach of presenting first the Laplace transform and then the Fourier series and Fourier transform is
justified by several reasons. For one, students coming into a signals and systems course have been familiarized
with the Laplace transform in their previous circuits or differential equations courses, and will continue using
it in control courses. So expertise in this topic is important and the learned material will stay with them longer.
Another is that a common difficulty students have in applying the Fourier series and the Fourier transform is
connected with the required integration. The Laplace transform can be used not only to sidestep the integration
but to provide a more comprehensive understanding of the frequency representation. By asking students to
consider the two-sided Laplace transform and the significance of its region of convergence, they will appreciate
better the Fourier representation as a special case of Laplace’s in many cases. More importantly, these transforms
can be seen as a continuum rather than as different transforms. It also makes theoretical sense to deal with
the Laplace representation of systems first to justify the existence of the steady-state solution considered in the
Fourier representations, which would not exist unless stability of the system is guaranteed, and stability can only
be tested using the Laplace transform. The paradigm of interest is the connection of transient and steady-state
responses that must be understood by students before they can understand the connections between Fourier and
Laplace analyses.

Chapter 6 presents applications of the Laplace and the Fourier transforms to control, communications, and fil-
tering. The intent of the chapter is to motivate interest in these areas. The chapter illustrates the significance of
the concepts of transfer function, response of systems, and stability in control, and of modulation in communi-
cations. An introduction to analog filtering is provided. Analytic as well as MATLAB examples illustrate different
applications to control, communications, and filter design.

Using the sampling theory as a bridge, the third part of the book covers the theory and illustrates the application
of discrete-time signals and systems. Chapter 7 presents the theory of sampling: the conditions under which the
signal does not lose information in the sampling process and the recovery of the analog signal from the sampled
signal. Once the basic concepts are given, the analog-to-digital and digital-to-analog converters are considered
to provide a practical understanding of the conversion of analog-to-digital and digital-to-analog signals.

Discrete-time signals and systems are discussed in Chapter 8, while Chapter 9 introduces the Z-transform.
Although the treatment of discrete-time signals and systems in Chapter 8 mirrors that of continuous-time sig-
nals and systems, special emphasis is given in this chapter to issues that are different in the two domains. Issues
such as the discrete nature of the time, the periodicity of the discrete frequency, the possible lack of periodicity
of discrete sinusoids, etc. are considered. Chapter 9 provides the basic theory of the Z-transform and how it
relates to the Laplace transform. The material in this chapter bears similarity to the one on the Laplace trans-
form in terms of operational solution of difference equations, transfer function, and the significance of poles and
Zeros.

Chapter 10 presents the Fourier analysis of discrete signals and systems. Given the accumulated experience of
the students with continuous-time signals and systems, we build the discrete-time Fourier transform (DTFT) on
the Z-transform and consider special cases where the Z-transform cannot be used. The discrete Fourier transform
(DFT) is obtained from the Fourier series of discrete-time signals and sampling in frequency. The DFT will be
of great significance in digital signal processing. The computation of the DFT of periodic and aperiodic discrete-
time signals using the fast Fourier transform (FFT) is illustrated. The FFT is an efficient algorithm for computing
the DFT, and some of the basics of this algorithm are discussed in Chapter 12.

Chapter 11 introduces students to discrete filtering, thus extending the analog filtering in Chapter 6. In this
chapter we show how to use the theory of analog filters to design recursive discrete low-pass filters. Frequency
transformations are then presented to show how to obtain different types of filters from low-pass prototype
filters. The design of finite-impulse filters using the window method is considered next. Finally, the implementa-
tion of recursive and nonrecursive filters is shown using some basic techniques. By using MATLAB for the design
of recursive and nonrecursive discrete filters, it is expected that students will be motivated to pursue on their
own the use of more sophisticated filter designs.
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Finally, Chapter 12 explores topics of interest in digital communications, computer control, and digital signal
processing. The aim of this chapter is to provide a brief presentation of topics that students could pursue after
the basic courses in signals and systems.

TEACHING USING THIS TEXT

The material in this text is intended for a two-term sequence in signals and systems: one on continuous-time
signals and systems, followed by a term in discrete-time signals and systems with a lab component using MAT-
LAB. These two courses would cover most of the chapters in the text with various degrees of depth, depending
on the emphasis the faculty would like to give to the course. As indicated, Chapter 0 was written as a necessary
introduction to the rest of the material, but does not need to be covered in great detail—students can refer to it as
needed. Chapters 6 and 11 need to be considered together if the emphasis on applications is in filter design. The
control, communications, and digital signal processing material in Chapters 6 and 12 can be used to motivate
students toward those areas.

TO THE STUDENT

It is important for you to understand the features of this book, so you can take advantage of them to learn the
material:

1. Refer as often as necessary to the material in Chapter 0 to review or to learn the mathematical background;
to understand the overall structure of the material; or to review or learn MATLAB as it applies to signal
processing.

2. As you will see, the complexity of the material grows as it develops. The material in part three has been
written assuming good understanding of the material in the first two. See also the connection of the material
with applications in your own areas of interest.

3. To help you learn the material, clear and concise results are emphasized by putting them in boxes. Justi-
fication of these results is then given, complemented with remarks regarding issues that need a bit more
clarification, and illustrated with plenty of analytic and computational examples. Important terms are
emphasized throughout the text. Tables provide a good summary of properties and formulas.

4. A heading is used in each of the problems at the end of the chapters, indicating how it relates to specific
topics and if it requires to use MATLAB to solve it.

5. One of the objectives of this text is to help you learn MATLAB, as it applies to signal and systems, on your
own. This is done by providing the soft introduction to MATLAB in Chapter 0, and then by showing examples
using simple code in each of the chapters. You will notice that in the first two parts basic components of
MATLAB (scripts, functions, plotting, etc.) are given in more detail than in part three. It is assumed you are
very proficient by then to supply that on your own.

6. Finally, notice the footnotes, the vignettes, and the historical sidebars that have been included to provide a
glance at the background in which the theory and practice of signals and systems have developed.
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CHAPTER 0

From the Ground Up!

In theory there is no difference
between theory and practice.

In practice there is.

Lawrence “Yogi” Berra, 1925
New York Yankees baseball player

This chapter provides an overview of the material in the book and highlights the mathematical back-
ground needed to understand the analysis of signals and systems. We consider a signal a function of
time (or space if it is an image, or of time and space if it is a video signal), just like the voltages or
currents encountered in circuits. A system is any device described by a mathematical model, just like
the differential equations obtained for a circuit composed of resistors, capacitors, and inductors.

By means of practical applications, we illustrate in this chapter the importance of the theory of signals
and systems and then proceed to connect some of the concepts of integro-differential Calculus with
more concrete mathematics (from the computational point of view, i.e., using computers). A brief
review of complex variables and their connection with the dynamics of systems follows. We end this
chapter with a soft introduction to MATLAB, a widely used high-level computational tool for analysis
and design.

Significantly, we have called this Chapter 0, because it is the ground floor for the rest of the material
in the book. Not everything in this chapter has to be understood in a first reading, but we hope that
as you go through the rest of the chapters in the book you will get to appreciate that the material in
this chapter is the foundation of the book, and as such you should revisit it as often as needed.

0.1 SIGNALS AND SYSTEMS AND DIGITAL TECHNOLOGIES

In our modern world, signals of all kinds emanate from different types of devices—radios and TVs,
cell phones, global positioning systems (GPSs), radars, and sonars. These systems allow us to com-
municate messages, to control processes, and to sense or measure signals. In the last 60 years, with
the advent of the transistor, the digital computer, and the theoretical fundamentals of digital signal

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00002-8
(© 2011, Elsevier Inc. All rights reserved. 3



- CHAPTER 0: From the Ground Up!

processing, the trend has been toward digital representation and processing of data, most of which
are in analog form. Such a trend highlights the importance of learning how to represent signals in
analog as well as in digital forms and how to model and design systems capable of dealing with
different types of signals.

1948

The year 1948 is considered the birth year of technologies and theories responsible for the spectacular advances in com-
munications, control, and biomedical engineering since then. In June 1948, Bell Telephone Laboratories announced the
invention of the transistor. Later that month, a prototype computer built at Manchester University in the United Kingdom
became the first operational stored-program computer. Also in that year, many fundamental theoretical results were pub-
lished: Claude Shannon's mathematical theory of communications, Richard W. Hamming's theory on error-correcting codes,
and Norbert Wiener's Cybernetics comparing biological systems with communication and control systems [51].

Digital signal processing advances have gone hand-in-hand with progress in electronics and comput-
ers. In 1965, Gordon Moore, one of the founders of Intel, envisioned that the number of transistors
on a chip would double about every two years [35]. Intel, the largest chip manufacturer in the world,
has kept that pace for 40 years. But at the same time, the speed of the central processing unit (CPU)
chips in desktop personal computers has dramatically increased. Consider the well-known Pentium
group of chips (the Pentium Pro and the Pentium I to IV) introduced in the 1990s [34]. Figure 0.1
shows the range of speeds of these chips at the time of their introduction into the market, as well as
the number of transistors on each of these chips. In five years, 1995 to 2000, the speed increased by
a factor of 10 while the number of transistors went from 5.5 million to 42 million.
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Advances in digital electronics and in computer engineering in the past 60 years have permitted the
proliferation of digital technologies. Digital hardware and software process signals from cell phones,
high-definition television (HDTV) receivers, radars, and sonars. The use of digital signal processors
(DSPs) and more recently of field-programmable gate arrays (FPGAs) have been replacing the use of
application-specific integrated circuits (ASICs) in industrial, medical, and military applications.

It is clear that digital technologies are here to stay. Today, digital transmission of voice, data, and video is
common, and so is computer control. The abundance of algorithms for processing signals, and the pervasive
presence of DSPs and FPGAs in thousands of applications make digital signal processing theory a necessary
tool not only for engineers but for anybody who would be dealing with digital data; soon, that will be every-
body! This book serves as an introduction to the theory of signals and systems—a necessary first step in the
road toward understanding digital signal processing.

DSPs and FPGAs

A digital signal processor (DSP) is an optimized microprocessor used in real-time signal processing applications [67]. DSPs
are typically embedded in larger systems (e.g., a desktop computer) handling general-purpose tasks. A DSP system typically
consists of a processor, memory, analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The main
difference with typical microprocessors is they are faster. A field-programmable gate array (FPGA) [77] is a semiconductor
device containing programmable logic blocks that can be programmed to perform certain functions, and programmable
interconnects. Although FPGAs are slower than their application-specific integrated circuits (ASICs) counterparts and use
more power, their advantages include a shorter time to design and the ability to be reprogrammed.

0.2 EXAMPLES OF SIGNAL PROCESSING APPLICATIONS

The theory of signals and systems connects directly, among others, with communications, control,
and biomedical engineering, and indirectly with mathematics and computer engineering. With the
availability of digital technologies for processing signals, it is tempting to believe there is no need
to understand their connection with analog technologies. It is precisely the opposite is illustrated
by considering the following three interesting applications: the compact-disc (CD) player, software-
defined radio and cognitive radio, and computer-controlled systems.

0.2.1 Compact-Disc Player

Compact discs [9] were first produced in Germany in 1982. Recorded voltage variations over time due
to an acoustic sound is called an analog signal given its similarity with the differences in air pressure
generated by the sound waves over time. Audio CDs and CD players illustrate best the conversion
of a binary signal—unintelligible—into an intelligible analog signal. Moreover, the player is a very
interesting control system.

To store an analog audio signal (e.g., voice or music) on a CD the signal must be first sampled and
converted into a sequence of binary digits—a digital signal—by an ADC and then especially encoded
to compress the information and to avoid errors when playing the CD. In the manufacturing of a CD,
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When playing a CD, the CD player follows the tracks in the disc, focusing a laser on them, as the CD is spun.
The laser shines a light that is reflected by the pits and bumps put on the surface of the disc and corresponding
to the coded digital signal from an acoustic signal. A sensor detects the reflected light and converts it into a
digital signal, which is then converted into an analog signal by the DAC. When amplified and fed to the speakers
such a signal sounds like the originally recorded acoustic signal.

pits and bumps corresponding to the ones and zeros from the quantization and encoding processes
are impressed on the surface of the disc. Such pits and bumps will be detected by the CD player and
converted back into an analog signal that approximates the original signal when the CD is played.
The transformation into an analog signal uses a DAC.

As we will see in Chapter 7, an audio signal is sampled at a rate of about 44,000 samples/second
(sec) (corresponding to a maximum frequency around 22 KHz for a typical audio signal) and each of
these samples is represented by a certain number of bits (typically 8 bits/sample). The need for stereo
sound requires that two channels be recorded. Overall, the number of bits representing the signal is
very large and needs to be compressed and especially encoded. The resulting data, in the form of pits
and bumps impressed on the CD surface, are put into a spiral track that goes from the inside to the
outside of the disc.

Besides the binary-to-analog conversion, the CD player exemplifies a very interesting control system
(see Figure 0.2). Indeed, the player must: (1) rotate the disc at different speeds depending on the
location of the track within the CD being read, (2) focus a laser and a lens system to read the pits
and bumps on the disc, and (3) move the laser to follow the track being read. To understand the
exactness required, consider that the width of the track and the high of the bumps is typically less
than a micrometer (10~° meters or 3.937 x 10~ inches) and a nanometer (10~° meters or 3.937 x
108 inches), respectively.

0.2.2 Software-Defined Radio and Cognitive Radio

Software-defined radio and cognitive radio are important emerging technologies in wireless commu-
nications [43]. In software-defined radio (SDR), some of the radio functions typically implemented
in hardware are converted into software [64]. By providing smart processing to SDRs, cognitive radio
(CR) will provide the flexibility needed to more efficiently use the radio frequency spectrum and to
make available new services to users. In the United States the Federal Communication Commission
(FCC), and likewise in other parts of the world the corresponding agencies, allocates the bands for
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different users of the radio spectrum (commercial radio and TV, amateur radio, police, etc.). Although
most bands have been allocated, implying a scarcity of spectrum for new users, it has been found that
locally at certain times of the day the allocated spectrum is not being fully utilized. Cognitive radio
takes advantage of this.

Conventional radio systems are composed mostly of hardware, and as such cannot be easily recon-
figured. The basic premise in SDR as a wireless communication system is its ability to reconfigure
by changing the software used to implement functions typically done by hardware in a conventional
radio. In an SDR transmitter, software is used to implement different types of modulation procedures,
while ADCs and DACs are used to change from one type of signal to another. Antennas, audio ampli-
fiers, and conventional radio hardware are used to process analog signals. Typically, an SDR receiver
uses an ADC to change the analog signals from the antenna into digital signals that are processed
using software on a general-purpose processor. See Figure 0.3.

Given the need for more efficient use of the radio spectrum, cognitive radio (CR) uses SDR technology
while attempting to dynamically manage the radio spectrum. A cognitive radio monitors locally the
radio spectrum to determine regions that are not occupied by their assigned users and transmits
in those bands. If the primary user of a frequency band recommences transmission, the CR either
moves to another frequency band, or stays in the same band but decreases its transmission power
level or modulation scheme to avoid interference with the assigned user. Moreover, a CR will search
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FIGURE 0.3

Schematics of a voice SDR mobile two-way radio. Transmitter: The voice signal is inputted by means of

a microphone, amplified by an audio amplifier, converted into a digital signal by an ADC, and then modulated
using software, before being converted into analog by an DAC, amplified, and sent as a radio frequency signal
via an antenna. Receiver: The signal received by the antenna is processed by a superheterodyne front-end,
converted into a digital signal by an ADC before being demodulated and converted into an analog signal by a
DAC, amplified, and fed to a speaker. The modulator and demodulator blocks indicate software processing.
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for network services that it can offer to its users. Thus, SDR and CR are bound to change the way we
communicate and use network services.

0.2.3 Computer-Controlled Systems

The application of computer control ranges from controlling simple systems such as a heater (e.g.,
keeping a room temperature comfortable while reducing energy consumption) or cars (e.g., con-
trolling their speed), to that of controlling rather sophisticated machines such as airplanes (e.g.,
providing automatic flight control) or chemical processes in very large systems such as oil refineries.
A significant advantage of computer control is the flexibility computers provide—rather sophisticated
control schemes can be implemented in software and adapted for different control modes.

Typically, control systems are feedback systems where the dynamic response of a system is changed to
make it follow a desirable behavior. As indicated in Figure 0.4, the plant is a system, such as a heater,
car, or airplane, or a chemical process in need of some control action so that its output (it is also
possible for a system to have several outputs) follows a reference signal (or signals). For instance, one
could think of a cruise-control system in a car that attempts to keep the speed of the car at a certain
value by controlling the gas pedal mechanism. The control action will attempt to have the output of
the system follow the desired response, despite the presence of disturbances either in the plant (e.g.,
errors in the model used for the plant) or in the sensor (e.g., measurement error). By comparing the
reference signal with the output of the sensor, and using a control law implemented in the computer,
a control action is generated to change the state of the plant and attain the desired output.

To use a computer in a control application it is necessary to transform analog signals into digital
signals so that they can be inputted into the computer, while it is also necessary that the output of
the computer be converted into an analog signal to drive an actuator (e.g., an electrical motor) to
provide an action capable of changing the state of the plant. This can be done by means of ADCs
and DAGCs. The sensor should also be able to act as a transducer whenever the output of the plant is
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FIGURE 0.4
Computer-controlled system for an analog plant (e.g., cruise control for a car). The reference signal is r(t) (e.g.,
desired speed) and the output is y(t) (e.g., car speed). The analog signals are converted to digital signals by an
ADC, while the digital signal from the computer is converted into an analog signal (an actuator is probably
needed to control the car) by a DAC. The signals w(t) and v(t) are disturbances or noise in the plant and the
sensor (e.g., electronic noise in the sensor and undesirable vibration in the car).
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of a different type than the reference. Such would be the case, for instance, if the plant output is a
temperature while the reference signal is a voltage.

0.3 ANALOG OR DISCRETE?

Infinitesimal calculus, or just plain calculus, deals with functions of one or more continuously changing
variables. Based on the representation of these functions, the concepts of derivative and integral are
developed to measure the rate of change of functions and the areas under the graphs of these
functions, or their volumes. Differential equations are then introduced to characterize dynamic
systems.

Finite calculus, on the other hand, deals with sequences. Thus, derivatives and integrals are replaced
by differences and summations, while differential equations are replaced by difference equations.
Finite calculus makes possible the computations of calculus by means of a combination of digital
computers and numerical methods—thus, finite calculus becomes the more concrete mathematics.!
Numerical methods applied to sequences permit us to approximate derivatives, integrals, and the
solution of differential equations.

In engineering, as in many areas of science, the inputs and outputs of electrical, mechanical, chemical,
and biological processes are measured as functions of time with amplitudes expressed in terms of
voltage, current, torque, pressure, etc. These functions are called analog or continuous-time signals, and
to process them with a computer they must be converted into binary sequences—or a string of ones
and zeros that is understood by the computer. Such a conversion is done in a way as to preserve as
much as possible the information contained in the original signal. Once in binary form, signals can
be processed using algorithms (coded procedures understood by computers and designed to obtain
certain desired information from the signals or to change them) in a computer or in a dedicated piece
of hardware.

In a digital computer, differentiation and integration can be done only approximately, and the solu-
tion of differential equations requires a discretization process as we will illustrate later in this chapter.
Not all signals are functions of a continuous parameter—there exist inherently discrete-time signals
that can be represented as sequences, converted into binary form, and processed by computers. For
these signals the finite calculus is the natural way of representing and processing them.

Analog or continuous-time signals are converted into binary sequences by means of an ADC, which, as we will
see, compresses the data by converting the continuous-time signal into a discrete-time signal or a sequence
of samples, each sample being represented by a string of ones and zeros giving a binary signal. Both time and
signal amplitude are made discrete in this process. Likewise, digital signals can be transformed into analog
signals by means of a DAC that uses the reverse process of the ADC. These converters are commercially
available, and it is important to learn how they work so that digital representation of analog signals is obtained

IThe use of concrete, rather than abstract, mathematics was coined by Graham, Knuth, and Patashnik in Concrete Mathematics: A
Foundation for Computer Science [26]. Professor Donald Knuth from Stanford University is the the inventor of the Tex and Metafont
typesetting systems that are the precursors of Latex, the document layout system in which the original manuscript of this book was
done.
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with minimal information loss. Chapters 1, 7, and 8 will provide the necessary information about continuous-
time and discrete-time signals, and show how to convert one into the other and back. The sampling theory
presented in Chapter 7 is the backbone of digital signal processing.

0.3.1 Continuous-Time and Discrete-Time Representations

There are significant differences between continuous-time and discrete-time signals as well as in their
processing. A discrete-time signal is a sequence of measurements typically made at uniform times,
while the analog signal depends continuously on time. Thus, a discrete-time signal x[n] and the
corresponding analog signal x(t) are related by a sampling process:

x[n] = x(nTs) = x(O)|t=nr, (0.1)

That is, the signal x[n] is obtained by sampling x(t) at times t = nTs, where n is an integer and T; is
the sampling period or the time between samples. This results in a sequence,

{-x(=T5) x(0) x(Ts) x(2T5)---}
according to the sampling times, or equivalently
(---al=1] x[0] 2[1] x[2]---)

according to the ordering of the samples (as referenced to time 0). This process is called sampling or
discretization of an analog signal.

Clearly, by choosing a small value for T we could make the analog and the discrete-time signals look
very similar—almost indistinguishable—which is good, but this is at the expense of memory space
required to keep the numerous samples. If we make the value of T large, we improve the memory
requirements, but at the risk of losing information contained in the original signal. For instance,
consider a sinusoid obtained from a signal generator:

x(t) = 2 cos(2mt)

for 0 <t < 10 sec. If we sample it every Ts; = 0.1 sec, the analog signal becomes the following
sequence:

x1[n] = x(t) li=0.1n= 2 cos(27n/10) 0 <n < 100

providing a very good approximation to the original signal. If, on the other hand, we let Ty, = 1 sec,
then the discrete-time signal becomes

x2[n] = x(t) |;=n=2cos(2rn) =2 0<n<10

See Figure 0.5. Although for Ty, the number of samples is considerably reduced, the representation
of the original signal is very poor—it appears as if we had sampled a constant signal, and we have
thus lost information! This indicates that it is necessary to come up with a way to choose T; so that
sampling provides not only a reasonable number of samples, but, more importantly, guarantees that
the information in the analog and the discrete-time signals remains the same.



FIGURE 0.5

Sampling an analog sinusoid

x(t) = 2 cos(2xt), 0 <t < 10, with two
different sampling periods,

(@) Ts1 = 0.1sec and (b) Ty, = 1 sec, giving
x1(0.1n) and x; (n). The sinusoid is shown
by dashed lines. Notice the similarity
between the discrete-time signal and the
analog signal when Ts; = 0.1 sec, while
they are very different when T, = 1 sec,
indicating loss of information.

FIGURE 0.6

Weekly closings of ACM stock for 160
weeks in 2006 to 2009. ACM is the trading
name of the stock of the imaginary
company, ACME Inc., makers of everything
you can imagine.
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As indicated before, not all signals are analog; there are some that are naturally discrete. Figure 0.6
displays the weekly average of the stock price of a fictitious company, ACME. Thinking of it as a signal,
it is naturally discrete-time as it does not come from the discretization of an analog signal.

We have shown in this section the significance of the sampling period Ts in the transformation of an analog
signal into a discrete-time signal without losing information. Choosing the sampling period requires knowl-
edge of the frequency content of the signal—this is an example of the relation between time and frequency to
be presented in great detail in Chapters 4 and b, where the Fourier representation of periodic and nonperiodic
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signals is given. In Chapter 7, where we consider the problem of sampling, we will use this relation to
determine appropriate values for the sampling period.

0.3.2 Derivatives and Finite Differences
Differentiation is an operation that is approximated in finite calculus. The derivative operator

dx(t) x(t+h) — x(t)

D =——==1 2
(o] = 552 = lim S (0.2)
measures the rate of change of an analog signal x(t). In finite calculus the forward finite-difference
operator

Alx(nTs)] = x((n + DTs) — x(nTy) (0.3)

measures the change in the signal from one sample to the next. If we let x[n] = x(nT;), for a known
T;, the forward finite-difference operator becomes a function of n:

Alx[n]] = x[n + 1] — x[n] (0.4)

The forward finite-difference operator measures the difference between two consecutive samples: one

in the future x((n + 1)Ts) and the other in the present x(nT;). (See Problem 0.4 for a definition of

the backward finite-difference operator.) The symbols D and A are called operators as they operate on

functions to give other functions. The derivative and the finite-difference operators are clearly not the
same. In the limit, we have that

dx(t) . Alx(nTy)]

m s

—nr.= li
dt li=n; Ti—0 T

(0.5)

Depending on the signal and the chosen value of Ty, the finite-difference operation can be a crude or
an accurate approximation to the derivative multiplied by Ts.

Intuitively, if a signal does not change very fast with respect to time, the finite-difference approximates
well the derivative for relatively large values of T, but if the signal changes very fast one needs very
small values of Ts. The concept of frequency of a signal can help us understand this. We will learn that
the frequency content of a signal depends on how fast the signal varies with time; thus a constant
signal has zero frequency while a noisy signal that changes rapidly has high frequencies. Consider a
constant signal xo(t) = 2 having a derivative of zero (i.e., such a signal does not change at all with
respect to time or it is a zero-frequency signal). If we convert this signal into a discrete-time signal
using a sampling period Ts = 1 (or any other positive value), then xy[n] = 2 and so

Alxo[n]]=2-2=0

coincides with the derivative. Consider then a signal x; (t) = t with derivative 1 (this signal changes
faster than x(¢) so it has frequencies larger than zero). If we sample it using Ts; = 1, then x1[n] = n
and the finite difference is

Alxi[n]] = Alnl=n+1) —n=1
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which again coincides with the derivative. Finally, we consider a signal that changes faster than x(t)
and x1(t) such as x,(t) = t>. Sampling x,(t) with Ty = 1, we have x;[n] = n? and its forward finite
difference is given by

Alxa[n]] = Aln?] = (n+ 1)* —n? =2n+1

which gives as an approximation to the derivative A[x;[n]]/Ts = 2n+ 1. The derivative of x;(t)
is 2t, which at 0 equals 0, and at 1 equals 2. On the other hand, A[n?]/T; equals 1 and 3 at
n=0 and n = 1, respectively, which are different values from those of the derivative. Suppose
Ts = 0.01, so that x,[n] = x(nTs) = (0.01n)? = 0.0001n2. If we compute the difference for this signal
we get

A[x2(0.01n)] = A[(0.01n)?] = (0.01n + 0.01)2 — 0.0001n% = 1074 (2n + 1)

which gives as an approximation to the derivative A[x;(0.01n)]/Ty = 10~2(2n + 1), or 0.01 when
n = 0 and 0.03 when n = 1 which are a lot closer to the actual values of

dx (1)
dt

l=0.01n = 2t |¢=0.01n = 0.02n

The error now is 0.01 for each case instead of 1 as in the case when T, = 1. Thus, whenever the
rate of change of the signal is faster, the difference gets closer to the derivative by making T
smaller.

It becomes clear that the faster the signal changes, the smaller the sampling period Ts should be in order to
get a better approximation of the signal and its derivative. As we will learn in Chapters 4 and 5 the frequency
content of a signal depends on the signal variation over time. A constant signal has frequency zero, while a
signal that changes very fast over time would have high frequencies. The higher the frequencies in a signal,
the more samples would be needed to represent it with no loss of information, thus requiring that Ts be
smaller.

0.3.3 Integrals and Summations

Integration is the opposite of differentiation. To see this, suppose I(t) is the integration of a
continuous signal x(t) from some time t( to t (ty < t),

t

I(t) = /x(r)dr (0.6)

to
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or the sum of the area under x(t) from ¢y to t. Notice that the upper bound of the integral is ¢ so the
integrand depends on a dummy variable.? The derivative of I(t) is

t
iy . I —I1t—-h . 1
T n = im / *(@)de
t—h
~ lim x(t) +x(t —h) — X0
h—0 2

where the integral is approximated as the area of a trapezoid with sides x(t) and x(t — h) and height
h. Thus, for a continuous signal x(t),

t
d
o /x(t)dr = x(¢) (0.7)
Lo

or if using the derivative operator DJ.], then its inverse D~![.] should be the integration operator.
That is, the above equation can be written

DID™ ! [x()]] = x(1). (0.8)

We will see in Chapter 3 a similar relation between the derivative and the integral. The Laplace trans-
form operators s and 1/s (just like D and 1/D) imply differentiation and integration in the time
domain.

Computationally, integration is implemented by sums. Consider, for instance, the integral of x(t) = ¢
from 0 to 10, which we know is equal to
10 P
/t di= = 0, =50.
0

That is, the area of a triangle with a base of 10 and a height of 10. For T = 1, suppose we approximate
the signal x(t) by pulses p[n] of width T; = 1 and height nT; = n, or pulses of arean forn=0,...,9.
This can be seen as a lower-bound approximation to the integral, as the total area of these pulses
gives a result smaller than the integral. In fact, the sum of the areas of the pulses is given by

9 9 9 0
Zp[n]:Zn:0+1+2+---9:0.5|:Zn+2k:|
n=0 k=9

n=0 n=0
9 9 9
9 10 x 9
=0.5 9 — == 1= — 45
reYoon]-Ii- 1
n=0 n=0 n=0

2The integral I(t) is a function of ¢ and as such the integrand needs to be expressed in terms of a so-called dummy variable t that takes
values from ¢y to ¢ in the integration. It would be confusing to let the integration variable be t. The variable  is called a dummy variable
because it is not crucial to the integration; any other variable could be used with no effect on the integration.
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10
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FIGURE 0.7 2
Approximation of area under 0
x(t) =t,t > 0, 0 otherwise, by pulses of ' ' ' '
width 1 and height nTs, where Ts = 1 and 0 2 4 6 8 10
n=0,1,... t

The approximation of the area using T; = 1 is very poor (see Figure 0.7). In the above, we used the
fact that the sum is not changed whether we add the numbers from 0 to 9 or backwards from 9 to 0,
and that doubling the sum and dividing by 2 would not change the final answer. The above sum can
thus be generalized to

N—1 1 N—1 N-1 1 N-1
Zn:E don+ Y (N-1-n) :EZ(N—l)
n=0 n=0 n=0 n=0
_Nx®-D ([2\] — U (0.9)

a result that Gauss found out when he was a preschooler!?

To improve the approximation of the integral we use Ty = 10~3, which gives a discretized signal nT
for0 < nT; < 10 or 0 < n < (10/Ts) — 1. The area of the pulses is nTs2 and the approximation to the
integral is then

104—1 10%—1

Z pln] Z n10-%
n=0 n=0

104 x (10* — 1)
106 x 2
=49.995

3 Carl Friedrich Gauss (1777-1855) was a German mathematician. He was seven years old when he amazed his teachers with his trick
for adding the numbers from 1 to 100 [7]. Gauss is one of the most accomplished mathematicians of all times [2]. He is in a group of
selected mathematicians and scientists whose pictures appear in the currency of a country. His picture was on the Mark, the previous
currency of Germany [6].
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which is a lot better result. In general, we have that the integral can be computed quite accurately
using a very small value of Ts, indeed

(10/T5)—1 (10/T5)—1
> plnl= ) a1l
n=0 n=0
2 (10/Ts) x ((10/T5) — 1)
= TS
2
_ 10 x (10 — Ty)
B 2

which for very small values of T; (so that 10 — Ts & 10) gives 100/2 = 50, as desired.

Derivatives and integrals take us into the processing of signals by systems. Once a mathematical model for a
dynamic system is obtained, typically differential equations characterize the relation between the input and
output variable or variables of the system. A significant subclass of systems (used as a valid approximation in
some way to actual systems) is given by linear differential equations with constant coefficients. The solution
of these equations can be efficiently found by means of the Laplace transform, which converts them into
algebraic equations that are much easier to solve. The Laplace transform is covered in Chapter 3, in part to
facilitate the analysis of analog signals and systems early in the leaming process, but also so that it can be
related to the Fourier theory of Chapters 4 and 5. Likewise for the analysis of discrete-time signals and systems
we present in Chapter 9 the Z-transform, having analogous properties to those from the Laplace transform,
before the Fourier analysis of those signals and systems.

0.3.4 Differential and Difference Equations

A differential equation characterizes the dynamics of a continuous-time system, or the way the system
responds to inputs over time. There are different types of differential equations, corresponding to
different systems. Most systems are characterized by nonlinear, time-dependent coefficient differential
equations. The analytic solution of these equations is rather complicated. To simplify the analysis,
these equations are locally approximated as linear constant-coefficient differential equations.

Solution of differential equations can be obtained by means of analog and digital computers. An
electronic analog computer consists of operational amplifiers (op-amps), resistors, capacitors, voltage
sources, and relays. Using the linearized model of the op-amps, resistors, and capacitors it is possible
to realize integrators to solve a differential equation. Relays are used to set the initial conditions on
the capacitors, and the voltage source gives the input signal. Although this arrangement permits the
solution of differential equations, its drawback is the storage of the solution, which can be seen with
an oscilloscope but is difficult to record. Hybrid computers were suggested as a solution—the analog
computer is assisted by a digital component that stores the data. Both analog and hybrid computers
have gone the way of the dinosaurs, and it is digital computers aided by numerical methods that are
used now to solve differential equations.

Before going into the numerical solution provided by digital computers, let us consider why inte-
grators are needed in the solution of differential equations. A first-order (the highest derivative
present in the equation); linear (no nonlinear functions of the input or the output are present) with
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RC circuit.
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FIGURE 0.9 O] [a0 ],
Realization of first-order differential equation using at
(a) a differentiator and (b) an integrator. (a) (b)

constant-coefficient differential equations obtained from a simple RC circuit (Figure 0.8) with a con-
stant voltage source v;(t) as input and with resistor R = 1; and capacitor C = 1F (with huge plates!)
connected in series is given by

dve (1)
dt

vi(t) = v:(t) + (0.10)

with an initial voltage v,(0) across the capacitor.

Intuitively, in this circuit the capacitor starts with an initial charge of v.(0), and will continue charging
until it reaches saturation, at which point no more charge will flow (the current across the resistor and
the capacitor is zero). Therefore, the voltage across the capacitor is equal to the voltage source-that
is, the capacitor is acting as an open circuit given that the source is constant.

Suppose, ideally, that we have available devices that can perform differentiation. There is then the
tendency to propose that the differential equation (Eq. 0.10) be solved following the block diagram
shown in Figure (0.9). Although nothing is wrong analytically, the problem with this approach is that
in practice most signals are noisy (each device produces electronic noise) and the noise present in the
signal may cause large derivative values given its rapidly changing amplitudes. Thus, the realization
of the differential equation using differentiators is prone to being very noisy (i.e., not good). Instead
of, as proposed years ago by Lord Kelvin,* using differentiators we need to smooth out the process by
using integrators, so that the voltage across the capacitor v.(t) is obtained by integrating both sides of
Equation (0.10). Assuming that the source is switched on at time ¢ = 0 and that the capacitor has an
initial voltage v,(0), using the inverse relation between derivatives and integrals gives

t
ve(t) = /[vi(r) —v.(7)]dt + v.(0) t>0 (0.11)
0

4william Thomson, Lord Kelvin, proposed in 1876 the differential analyzer, a type of analog computer capable of solving differential
equations of order 2 and higher. His brother James designed one of the first differential analyzers [78].
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which is represented by the block diagram in Figure 0.9(b). Notice that the integrator also provides a
way to include the initial condition, which in this case is the initial voltage across the capacitor, v.(0).
Different from the accentuating the effect of differentiators on noise, integrators average the noise,
thus reducing its effects.

Block diagrams like the ones shown in Figure 0.9 allow us to visualize the system much better, and are
commonly used. Integrators can be efficiently implemented using operational amplifiers with resistors and
capacitors.

How to Obtain Difference Equations
Let us then show how Equation (0.10) can be solved using integration and its approximation, result-
ing in a difference equation. Using Equation (0.11) att = t; and ¢t = ¢y for t; > o, we have that

5} 5]
ve(t1) — ve(to) = /vi(r)dr —/vc(t)dr
to to

If we let t; — tp = At where At — 0 (i.e., a very small time interval), the integrals can be seen as
the area of small trapezoids of height At and bases v;(t;) and v;(tp) for the input source and v.(t1)
and v.(tp) for the voltage across the capacitor (see Figure 0.10). Using the formula for the area of a
trapezoid we get an approximation for the above integrals so that

At At
ve(t1) — ve(to) = [vi(t1) + vi(to)]7 — [ve(t1) + vc(to)]7

from which we obtain
At

1 At o A At I
ve(t1) |: + 7] = [vi(t1) + vz(to)]7 —+ ve(to) |: - 7}

Assuming At = T, we then let t; = nT and top = (n — 1)T. The above equation can be written as

2+T

v:(nT) = [vi(nT) + vi((n — DT)] + ve((n—1)T) n>1 (0.12)

2+T

and initial condition v.(0) = 0. This is a first-order linear difference equation with constant
coefficients approximating the differential equation characterizing the RC circuit. Letting the input

Ve(ty)

Ve(to)

FIGURE 0.10 > t
Approximation of area under the
curve by a trapezoid. At

A~

AC
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be vj(t) = 1 for t > 0, we have

0 n=20

T

_ 0.13
A+ (-1 n=1 (0.13)

ve(nT) = {

The advantage of the difference equation is that it can be solved for increasing values of n using
previously computed values of v.(nT), which is called a recursive solution. For instance, letting T =
1073, v;(t) = 1, and defining M = 2T/(2 + T), K = (2 — T)/(2 + T), we obtain

n=20 1:(0) =0

n=1 v(T) =M

n=2 v.2T)=M+KM = M(1 +K)

n=3 13T =M+KM+KM)=M>1+K+K?

n=4  v.(4T) =M+ KM 4+ K+ K?) =M1 +K +K? + K>)

The values are M = 2T/(2+T)~T=10"3,K=2 —-T)/(2+T) < 1,and 1 — K = M. The response
increases from the zero initial condition to a constant value, which is the effect of the dc source—the
capacitor eventually acts as an open circuit, so that the voltage across the capacitor equals that of
the input. Extrapolating from the above results it seems that in the steady-state (i.e., when nT — oc0)
we have’
o
M
m
ve(nT) _Mrgjl( = =1

Even though this is a very simple example, it clearly illustrates that very good approximations to the
solution of differential equations can be obtained using numerical methods that are appropriate for
implementation in digital computers.

The above example shows how to solve a differential equation using integration and approximation of the
integrals to obtain a difference equation that a computer can easily solve. The integral approximation used
above is the trapezoidal rule method, which is one among many numerical methods used to solve differential
equations. Also we will see later that the above results in the bilinear transformation, which connects the
Laplace s variable with the z variable of the Z-transform, and that will be used in Chapter 11 in the design of
discrete filters.

5The infinite sum converges if |K| < 1, which is satisfied in this case. If we multiply the sum by (1 — K) we get

o0 o0 o0
(I_K)Zszsz_ZKerl
m=0 m=0 m=0
00 00
=14+) K"=) K'=1
m=1 =1

where we changed the variable in the second equation to £ = m + 1. This explains why the sum is equal to 1/(1 — K).
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0.4 COMPLEX OR REAL?

Most of the theory of signals and systems is based on functions of a complex variable. Clearly, sig-
nals are functions of a real variable corresponding to time or space (if the signal is two-dimensional,
like an image) so why would one need complex numbers in processing signals? As we will see later,
time-dependent signals can be characterized by means of frequency and damping. These two charac-
teristics are given by complex variables such as s = o 4 jQ (where o is the damping factor and 2 is
the frequency) in the representation of analog signals in the Laplace transform, or z = rel® (where r
is the damping factor and w is the discrete frequency) in the representation of discrete-time signals in
the Z-transform. Both of these transformations will be considered in detail in Chapters 3 and 9. The
other reason for using complex variables is due to the response of systems to pure tones or sinusoids.
We will see that such response is fundamental in the analysis and synthesis of signals and systems.
We thus need a solid grasp of what is meant by complex variables and what a function of these is
all about. In this section, complex variables will be connected to vectors and phasors (which are
commonly used in the sinusoidal steady-state analysis of linear circuits).

0.4.1 Complex Numbers and Vectors

A complex number z represents any point (x,y) in a two-dimensional plane by z = x + jy, where
x = Relz] (real part of z) is the coordinate in the x axis and y = Zm|z] (imaginary part of z) is the
coordinate in the y axis. The symbol j = v/—1 just indicates that z needs to have two components
to represent a point in the two-dimensional plane. Interestingly, a vector z that emanates from the
origin of the complex plane (0, 0) to the point (x, y) with a length

Zl = /a2 +92 = Iz (0.14)

and an angle
0=/7=/z (0.15)

also represents the point (x, y) in the plane and has the same attributes as the complex number z. The
couple (x,y) is therefore equally representable by the vector zZ or by a complex number z that can be
written in a rectangular or in a polar form,

z=x+jy = |zl (0.16)
where the magnitude |z| and the phase 0 are defined in Equations (0.14) and (0.15).

It is important to understand that a rectangular plane or a polar complex plane are identical despite
the different representation of each point in the plane. Furthermore, when adding or subtracting
complex numbers the rectangular form is the appropriate one, while when multiplying or dividing
complex numbers the polar form is more advantageous. Thus, if complex numbers z = x + jy = |z|é/“?
and v = p + jg = |v|é“? are added analytically, we obtain

z+v=(+p) +jy+49
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(a) Representation of a complex number z by a I x —y)
vector (b) addition of complex numbers z and v;
(c) integer powers of j; and (d) complex conjugate. (c) (d)

Using their polar representations requires a geometric interpretation: the addition of vectors (see
Figure 0.11). On the other hand, the multiplication of z and v is easily done using their polar
forms as

v = |Z|ejézlv|ejév — |Z| |U|e]‘(ZZ+ZU)
but it requires more operations if done in the rectangular form—that is,
zv = (x+jy (P +jq) = (xp — yq) +j(xq + yp)

It is even more difficult to obtain a geometric interpretation. Such an interpretation will be seen
later on. Addition and subtraction as well as multiplication and division can thus be done more
efficiently by choosing the rectangular and the polar representations, respectively. Moreover, the polar
representation is also useful when finding powers of complex numbers. For the complex variable
z = |z|e%?, we have that

for n integer or rational. For instance, if n = 10, then z'© = |z|1%¢/'94%, and if n = 3/2, then z!° =
(/1z)3é1-54%. The powers of j are of special interest. Given that j = /=1 then, we have

(=)™ n=2m, neven

no__ o 1\n/2 _
J=E0 _{(—1)'"]' n=2m+1, nodd
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so that j =1, j! =j, j2 = —1, j = —j, and so on. Letting j = 1¢"/2, we can see that the increasing
powers of j" = 1¢//2 are vectors with angles of 0 when n =0, 7/2 when n =1, 7 when n =2,
and 37 /2 when n = 3. The angles repeat for the next four values, the four after that, and so on. See
Figure 0.11.

One operation possible with complex numbers that is not possible with real numbers is complex
conjugation. Given a complex number z = x+jy = |z|e/“* its complex conjugate is z* =x —jy =
|zle7/“*—that is, we negate the imaginary part of z or reflect its angle. This operation gives that

(i) z+z"=2x or TRel|z] =0.5]z+z"]

(i) z—2z"=2y or ZIm|z] =0.5]z—z"|

(i) zz* = |z]*> or |z] = vzz*

() = =e2% or Lz=—j0.5[log(k) — log")] (0.17)

o= z = —j0.5[log(z g(z .

The complex conjugation provides a different approach to the division of complex numbers in rect-

angular form. This is done by making the denominator a positive real number by multiplying both
numerator and denominator by the complex conjugate of the denominator. For instance,

Ll (4G _ 7 _ 7]
344 (B+j4HB—j4) 9+16 25

Finally, the conversion of complex numbers from rectangular to polar needs to be done with care,
especially when computing the angles. For instance, z = 1 +j has a vector representing in the first
quadrant of the complex plane, and its magnitude is |z| = +/2 while the tangent of its angle @ is
tan(d) = 1 or § = /4 radians. If z = —1 + j, the vector representing it is now in the second quadrant
with the same magnitude as before, but its angle is now

0 =m —tan" (1) = 37/4

That is, we find the angle with respect to the negative real axis and subtract it from 7. Likewise, if
z = —1 — j, the magnitude does not change but the phase is now

6 =m+tan (1) = 57/4

which can also be expressed as —37/4. Finally, when z = 1 — j, the angle is —7 /4 and the magnitude
remains the same. The conversion from polar to rectangular form is much easier. Indeed, given a
complex number in polar form z = |z|e? its real part is x = |z| cos(d) (i.e., the projection of the vector
corresponding to z onto the real axis) and the imaginary part is y = |z| sin(f), so that z = x + jy. For
instance, z = +/2¢3"/* can be written as

z= \/ECOS(37T/4) +jﬁsin(37t/4) =—1+4j
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0.4.2 Functions of a Complex Variable

Just like real-valued functions, functions of a complex variable can be defined. For instance, the
logarithm of a complex number can be written as

v = log(z) = log(|zl¢”) = log(lzl) + jé

by using the inverse connection between the exponential and the logarithmic functions. Of particular
interest in the theory of signals and systems is the exponential of complex variable z defined as

v=e* =M = el

It is important to mention that complex variables as well as functions of complex variables are more
general than real variables and real-valued functions. The above definition of the logarithmic function
is valid when z = x, with x a real value, and also when z = jy, a purely imaginary value. Likewise, the
exponential function for z = x is a real-valued function.

Euler’s Identity
One of the most famous equations of all times® is
14" =147 =0

due to one of the most prolific mathematicians of all times, Leonard Euler.” The above equation can
be easily understood by establishing Euler’s identity, which connects the complex exponential and
sinusoids:

&7 = cos(9) + jsin(6) (0.18)

One way to verify this identity is to consider the polar representation of the complex number cos(6) +
jsin(0), which has a unit magnitude since \/ cos2(6) + sin? () = 1 given the trigonometric identity
cos2(9) + sin?(9) = 1. The angle of this complex number is

oy [sin@) ]
Yy =tan |:cos(9):| =0

Thus, the complex number
cos(0) +jsin(f) = 16°

which is Euler’s identity. Now in the case where # = 4 the identity implies that " = —1,
explaining the famous Euler’s equation.

©A reader’s poll done by Mathematical Intelligencer named Euler’s identity the most beautiful equation in mathematics. Another poll by
Physics World in 2004 named Euler’s identity the greatest equation ever, together with Maxwell’s equations. Paul Nahin’s book Dr. Euler’s
Fabulous Formula (2006) is devoted to Euler’s identity. It states that the identity sets “the gold standard for mathematical beauty” [73].
“Leonard Euler (1707-1783) was a Swiss mathematician and physicist, student of John Bernoulli, and advisor of Joseph Lagrange. We
owe Euler the notation f(x) for functions, e for the base of natural logs, i = +/—1, 7 for pi, X for sum, the finite difference notation A,
and many more!
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The relation between the complex exponentials and the sinusoidal functions is of great importance
in signals and systems analysis. Using Euler’s identity the cosine can be expressed as

) 0 4 o= Jf
cos(8) = Rel’] = % (0.19)
while the sine is given by
) jo _ o= J0
sin(f) = Zm[e’] = % (0.20)

Indeed, we have
&% = cos(6) + jsin(0)
e 19 = cos(#) — jsin(6)
Adding them we get the above expression for the cosine, and subtracting the second from the first we

get the given expression for the sine. The variable 6 is in radians, or in the corresponding angle in
degrees (recall that 27 radians equals 360 degrees).

These relations can be used to define the hyperbolic sinusoids as

cos(jo) = % = cosh(«) (0.21)
. e —e” .
jsin(jo) = S sinh(w) (0.22)

from which the other hyperbolic functions are defined. Also, we obtain the following expression for
the real-valued exponential:

e % = cosh(a) — sinh(«) (0.23)
Euler’s identity can also be used to find different trigonometric identities. For instance,

J° 4 e

2 _
cos“(0) = |: 5

2
1 . . 1 1

= —[2+6% 4721 = = + = cos(26

} J12+6% ) = 2 4 2 cos(20)

-2 2 1
sin“(0) =1 — cos“(A) = 573 cos(20)

o — e o o0 P20 720
sin(@) cos(9) = - = - = —sin(26)
2j 2 4j 2

0.4.3 Phasors and Sinusoidal Steady State

A sinusoid x(t) is a periodic signal represented by
x(t) = A cos(Qot + V) —0o<t< o (0.24)

where A is the amplitude, Q¢ = 2xfj is the frequency in rad/sec, and ¥ is the phase in radians. The
signal x(t) is defined for all values of t, and it repeats periodically with a period Ty = 1/f (sec), so
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that fy is the frequency in cycles/sec or in Hertz (Hz) (in honor of H. R. Hertz?). Given that the units
of Qo is rad/sec, then Q¢ has as units (rad/sec) x (sec) = (rad), which coincides with the units of the
phase v/, and permits the computation of the cosine. If ¥ = 0, then x(t) is a cosine, and if y = —7/2,
then x(t) is a sine.

If one knows the frequency Q¢ (rad/sec) in Equation (0.24), the cosine is characterized by its
amplitude and phase. This permits us to define phasors® as complex numbers characterized by the
amplitude and the phase of a cosine signal of a certain frequency 2. That is, for a voltage signal
v(t) = A cos(Qot + ) the corresponding phasor is

V = AdV = Acos(¥) +jAsin(y) = ALy (0.25)
and such that
u(t) = Re[Ve*0!] = Re[Ad V)] = A cos(Qot + ¥) (0.26)

One can thus think of the voltage signal v(t) as the projection of the phasor V onto the real axis and
turning counterclockwise at a rate of 2y rad/sec. At time t = 0 the angle of the phasor is y. Clearly
the phasor definition is true for only one frequency, in this case ¢, and it is always connected to a
cosine function.

Interestingly enough, the angle ¥ can be used to differentiate cosines and sines. For instance, when
¥ = 0, the phasor V moving around at a rate of §( generates as a projection on the real axis the
voltage signal A cos(Qpt), while when i = —n /2, the phasor V moving around again at a rate of
Qo generates a sinusoid A sin(2pt) = A cos(2ot — 7 /2) as it is projected onto the real axis. This estab-
lishes the well-known fact that the sine lags the cosine by /2 radians or 90 degrees, or that the cosine
leads the sine by /2 radians or 90 degrees. Thus, the generation and relation of sines and cosines
can be easily obtained using the plot in Figure 0.12.

Phasors can be related to vectors. A current source, for instance,

i(t) = A cos(20t) + Bsin(Q200)

V\QO
—sin A

Ccos
FIGURE 0.12 —Cos
Generation of sinusoids )
¥ sin

from phasors of a
frequency Q.

8Heinrich Rudolf Hertz was a German physicist known for being the first to demonstrate the existence of electromagnetic radiation in
1888.

°In 1883, Charles Proteus Steinmetz (1885-1923), German-American mathematician and engineer, introduced the concept of phasors
for alternating current analysis. In 1902, Steinmetz became a professor of electrophysics at Union College in Schenectady, New York.
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can be expressed as
i(t) = Ccos(Qot + y)

where C and y are to be determined (the sinusoidal components of i(t) must depend on a unique
frequency Qy; if that was not the case the concept of phasors would not apply). To obtain the equiv-
alent representation, we first obtain the phasor corresponding to A cos(Qot), which is I} = A¢® = A,
and for Bsin(Qot) the corresponding phasor is I, = Be77/2, so that

i(t) = Re[(I; + 1))

Thus, the problem has been transformed into the addition of two vectors I; and I, which gives a
vector

[ = /A2 + B2¢Jtan" ' (B/A)
so that
i(t) = Re[le*¥)
— Re[v/A2 + B2 ¢ tan" ' (B/A) i1
= VA2 + B2 cos(Qot — tan~ ! (B/A))

Or, an equivalent source with amplitude C = ~/A2 + B2, phase y = —tan~!(B/A), and frequency Qo-
that is, an equivalent phasor that generates i(t) and has the magnitude C, the angle y, and rotates at
frequency Q.

In Figure 0.13 we display the result of adding two phasors (frequency fo = 20 Hz) and the sinusoid
that is generated by the phasor I = I; + I, = 27.98¢304’

0.4.4 Phasor Connection

The fundamental property of a circuit made up of constant resistors, capacitors, and inductors is that
its response to a sinusoid is also a sinusoid of the same frequency in steady state. The effect of the
circuit on the input sinusoid is on its magnitude and phase and depends on the frequency of the input
sinusoid. This is due to the linear and time-invariant nature of the circuit, and can be generalized to
more complex continuous-time as well as discrete-time systems as we will see in Chapters 3, 4, 5, 9
and 10.

To illustrate the connection of phasors with dynamic systems consider a simple RC circuit (R =1 @
and C = 1F). If the input to the circuit is a sinusoidal voltage source v;(t) = A cos(2ot) and the voltage
across the capacitor v.(t) is the output of interest, the circuit can be easily represented by the first-order
differential equation

dve(t)
dt

+ ve(t) = vi(t)
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(a) Sum of phasors I; = 10¢/° (solid arrow) and I, = 20e/™/4 (dashed arrow) with the result in blue; (c) sinusoid
generated by phasor I =11 + I, (D).
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Assume that the steady-state response of this circuit (i.e., v.(t) as t — o0) is also a sinusoid
ve(t) = Ccos(Qot + )

of the same frequency as the input, with amplitude C and phase ¢ to be determined. This response
must satisfy the differential equation, or

Ave(t)
dt

A cos(Qpt) = —CQp sin(Rot + ) + C cos(RQot + V)

vi(t) = + vc(1)

= CQp cos(Qot + ¥ + 7/2) + Ccos(Qot + 1)

= Cy/1 + Q2 cos(Qt + ¥ + tan™ 1 (CQ0/C))
Comparing the two sides of the above equation gives

A

2
J1+92

¥ = —tan" ' (Qo)

C=

for a steady-state response

A -1
Ve(t) = ——— cos(Qpt — tan™ " (2p)).

J1+3

Comparing the steady-state response v.(t) with the input sinusoid v;(t), we see that they both have the
same frequency 2o, but the amplitude and phase of the input are changed by the circuit depending
on the frequency Q. Since at each frequency the circuit responds differently, obtaining the frequency
response of the circuit will be useful not only in analysis but in the design of circuits.

The sinusoidal steady-state is obtained using phasors. Expressing the steady-state response of the
circuit as

v.(t) = Re [Vcejgot]

where V. = Cél¥ is the corresponding phasor for v,(t), we find that

dve(t)  dRe[V ! de/*%t ) ot
- - Re | Ve— Re [] oVee ]

By replacing v.(t), dv.(t)/dt, obtained above, and

v;i(t) = Re [Viejgot] where V; = Ad°
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in the differential equation, we obtain

Re [Vc(l + jszo)efﬂof] — Re [Aefﬂof]

so that
Ve = 1+A.Q _ A @)
2
S0 142
= CelY

and the sinusoidal steady-state response is
ve(t) = Re [ Ve ™']

A -1
= —— cos(QRot — tan™ " (L2p))
J1+93

which coincides with the response obtained above. The ratio of the output phasor V, to the input
phasor V;,

Ve 1

Vi  1+jQ0
gives the response of the circuit at frequency €. If the frequency of the input is a generic 2, changing
Qo above for Q gives the frequency response for all possible frequencies.

The concepts of linearity and time invariance will be used in both continuous-time as well as discrete-time
systems, along with the Fourier representation of signals in terms of sinusoids or complex exponentials, to
simplify the analysis and to allow the design of systems. Thus, transform methods such as Laplace and the
Z-transform will be used to solve differential and difference equations in an algebraic setup. Fourier repre-
sentations will provide the frequency perspective. This is a general approach for both continuous-time and
discrete-time signals and systems. The introduction of the concept of the transfer function will provide tools
for the analysis as well as the design of linear time-invariant systems. The design of analog and discrete filters
is the most important application of these concepts. We will look into this topic in Chapters 5, 6, and 11.

0.5 SOFT INTRODUCTION TO MATLAB

MATLAB is a computing language based on vectorial computations.® In this section, we will
introduce you to the use of MATLAB for numerical and symbolic computations.

IOMATLAB stands for matrix laboratory. MatWorks, the developer of MATLAB, was founded in 1984 by Jack Little, Steve Bangert, and
Cleve Moler. Moler, a math professor at the University of New Mexico, developed the first version of MATLAB in Fortran in the late
1970s. It only had 80 functions and no M-files or toolboxes. Little and Bangert reprogrammed it in C and added M-files, toolboxes,
and more powerful graphics [49].
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0.5.1 Numerical Computations
The following instructions are intended for users who have no background in MATLAB but are inter-
ested in using it in signal processing. Once you get the basic information on how to use the language
you will be able to progress on your own.

1.

Create a directory where you will put your work, and from where you will start MATLAB. This is
important because when executing a program, MATLAB will look at the current directory, and if
the file is not present in the current directory, and if it is not a MATLAB function, MATLAB gives
an error indicating that it cannot find the desired program.

There are two types of programs in MATLAB: the script, which consists in a list of commands
using MATLAB functions or your own functions, and the functions, which are programs that can
be called with different inputs and provide the corresponding outputs. We will show examples of
both.

Once you start MATLAB, you will see three windows: the command window, where you will type
commands; the command history, which keeps a list of commands that have been used; and the
workspace, where the variables used are kept.

Your first command on the command window should be to change to your data directory where
you will keep your work. You can do this in the command window by using the command CD
(change directory) followed by the desired directory. It is also important to use the command
clear all and clf to clear all previous variables in memory and all figures.

Help is available in several forms in MATLAB. Just type helpwin, helpdesk, or demo to get started. If
you know the name of the function, help will give you the necessary information on the particular
function, and it will also give you information on help itself. Use help to find more about the
functions used in this introduction to MATLAB.

To type your scripts or functions you can use the editor provided by MATLAB; simply type edit.
You can also use any text editor to create scripts or functions, which need to be saved with the .m
extension.

Creating Vectors and Matrices
Comments are preceded by percent, and to begin a script, as the following, it is always a good idea
to clear all previous variables and all previous figures.

% matlab primer

clear all % clear all variables
clf % clear all figures
% row and column vectors

x=[1234] % row vector
y=x % column vector

The corresponding output is as follows (notice that there is no semicolon (;) at the end of the lines
to stop MATLAB from providing an output when the above script is executed).

X =
1 2 3 4



~ O N =

To see the dimension of x and y variables, type

whos % provides information on existing variables

to which MATLAB responds

Name  Size Bytes Class

X 1x4 32 double array
y ax1 32 double array
Grand total is 8 elements using 64 bytes

0.5 Soft Introduction to MATLAB a

Notice that a vector is thought of as a matrix; for instance, vector x is a matrix of one row and four
columns. Another way to express the column vector y is the following, where each of the row terms

is separated by a semicolon (;)

y =[1;2;3;4] % another way to write a column

To give as before:

y:

M~ ON =

MATLAB does not allow arguments of vectors or matrices to be zero or negative. For instance, if we

want the first entry of the vector y we need to type
y(1) % first entry of vector y
giving as output
ans =
1
If we type
y(0)

it will give us an error, to which we get the following warning:

??7? Subscript indices must either be real positive integers or logicals.

MATLARB also has a peculiar way to provide information in a vector, for instance:

y(1:3) % first to third entry of column vector y
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giving as expected the first to the third entries of the column vector y:
ans =
’
2
3

The following will give the third to the first entry in the row vector x (notice the difference in the two
outputs; as expected the values of y are given in a column, while the requested entries of x are given
in a row).

X(3:-1:1) % displays entries x(3) x(2) x(1)

Thus,
ans =
3 2 1

Matrices are constructed as an concatenation of rows (or columns):
A=[12;34;56] % matrix Awith rows [1 2], [3 4] and [5 6]

A=

a1 w =
A~ N

To create a vector corresponding to a sequence of numbers (in this case integers) there are different
approaches, as follows:
n=0:10 % vector with entries O to 10 increased by 1

This approach gives the following as output:
n=
Columns 1 through 10
o 1 2 3 4 5 6 7 8 9
Column 11
10

which is the same as the command
n=[0:10]

If we wish the increment different from 1 (default value), then we indicate it as in the following:
n1=0:2:10 % vector with entries from 0 to 10 increased by 2

which gives
nt=
0 2 4 6 8 10

We can combine the above vectors into one as follows:
nni =[nn1] % combination of vectors
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to get
nni =
Columns 1 through 10
o 1t 2 3 4 5 6 7 8 9
Columns 11 through 17
10 0 2 4 6 8 10

Vectorial Operations
MATLAB allows the conventional vectorial operations as well as facilitates others. For instance, if we
wish to multiply by 3 every entry of the row vector x given above, the command

Z = 3xx % multiplication by a constant
would give
Z=
3 6 9 12

Besides the conventional multiplication of vectors with the correct dimensions, MATLAB allows two
types of multiplications of one vector by another. The first one is where the entries of one vector are
multiplied by the corresponding entries of the other. To effect this the two vectors should have the
same dimension (i.e., both should be columns or rows with the same number of entries) and it is
necessary to put a dot before the multiplication operator—that is, as shown here:

v =X.xX % multiplication of entries of two vectors

V=
1 4 9 16

The other type of multiplication is the conventional multiplication allowed in linear algebra. For
instance, with that of a row vector by a column vector,

w = xxx" % multiplication of x (row vector) by x’(column vector)

w =30

the result is a constant—in this case, the length of the row vector should coincide with that of the
column vector. If you multiply a column (say x') of dimension 4 x 1 by a row (say x) of dimension
1 x 4 (notice that the 1s coincide at the end of the first dimension and at the beginning of the
second), the multiplication z = x" * x results in a 4 x 4 matrix.

The solution of a set of linear equations is very simple in MATLAB. To guarantee that a unique solu-
tion exists, the determinant of the matrix should be computed before inverting the matrix. If the
determinant is zero MATLAB will indicate the solution is not possible.

% Solution of linear set of equations Ax = b

A=[100;220;333]; % 3x3 matrix

t = det(A); % MATLAB function that calculates determinant
b=[222]; % column vector

X = inv(A)xb; % MATLAB function that inverts a matrix
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The results of these operations are not given because of the semicolons at the end of the commands.
The following script could be used to display them:

disp(’ Ax = Db’) % MATLAB function that displays the text in’’
A
b
X
t

which gives

Ax=Db
A=

1 0 O
2 2 0
3 3 38
b=

2

2

2
X =

2.0000
—1.0000
—0.3333
t=

6

Another way to solve this set of equations is
X =Db"/A
Try it!

MATLAB provides a fast way to obtain certain vectors/matrices; for instance,

% special vectors and matrices
x =ones(1, 10) % row of ten 1s

X =
T 11 1t 1 1 1 1 1 1

A =ones(,5) % matrixof5x5 1s

A=

—_ 4 4
— 4 4 a4
—_ 4 4
G G T U G Y
- 4 4 4

x1 =[x zeros(1, 5)] % vector with previous x and 5 Os
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x1 =

Columns 1 through 10

Tt 1 1 1 1 1 1 1 1
Columns 11 through 15

O 0 0 0 O

A(2:5, 2:5) = zeros(4, 4) % zeros in rows 2—5, columns 2—5

A=
11 1 1 1
1 0 0 0 O
1 0 0 0 O
1 0 0 0 O
1 0 0 0 O

y =rand(1,10) % row vector with 10 random values (uniformly
% distributed in [0,1]

y:
Columns 1 through 6
0.9501 0.2311 0.6068 0.4860 0.8913 0.7621
Columns 7 through 10
0.4565 0.0185 0.8214 0.4447

Notice that these values are between 0 and 1. When using the normal or Gaussian-distributed noise
the values can be positive or negative reals.

y1 =randn(1,10) % row vector with 10 random values
% (Gaussian distribution)

y1=
Columns 1 through 6
—0.4326 —1.6656 0.1253 0.2877 —1.1465 1.1909
Columns 7 through 10
1.1892 —0.0376 0.3273 0.1746

Using Built-In Functions and Creating Your Own
MATLAB provides a large number of built-in functions. The following script uses some of them.

% using built-in functions

t=0:0.01:1; % time vector from O to 1 with interval of 0.01

x = cos(2xpixt/0.1); % cos processes each of the entries in
% vector t to get the corresponding value in vector x

% plotting the function x

figure(1) % numbers the figure

plot(t, X) % interpolated continuous plot

xlabel(’'t (sec)’) % label of x-axis

ylabel('x(t)’) % label of y-axis
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% let’s hear it
sound(1000#x, 10000)

The results are given in Figure 0.14.

To learn about any of these functions use help. In particular, use help to learn about MATLAB routines
for plotting plot and stem. Use help sound and help waveplay to learn about the sound routines available
in MATLAB. Additional related functions are put at the end of these help files. Explore all of these
and become aware of the capabilities of MATLAB. To illustrate the plotting and the sound routines,
let us create a chirp that is a sinusoid for which the frequency is varying with time.

y = sin2xpixt.”2/.1); % notice the dot in the squaring
% t was defined before
sound(1000*y, 10000) % to listen to the sinusoid
figure(2) % numbering of the figure
plot(t(1:100), y(1:100)) % plotting of 100 values of y
figure(3)
plot(t(1:100), x(1:100), ’k’, t(1:100), y(1:100), ’r’) % plotting x and y on same plot

Let us hope you were able to hear the chirp, unless you thought it was your neighbor grunting. In
this case, we plotted the first 100 values of t and y and let MATLAB choose the color for them. In the
second plot we chose the colors: black (dashed lines) for x and blue (continuous line) for the second
signal y(t) (see Figure 0.15).

Other built-in functions are sin, tan, acos, asin, atan, atan2, log, log10, exp, etc. Find out what each does
using help and obtain a listing of all the functions in the signal processing toolbox.

T .
C L) ¢ g o

JOEUTETY

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t(sec) t(sec)
(a) (b)

(
x(0.01n)

FIGURE 0.14
(a) Plotting of a sinusoid using plot, which gives a continuous plot, and (b) stem, which gives a discrete plot.
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FIGURE 0.15
(a) Plotting chirp (MATLAB chooses color), (b) sinusoid and chirp (the sinusoid is plotted with dashed lines and
the chirp with solid lines).

You do not need to define 7, as it is already done in MATLAB. For complex numbers also you do not
need to define the square root of —1, which for engineers is j’ and for mathematicians ‘i’ (they have
no current to worry about).
% pi and
pi
J
i
ans =
3.1416
ans =
0 + 1.0000i
ans =
0 + 1.0000i

Creating Your Own Functions
MATLAB has created a lot of functions to make our lives easier, and it allows us also to create—in the
same way—our own. The following file is for a function f with an input of a scalar x and output of a
scalar y related by a mathematical function:

function y = f(x)

y = xxexp(—sin(x))/(1 + X2);

Functions cannot be executed on their own—they need to be part of a script. If you try to execute the
above function MATLAB will give the following:
27?7 format compact;function y = f(x)

Error: A function declaration cannot appear within a script M-file.
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A function is created using the word “function” and then defining the output (y), the name of the
function (f), and the input of the function (x), followed by lines of code defining the function, which
in this case is given by the second line. In our function the input and the output are scalars. If you
want vectors as input/output you need to do the computation in vectorial form—more later.

Once the function is created and saved (the name of the function followed by the extension .m), MAT-
LAB will include it as a possible function that can be executed within a script. If we wish to compute
the value of the function for x = 2 (f.m should be in the working directory) we proceed as follows:

Y=
gives
y = 0.1611

To compute the value of the function for a vector as input, we compute for each of the values in the
vector the corresponding output using a for loop as shown in the following.

x = 0:0.1:100; % create an input vector x

N = length(x); % find the length of x

y = zeros(1,N); % initialize the output y to zeros

forn=1:N, % for the variable n from 1 to N, compute
y(n) = f(x(n)); % the function

end

figure(3)

plot(x, y)

grid % put a grid on the figure

title(’Function f(x)’)

xlabel(’x’)

ylabel('y’)

This is not very efficient. A general rule in MATLAB is: Loops are to be avoided, and vectorial
computations are encouraged. The results are shown in Figure 0.16.
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The function working on a vector x, rather than one value, takes the following form (to make it
different from the above function we let the denominator be 1 + x instead of 1 + x?):

function yy = ff(x)

% vectorial function

yy = X.xexp(—sin(x))./(1 + x);

Again, this function must be in the working directory. Notice that the computation of yy is done
considering x a vector; the .* and ./ are indicative of this. Thus, this function will accept a vector x and
will give as output a vector yy, computed as indicated in the last line. When we use a function, the
names of the variables used in the script that calls the function do not need to coincide with the ones
in the definition of the function. Consider the following script:

z=1fx); % x defined before,

% z instead of yy is the output of the function ff
figure(4)
plot(x, 2); grid
title(’Function ff(x)’) % MATLAB function that puts title in plot
xlabel(’x’) % MATLAB function to label x-axis
ylabel('z’) % MATLAB function to label y-axis

The difference between plot and stem is important. The function plot interpolates the vector to be plot-
ted and so the plot appears continuous, while stem simply plots the entries of the vector, separating
them uniformly. The input x and the output of the function are discrete time and we wish to plot
them as such, so we use stem.

stem(x(1:30), z(1:30))

grid

title(’Function ff(x)’)

xlabel('x’)

ylabel(’z’)

The results are shown in Figure 0.17.

More on Plotting
There are situations where we want to plot several plots together. One can superpose two or more
plots by using hold on and hold off. To put several figures in the same plot, we can use the function
subplot. Suppose we wish to plot four figures in one plot and they could be arranged as two rows of
two figures each. We do the following:

subplot(221)

plot(x, y)

subplot(222)

plot(x, 2)

subplot(223)

stem(x, y)

subplot(224)

stem(x, z)
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In the subplot function the first two numbers indicate the number of rows and the number of columns,
and the last digit refers to the order of the graph that is, 1, 2, 3, and 4 (see Figure 0.18).

There is also a way to control the values in the axis, by using the function (you guessed!) axis. This
function is especially useful after we have a graph and want to improve its looks. For instance, suppose
that the professor would like the above graphs to have the same scales in the y-axis (picky professor).
You notice that there are two scales in the y-axis, one 0-0.8 and another 0-3. To have both with the
same scale, we choose the one 0-3, and modify the above code to the following

subplot(221)
plot(x, y)

axis([0 100 0 3))
subplot(222)
plot(x, z)

axis([0 100 0 3))
subplot(223)
stem(x, y)
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axis([0 100 0 3]
subplot(224)
stem(x, z)
axis([0 100 0 3))

Saving and Loading Data
In many situations you would like to either save some data or load some data. The following is one
way to do it. Suppose you want to build and save a table of sine values for angles between 0 and
360 degrees in intervals of 3 degrees. This can be done as follows:

x = 0:3:360;

y = sin(xxpi/180); % sine computes the argument in radians

xy = [X'y']; % vector with 2 columns one for x’
% and another fory’

Let's now save these values in a file “sine.mat” by using the function save (use help save to learn more):

save sine.mat xy

To load the table, we use the function load with the name given to the saved table “sine” (the extension
*.mat is not needed). The following script illustrates this:

clear all
load sine
whos
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where we use whos to check its size:
Name  Size Bytes Class
Xy 121x2 1936 double array
Grand total is 242 elements using 1936 bytes

This indicates that the array xy has 121 rows and 2 columns, the first colum corresponding to x, the
degree values, and the second column corresponding to the sine values, y. Verify this and plot the
values by using

x=xy(:, 1);
y =xy(, 2);
stem(x, y)

Finally, MATLAB provides some data files for experimentation and you only need to load them. The
following “train.mat” is the recording of a train whistle, sampled at the rate of F; samples/sec, which
accompanies the sampled signal y(n) (see Figure 0.19).

clear all

load train

whos
Name Size Bytes Class
Fs 1x1 8 double array
y 12880x1 103040 double array

Grand total is 12881 elements using 103048 bytes

sound(y, Fs)
plot(y)

FIGURE 0.19 0 2000 4000 6000 8000 10000 12000
Train signal. n (samples)
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MATLAB also provides two-dimensional signals, or images, such as “clown.mat,” a 200 x 320 pixels
image.

clear all

load clown

whos
Name Size Bytes Class
X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

We can display this image in gray levels by using the following script (see Figure 0.20):

colormap(’gray’)
imagesc(X)

Or in color using

colormap(’hot’)
imagesc(X)

0.5.2 Symbolic Computations

We have considered the numerical capabilities of MATLAB, by which numerical data are transformed
into numerical data. There will be many situations when we would like to do algebraic or calculus
operations resulting in terms of variables rather than numerical data. For instance, we might want
to find a formula to solve quadratic algebraic equations, to find a difficult integral, or to obtain the
Laplace or the Fourier transform of a signal. For those cases MATLAB provides the Symbolic Math
Toolbox, which uses the interface between MATLAB and MAPLE, a symbolic computing system. In
this section, we provide you with an introduction to symbolic computations by means of examples,
and hope to get you interested in learning more on your own.
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Derivatives and Differences
The following script compares symbolic with numeric computations of the derivative of a chirp signal
(a sinusoid with changing frequency) y(t) = cos(t?), which is
dy(t) .
z(t) = Fra 2t sin(t”)
clf; clear all
% symbolic
syms ty z % define the symbolic variables
y = cos(t2) % chirp signal -- notice no . before " since t is no vector
z = diffly) % derivative
figure(1)
subplot(211)
ezplot(y, [0, 2xpi]);grid % plotting for symbolic y between 0 and 2xpi
hold on
subplot(212)
ezplot(z, [0, 2xpi]);grid
hold on
Y%numeric
Ts =0.1; % sampling period
t1 = 0:Ts:2xpi; % sampled time
y1 = cos(t1.2); % sampled signal --notice difference with y above
z1 = diff(y1)./diff(t1); % difference -- approximation to derivative
figure(1)
subplot(211)
stem(t1, y1, 'r’);axis([0 2xpi 1.1xmin(y1) 1.1xmax(y1)])
subplot(212)
stem(t1(1:length(y1) - 1), z1, ’r');axis([0 2xpi 1.1xmin(z1) 1.1xmax(z1)])
legend(’Derivative (black)’,’Difference (blue)’)
hold off

The symbolic function syms defines the symbolic variables (use help syms to learn more). The signal
y(t) is written differently than y;(¢) in the numeric computation. Since t; is a vector, squaring it
requires a dot before the symbol. That is not the case for ¢, which is not a vector but a variable. The
results of using diff to compute the derivative of y(¢) is given in the same form as you would have
obtained doing the derivative by hand—that is,

y = cos(t2)

z = —2xtxsin(t2)

The symbolic toolbox provides its own graphic routines (use help to learn about the different ez-
routines). For plotting y(t) and z(t), we use the function ezplot, which plots the above two functions
fort € [0, 2] and titles the plots with these functions.

The numeric computations differ from the symbolic in that vectors are being processed, and we are
obtaining an approximation to the derivative z(t). We sample the signal with Ts = 0.1 and use again
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FIGURE 0.21

Symbolic and numeric computation of the derivative of the chirp y(t) = cos(t2). (a) y(t) and the sampled signal
y(nTs), Ts = 0.1 sec. (b) Displays the exact derivative (continuous line) and the approximation of the derivative at
samples nT;. Better approximation to the derivative can be obtained by using a smaller value of Ts.

the function diff to approximate the derivative (the denominator diff(t1) is the same as T;). Plot-
ting the exact derivative (continuous line) with the approximated one (samples) using stem clarifies
that the numeric computation is an approximation at nTs values of time. See Figure 0.21.

The Sinc Function and Integration
The sinc function is very significant in the theory of signals and systems. It is defined as

sinmt
y@® =
Tt

-0 <t< o0

It is symmetric with respect to the origin, and defined from —oo to co. The value of y(0) can be found
using L'Hopital’s rule. We will see later (Parseval’s result in Chapter 5) that the integral of y%(t) is
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equal to 1. In the following script we are combining numeric and symbolic computations to show
this. First, after defining the variables, we use the symbolic function int to compute the integral of the
squared sinc function, with respect to t, from 0 to integer values 1 < k < 10. We then use the function
subs to convert the symbolic results into a numerical array zz. The numeric part of the script defines
a vector y to have the values of the sinc function for 100 time values equally spaced between [—4, 4],
obtained using the function linspace. We then use plot and stem to plot the sinc and the values of the
integrals, which as seen in Figure 0.22 reach a value close to unity in less than 10 steps. Please use

help to learn more about each of these functions.

clf; clear alll
% symbolic
symstz

for k = 1:10,

0.5

_____ Q-----§----
0.8

D= g

0.6

0.4

0.2

n
(b)
FIGURE 0.22

(@) Computation of the integral of the squared sinc function (b) lllustrates that the area under the curve of this
function, or its integral, is unity. Using the symmetry of the function only the integral for t > 0 needs to be

computed.

10
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z =int(sinc(t)2, t, O, k); % integral of sinc2 from 0 to k
zz(K) = subs(2xz); % substitution to numeric value zz
end
% numeric
t1 = linspace(—4, 4); % 100 equally spaced points in [-4,4]
y =sinc(t1).2; % numeric definition of the squared sinc function
n=1:10;
figure(1)
subplot(211)
plot(t1, y);grid;axis((—4 4 —0.2 1.1xmax(y)]);title('y(t)=sinc’2(t)’);
xlabel(’t’)
subplot(212)
stem(n(1:10), zz(1:10)); hold on
plot(n(1:10), zz(1:10), 'r’);grid;title(’ [ y(x) dz’); hold off
axis([1 10 0 1.1*max(zz)]); xlabel(’n’)

Figure 0.22 shows the squared sinc function and the values of the integral

k k
. 2
t
2/sinc2<t)dt=2/[s‘“(”)} it k=1,...,10
0 0

wt

which quickly reaches the final value of unity. In computing the integral from (—oo, co) we are using
the symmetry of the function and thus the multiplication by 2.

Chebyshev Polynomials and Lissajous Figures
The Chebyshev polynomials are used in the design of filters. They can be obtained by plotting two
cosine functions as they change with time t, one of fix frequency and the other with increasing
frequency:

x(t) = cos(2xt)

y(t) = cos(2rkt) k=1,...,N

The x(t) gives the x axis coordinate and y(t) the y axis coordinate at each value of t. If we solve for ¢ in
the top equation, we get

(= 1 cos™! (x(0)
= . COS X

which then replaced in the bottom equation gives
y(t) = cos [kcos™ (x(1))] k=1,...,N

as an expression for the Chebyshev polynomials (we will see in Chapter 6 that these equations can
be expressed as regular polynomials). Figure 0.23 shows the Chebyshev polynomials for N = 4. The
following script is used to compute and plot these polynomials.
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x=cos(2xt), y=cos(2rt) x=cos(2rt), y=cos(4rt)

x=cos(2rt), y=cos(6xt) x=cos(2rt), y=cos(8xt)

FIGURE 0.23

The Chebyshev polynomials for n = 1, 2, 3, 4. First (a) to fourth (d) polynomials. Notice that these polynomials
are defined between [—1, 1] in the x axis.

clear all;clf
syms xy t
X = cos(2xpixt); theta=0;
figure(1)
fork =1:4,
y = cos(2xpixkxt + theta);
if k == 1, subplot(221)
elseif k == 2, subplot(222)
elseif k == 3, subplot(223)
else subplot(224)
end
ezplot(x, y);grid;hold on
end
hold off
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’ x=cos(2xt), y=cos(2xt) x=cos(2rt), y=cos(2xt+1/4x) 1x=cos(27rt), y=cos(2rt) x=cos(2xt), y=1/2 cos(2xt+1/4r)
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FIGURE 0.24

Lissajous figures: (a) (four left plots) case 1 input and output of same amplitude (A = 1) but phase differences
of 0,7 /4,7 /2, and 37 /4; (b) (four right plots) case 2 input has unit amplitude but output has decreasing
amplitudes and same phase differences as in case 1.

The Lissajous figures we consider next are a very useful extension of the above plotting of sinusoids in
the x and y axes. These figures are used to determine the difference between a sinusoidal input and its
corresponding sinusoidal steady state. In the case of linear systems, which we will formally define in
Chapter 2, for a sinusoidal input the outputs of the system are also sinusoids of the same frequency,
but they differ with the input in the amplitude and phase.

The differences in amplitude and phase can be measured using an oscilloscope for which we put
the input in the horizontal sweep and the output in the vertical sweep, giving figures from which
we can find the differences in amplitude and phase. Two situations are simulated in the following
script, one where there is no change in amplitude but the phase changes from zero to 37 /4, while
in the other case the amplitude decreases as indicated and the phase changes in the same way as
before. The plots, or Lissajous figures, indicate such changes. The difference between the maximum
and the minimum of each of the figures in the x axis gives the amplitude of the input, while the
difference between the maximum and the minimum in the y axis gives the amplitude of the output.
The orientation of the ellipse provides the difference in phase with respect to that of the input.
The following script is used to obtain the Lissajous figures in these cases. Figure 0.24 displays the
results.

clear all;clf

syms xyt

X = cos(2xpixt); % input of unit amplitude and frequency 2*pi
A = 1;figure(1) % amplitude of output in case 1

fori=1:2,

for k = 0:3,



m CHAPTER 0: From the Ground Up!

theta = k«pi/4; % phase of output
y = Akscos(2xpixt + theta);
if k == 0,subplot(221)
elseif k == 1,subplot(222)
elseif k == 2,subplot(223)
else subplot(224)
end
ezplot(x, y);grid;hold on
end
A = 0.5; figure(2) % amplitude of output in case 2
end

Ramp, Unit-Step, and Impulse Responses
To close this introduction to symbolic computations we illustrate the response of a linear system
represented by a differential equation,

2
% + Sd};% + 6y(t) = x(t)
where y(t) is the output and x(t) the input. The input is a constant x(t) = 1 for t > 0 and zero other-
wise (MATLAB calls this function heaviside, but we will call it the unit-step signal). We then let the
input be the derivative of x(t), which is a signal that we will call impulse, and finally we let the input
be the integral of x(t), which is what we will call the ramp signal. The following script is used to find

the responses, which are displayed in Figure 0.25.

clear all; clf

symsytxz

% input a unit-step (heaviside) response
y = dsolve('D2y + 5*Dy + 6xy = heaviside(t)’,’y(0) = 0’,'Dy(0) = 0’,’t’);
x = diff(y); % impulse response

z = int(y); % ramp response

figure(1)

subplot(311)

ezplot(y, [0,5]);title(’Unit-step response’)
subplot(312)

ezplot(x, [0,5]);title(’ Impulse response’)
subplot(313)

ezplot(z, [0,5));title(’Ramp response’)

This example illustrates the intuitive appeal of linear systems. When the input is a constant value (or
a unit-step signal or a heaviside signal) the output tries to follow the input after some initial inertia
and it ends up being constant. The impulse signal (obtained as the derivative of the unit-step sig-
nal) is a signal of very short duration equivalent to shocking the system with a signal that disappears
very fast, different from the unit-step signal that is like a dc source. Again the output tries to follow
the input, eventually disappearing as t increases (no energy from the input!), and the ramp that is
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FIGURE 0.25
Response of a second order system represented by a differential equation for input of the unit-step signal, its
derivative, or the impulse signal and the ramp signal that is the integral of the unit-step input.

the integral of the unit-step signal grows with time, providing more and more energy to the system
as time increases, thus the response we obtained. The function dsolve solves differential equations
explicitly given (D stands for the derivative operator, so D is the first derivative and D2 is the sec-
ond derivative). A second-order system requires two initial conditions, the output and its derivative
att = 0.

We hope this introduction to MATLAB has provided you with the necessary background to understand the
basic way MATLAB operates, and shown you how to continue increasing your knowledge of it. Your best
source of information is the help command. Explore the different modules that MATLAB has and you will
become quickly convinced that these modules provide a great number of computational tools for many areas
of engineering and mathematics. Try it—you will like it! Tables 0.1 and 0.2 provide a listing of the numeric
and symbolic variables and operations.
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Table 0.1 Basic Numeric Matlab

Special variables

Mathematical

Special operations

Array operations

Control flow

Plotting

Saving and loading
Information and managing

Operating system

ans
pi

inf, NaN

iy ]

Function(s)

abs, angle

acos, asine, atan
acosh, asinh, atanh
cos, sin, tan

cosh, sinh, tanh
conj, imag, real
exp, log, log10
ceil, floor

fix, round

%,/

x', A
x=first:increment:last
x=linspace(first,last,n)
A=[x1;x2]

ones(N,M), zeros(N,M)
Ali,))

Ali,), AL)

whos

size(A)

length(x)

for, if, elseif

while

pause, pause(n)

plot, stem

figure

subplot

hold on, hold off
axis, grid

xlabel, ylabel, title, legend

save, load
help

clear, clf
cd, pwd

Default name for result

7 value

infinity, not-a-number error (e.g., 0/0)
i=j=y=1

Operation

magnitude, angle of complex number
inverse cosine, sine, tangent

inverse cosh, sinh, tanh

cosine, sine, tangent

hyperbolic cosine, sine, tangent

complex conjugate, imaginary, real parts
exponential, natural and base 10 logarithms
round up, round down to integer

round toward zero, to nearest integer
entry-by-entry multiplication, division
entry-by-entry power

transpose of vector x, matrix A

row vector x from first to last by increment
row vector x with n elements from first to last
matrix A with rows x1, x2

N x M ones and zeros arrays

(i, j) entry of matrix A

i row ( j-column) and all columns (rows) of matrix A
display variables in workspace

(number rows, number of colums) of matrix A
number rows (colums) of vector x

for loop, if, else-if loop

while loop

pause and pause n seconds

continuous, discrete plots

figure for plotting

subplots

hold plot on or off

axis, grid of plots

labeling of axes, plots, and subplots

saving and loading data

help

clear variables from memory, clear figures
change directory, current working directory




Table 0.2 Basic Symbolic Matlab Functions

Function Operation
Calculus diff differentiate

int integrate

limit limit

taylor Taylor series

symsum summation
Simplification simplify simplify

expand expand

factor factor

simple find shortest form

subs symbolic substitution
Solving equations solve solve algebraic equations

dsolve solve differential equations
Transforms fourier Fourier transform

ifourier inverse Fourier transform

laplace Laplace transform

ilaplace inverse Laplace transform

ztrans Z-transform

iztrans inverse Z-transform
Symbolic operations sym create symbolic objects

syms create symbolic objects

pretty make pretty expression
Special functions dirac Dirac or delta function

heaviside unit-step function
Plotting ezplot function plotter

ezpolar polar coordinate plotter

ezcontour contour plotter

ezsurf surface plotter

ezmesh mesh (surface) plotter

PROBLEMS

Problems m

For the problems requiring implementation in MATLAB, write scripts or functions to solve them
numerically or symbolically. Label the axes of the plots, give a title, and use legend to identify dif-
ferent signals in a plot. To save space use subplot to put several plots into one. To do the problem

numerically, sample analog signals with a small T.
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0.1.

0.2.

0.3.

Bits or bytes

Just to get an idea of the number of bits or bytes generated and processed by a digital system consider the

following applications:

(a) A compact disc is capable of storing 75 minutes of “CD-quality” stereo (left and right channels are
recorded) music. Calculate the number of bytes and the number of bits that are stored in the CD.
Hint: Find out what “CD quality” means in the binary representation of each sample, and what is the
sampling rate your CD player uses.

(b) Find out what the vocoder in your cell phone is used for. Assume then that in attaining “telephone
quality” you use a sampling rate of 10,000 samples/sec to achieve that type of voice quality. Each
sample is represented by 8 bits. With this information, calculate the number of bits that your cell
phone has to process every second that you talk. Why would you then need a vocoder?

(c) Find out whether text messaging is cheaper or more expensive than voice. Explain how text mes-
saging works.

(d) Find out how an audio CD and an audio DVD compare. Find out why it is said that a vinyl long play
record reproduces sounds much better. Are we going backwards with digital technology in music
recording? Explain.

(e) To understand why video streaming in the Internet is many times of low quality, consider the amount
of data that need to be processed by a video compressor every second. Assume the size of a video
frame, in picture elements or pixels, is 352 x 240, and that an acceptable quality for the image is
obtained by allocating 8 bits/pixel, and to avoid jerking effects we use 60 frames/sec.

» How many pixels would have to be processed every second?
= How many bits would be available for transmission every second?

=  The above are raw data. Compression changes the whole picture (literally); find out what some of
the compression methods are.

Sampling—MATLAB
Consider an analog signal x(t) = 4 cos(2xt) defined for —oo < t < oo. For the following values of the
sampling period Ts, generate a discrete-time signal x[n] = x(nTs) = x(t)|;=nT, .

m T;=0.1sec
m  Ts=0.5sec

m Ts=1sec

Determine for which values of Ts the discrete-time signal has lost the information in the analog signal. Use
MATLAB to plot the analog signal (use the plot function) and the resulting discrete-time signals (use the
stem function). Superimpose the analog and the discrete-time signals for 0 < t < 3; use subplot to plot the
four figures as one figure. For plotting the analog signal use Ts; = 10~%. You also need to figure out how to
label the different axes and have the same scales and units. In Chapter 7 on sampling we will show how to
reconstruct sampled signals.

Derivative and finite difference—MATLAB

Let y(t) = dx(t)/dt, where x(t) is the signal in Problem 0.2. Find y(t) analytically and determine a value of T
for which A[x(nTs)]/Ts = y(nTs) (consider Ty = 0.01 and Ts = 0.1). Use the MATLAB function diff or create
your own to compute the finite difference. Plot the finite difference in the range [0,1] and compare it with
the actual derivative y(t) in that range. Explain your results for the given values of Ts.



Problems m

0.4. Backward difference—MATLAB
Another definition for the finite difference is the backward difference:

Alx(nTs)] = x(nTs) — x((n — 1)Ts)

(Alx(nTs)]/Ts approximates the derivative of x(t).)

(a) Indicate how this new definition connects with the finite difference defined earlier in this chapter.

(b) Solve Problem 0.3 with MATLAB using this new finite difference and compare your results with the
ones obtained there.

(c) For the value of T; = 0.1, use the average of the two finite differences to approximate the derivative of
the analog signal x(t). Compare this result with the previous ones. Provide an expression for calculating
this new finite difference directly.

0.5. Differential and difference equations—MATLAB

Find the differential equation relating a current source is(t) = cos(§2ot) with the current if (t) in an inductor,

with inductance L = 1 H, connected in parallel with a resistor of R = 1 (see Figure 0.26). Assume a zero

initial current in the inductor.

(a) Obtain a discrete equation from the differential equation using the trapezoidal approximation of an
integral.

(b) Create a MATLAB script to solve the difference equation for Ty = 0.01 and three frequencies for
is(t), Qo = 0.0057, 0.057, and 0.5x. Plot the input current source is(t) and the approximate solution
i (nTs) in the same figure. Use the MATLAB function plot. Use the MATLAB function filter to solve the
difference equation (use help to learn about filter).

(c) Solve the differential equation using symbolic MATLAB when the input frequency is Q¢ = 0.57.

(d) Use phasors to find the amplitude of ij (t) when the input is i5(t) with the given three frequencies.

i(t)

i) CD 10 % 1H

FIGURE 0.26
Problem 0.5. RL circuit: input i5(t) and output
i (t).

0.6. Sums and Gauss—MATLAB
Three rules in the computation of sums are
m Distributive law:

ank:cZak
k k

m  Associative law:

Z(ak+bk) = Zak-l—Zbk
k k k
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(a)

(b)

(c)

(d)

Commutative law:

Z a = Z Ap(k)

k p(k)

for any permutation p(k) of the set of integers k in the summation.
Explain why the above rules make sense when computing sums. To do that consider

2
2 ae= ) a
k k=0

and similarly for ), by,. Let ¢ be a constant, and choose any permutation of the values [0,1,2] for
instance [2,1,0] or [1,0,2].

The trick that Gauss played when he was a preschooler can be explained by using the above rules.
Suppose you want to find the sum of the integers from 0 to 10000 (Gauss did it for integers between 0
and 100 but he was then just a little boy, and we can do better!). That is, we want to find S where

10000
S= Z k=04+1+2+---+ 10000
k=0

To do so, consider

10000

28= Y k+ Z k

k=0 k=10000

and apply the above rules to find S.
Find the sum of an arithmetic progression

N
S=) (a+ph
k=0

for constants « and B, using the given three rules.
Find out if MATLAB can do these sums symbolically (i.e., without having numerical values).

0.7. Integrals and sums—MATLAB
Suppose you wish to find the area under a signal using sums. You will need the following result found
above:

(a)

N N([\H— 1)
Z

Consider first x(t) = t,0 < t < 1, and zero otherwise. The area under this signal is 0.5. The integral can
be approximated from above and below as

N-1 1 N
> (THTs < / tdt < ) (nTy)T;
n=1 0

n=1
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Problems

where NTs = 1 (i.e., we segment the interval [0,1] into N intervals of width Ts). Graphically show that
the above equation makes sense by showing the right and left bounds as approximations for the area
under x(t).

(b) Let Ty = 0.001. Use the symbolic function symsum to compute the left and right bounds for the above
integral. Find the average of these results and compare it with the actual value of the integral.

(c) Verify the symbolic results by finding the sums on the left and the right of the above inequality using
the summation given at the beginning of the problem. You need to change the dummy variables.

(d) Write a similar MATLAB script to compute the area under the signal y(t) = 2 from0<t<1. Let
Ts = 0.001. Compare the average of the lower and upper bounds to the value of the integral.

Integrals and sums—MATLAB

Although sums behave like integrals, because of the discrete nature of sums one needs to be careful with
the upper and lower limits more than in the integral case. To illustrate this, consider the separation of an
integral into two integrals and compare them with the separation of a sum into two sums. For the integral
we have that

1 0.5 1
/tdtzftdt+/tdt
0 0 0.5

Show that this is true by computing the three integrals. Then consider the sum

100

S:Zn
n=0

Find this sum and determine which of the following is equal to this sum:

50 100
S1 = Z n—+ Z n
n=0 n=>50
50 100
Sy, = Z n+ Z n
n=0 n=>51

Use symbolic MATLAB function symsum to verify your answers.

Sum of geometric series
The geometric series

S:Zan

n=0

will be used quite frequently in the next chapters, so let us look at some of its properties:
(a) Suppose o = 1; what is S equal to?
(b) Suppose @ # 1; show that

1—aN
S:

11—«

This can be done by showing that (1 — «)S = (1 — «N). Why do you need the constraint that « #17?
Would this sum exist if « > 17 Explain.
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0.10.

0.11.

0.12.

0.13.

(c)
(d)

(e)

Give an expression of the above sum for all possible values of a.

Suppose now that N = oo; under what conditions will S exist? If it does, what would S be equal t0?
Explain.

Suppose the derivative of S with respect to « is

s &,
S1=2=Y na
n=0

Obtain an expression to find S7.

Exponentials—MATLAB

The exponential x(t) = e* for t > 0 and zero otherwise is a very common analog signal. Likewise, y[n] = «"
for integers n > 0 and zero otherwise is a very common discrete-time signal. Let us see how they are
related. Do the following using MATLAB:

(a)
(b)

(c)
(d)

(e)

Let a = —0.5; plot x(¢).

Let a = —1; plot the corresponding signal x(t). Does this signal go to zero faster than the exponential
fora = —0.5?

Suppose we sample the signal x(t) using Ts = 1; what would be x(nTs) and how can it be related to
y(n) (i.e., what is the value of & that would make the two equal)?

Suppose that a current x(r) = e~ 0-3! for t > 0 and zero otherwise is applied to a discharged capacitor
of capacitance C = 1F at t = 0. What would be the voltage in the capacitor at t = 1 sec?

How would you obtain an approximate result to the above problem using a computer? Explain.

Algebra of complex numbers
Consider complex numbersz=1+jl,w=—-1+jl,v=-1—jl,andu =1 —jl.

(a)

In the complex plane, indicate the point (x, y) that corresponds to z and then show a vector Z that joins
the point (x, y) to the origin. What is the magnitude and the angle corresponding to z or z?

Do the same for the complex numbers w, v, and u. Plot the four complex numbers and find their sum
z + w + v + u analytically and graphically.

Find the ratios z/w, w/v, and u/z. Determine the real and imaginary parts of each, as well as their
magnitudes and phases. Using the ratios find u/w.

The phase of a complex number is only significant when the magnitude of the complex number is
significant. Consider z and y = 10~ 16z; compare their magnitudes and phases. What would you say
about the phase of y?

Algebra of complex numbers
Consider a function of z = 1 + 1,

(a)
(b)
(c)
(d)
(e)
6]

Find log(w).

Find the real and the imaginary parts of w.

What is w + w*, where w™* is the complex conjugate of w?
Determine |w|, Zw.

What is | log(w)|2?

Express cos(1) in terms of w using Euler’s equation.

Euler's identity and trigonometric identities o
Use Euler’s identity to obtain an expression for e/@+#) = ¢j@¢i: obtain its real and imaginary components
and show the following identities:

cos(a 4+ B) = cos(a) cos(B) — sin(w) sin(B)
sin(a + B) = sin(«) cos(B) + sin(B) cos(B)

Hint: Find real and imaginary parts of e/*e/# and of e/@+8).
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0.14. Euler’s identity and trigonometric identities
Use Euler’s identity to find an expression for cos(«) cos(8), and from the relation between cosines and sines
obtain an expression for sin(«) sin(8).

0.15. Algebra of complex numbers
(a) The complex conjugate of z = x + jy is z* = x — jy. Using these rectangular representations, show that

zz*:x2+y2
1 z*
z  zz*

(b) Show that it is easier to find the above results by using the polar representation z = |z|e/? of z where

Izl = /22 +y?

0 =tan"! (g)

is the angle or phase of z. Thus, whenever we are multiplying or dividing complex numbers the polar
form is more appropriate.

(c) Whenever we are adding or subtracting complex numbers the rectangular representation is more
appropriate. Show that for two complex numbers z = x + jy and w = v + jg; then,

is the magnitude of z and

Z+w* =z +w*

On the other hand, when showing that (zw)* = z*w* the polar form is more appropriate.
(d) 1If the above conclusions still do not convince you, consider then the case of multiplying two complex
numbers:

z =rcos(9) + jrsin(0)
w = p cos(¢p) + jp sin(¢)

Find the polar forms of z and w and then find zw by using the rectangular and then the polar forms
and decide which is easier. As a bonus you should get the trigonometric identities for cos(@ + ¢) and
sin(@ + ¢). What are they?

0.16. Vectors and complex numbers
Using the vectorial representation of complex numbers it is possible to get some interesting inequalities:
(a) Isittrue that for a complex number z = x + jy:

x| < |z|?

Show it geometrically by representing z as a vector.
(b) The so-called triangle inequality says that for any complex (or real) numbers z and v we have that

lz4v| < lz| + |v|

Show a geometric example that verifies this.

0.17. Complex functions of time—MATLAB
Consider the complex function x(t) = (1 + jt)2 for —oo <t < 0.
(a) Find the real and the imaginary parts of x(t) and carefully plot them with MATLAB. Try to make
MATLAB plot x(t) directly. What do you get? Does MATLAB warn you? Does it make sense?
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0.18.

0.19.

(b) Compute the derivative y(t) = dx(t)/dt and plot its real and imaginary parts. How do these relate to the
real and the imaginary parts of x(t)?
(c) Compute the integral

1

/ x(t)dt

0
(d) Would the following statement be true (remember * indicates complex conjugate)?

1 * 1

/ x(dt | = / x*(t)dt

0 0

Euler's equation and orthogonality of sinusoids
Euler’s equation,

el? = cos(9) + jsin(0)
is very useful not only in obtaining the rectangular and polar forms of complex numbers, but in many other
respects as we will explore in this problem.
(a) Carefully plot x[n] = /™" for —oo < n < oo. Is this a real or a complex signal?
(b) Suppose you want to find the trigonometric identity corresponding to

sin(a) sin(B)

Use Euler’s equation to express the sines in terms of exponentials, multiply the resulting exponentials,
and use Euler’s equation to regroup the expression in terms of sinusoids.

(c) As we will see later on, two periodic signals x(t) and y(t) of period Ty are said to be orthogonal if the
integral over a period Ty is

/x(t)y(t)dt =0

To

For instance, consider x(t) = cos(rrt) and y(t) = sin(rt). Check first that these functions repeat every
To = 2 (i.e,, show that x(t + 2) = x(¢) and that y(t + 2) = y(¢)). Thus, Tp = 2 can be seen as their period.
Then use the representation of a cosine in terms of complex exponentials,

e 4 ¢

cos(0t) = 3

to express the integrand in terms of exponentials and calculate the integral.

Euler’'s equation and trigonometric expressions

Obtain using Euler’s equation an expression for sin(@) in terms of exponentials and then
(a) Use it to obtain the trigonometric identity for sin2(9).

(b) Compute the integral

1
f sin? (2 t)dt
0



Problems m

0.20. De Moivre's theorem for roots
Consider the calculation of roots of an equation,

Z =«

where N > 1is an integer and « = |a|e/® a nonzero complex number.
(a) First verify that there are exactly N roots of this equation and that they are given by

z, = rel%

where r = |«|'/N and 6), = (¢ + 27k)/Nfork=0,1,...,N — 1.
(b) Use the above result to find the roots of the following equations:

2=1
2 =-1
2=1
2 =-1

and plot them in a polar plane (i.e., indicating their magnitude and phase).
(c) Explain how the roots are distributed around a circle of radius r in the complex polar plane.

0.21. Natural log of complex numbers '
Suppose you want to find the log of a complex number z = |z|e/? . Its logarithm can be found to be

log(z) = log(zle/”) = log(lz]) + log(e!?) = log(lzl) + j6

If z is negative it can be written as z = |z|e/™ and we can find log(z) by using the above derivation. The log
of any complex number can be obtained this way also.

(a) Justify each one of the steps in the above equation.

(b) Find

log(—2)
log(1 +j1)
log(2¢/™/%)
0.22. Hyperbolic sinusoids—MATLAB
In filter design you will be asked to use hyperbolic functions. In this problem we relate these functions to

sinusoids and obtain a definition of these functions so that we can actually plot them.
(a) Consider computing the cosine of an imaginary number—that is, use

e 4 eix

cos(x) = 5

Let x = j6 and find cos(x). The resulting function is called the hyperbolic cosine or
cos( j8) = cosh(8)

(b) Consider then the computation of the hyperbolic sine sinh(#); how would you do it? Carefully plot it
as a function of 6.
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(c)

Show that the hyperbolic cosine is always positive and bigger than 1 for all values of 6.

(d) Show that sinh(9) = —sinh(—6).
(e) Write a MATLAB script to compute and plot these functions between —10 and 10.
Phasors!

A phasor can be thought of as a vector, representing a complex number, rotating around the polar plane
at a certain frequency expressed in radians/sec. The projection of such a vector onto the real axis gives a
cosine. This problem will show the algebra of phasors, which would help you with some of the trigonometric
identities that are hard to remember.

(a)

(b)

(c)

When you plot a sine signal y(t) = Asin(Qpt), you notice that it is a cosine x(t) = A cos(R2ot) shifted in
time—that is,

y(t) = Asin(Qpt) = Acos(Q(t — Ap)) = x(t — Ay)

How much is this shift A;? Better yet, what is Ag = QpA; or the shift in phase? One thus only need to
consider cosine functions with different phase shifts instead of sines and cosines.

You should have found the answer above is Ag = /2 (if not, go back and try it and see if it works).
Thus, the phasor that generates x(t) = A cos(Qot) is Ae/0 so that x(t) = Re[Ae/%/0!]. The phasor
corresponding to the sine y(t) should then be AeJ7/2_Obtain an expression for y(t) similar to the one
for x(t) in terms of this phasor.

According to the above results, give the phasors corresponding to —x(t) = —A cos(Qpt) and —y(t) =
—sin(2pt). Plot the phasors that generate cos, sin, —cos, and —sin for a given frequency. Do you see
now how these functions are connected? How many radians do you need to shift in a positive or
negative direction to get a sine from a cosine, etc.

Suppose then you have the sum of two sinusoids, for instance z(t) = x(t) + y(t), adding the corre-
sponding phasors for x(t) and y(t) at some time (e.g., t = 0), which is just a sum of two vectors, you
should get a vector and the corresponding phasor. Get the phasor for z(t) and the expression for it in
terms of a cosine.
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CHAPTER 1

Continuous-Time Signals

A journey of a thousand miles
begins with a single step.
Lao Tzu (604-531 BCE)
Chinese philosopher

1.1 INTRODUCTION

In this second part of the book, we will concentrate on the representation and processing of
continuous-time signals. Such signals are familiar to us. Voice, music, as well as images and video
coming from radios, cell phones, [Pods, and MP3 players exemplify these signals. Clearly each of
these signals has some type of information, but what is not clear is how we could capture, represent,
and perhaps modify these signals and their information content.

To process signals we need to understand their nature—to classify them—so as to clarify the limita-
tions of our analysis and our expectations. Several realizations could then come to mind. One could
be that almost all signals vary randomly and continuously with time. Consider a voice signal. If you
are able to capture such a signal, by connecting a microphone to your computer and using the hard-
ware and software necessary to display it, you realize that when you speak into the microphone a
rather complicated signal that changes in unpredictable ways is displayed. You would ask yourself
how is it that your spoken words are converted into this signal, and how could it be represented
mathematically to allow you to develop algorithms to change it. In this book we consider the rep-
resentation of deterministic—rather than random—signals, clearly a first step in the long process of
answering these significant questions.

A second realization could be that to input signals into a computer the signals must be in binary
form. How do we convert the voltage signal generated by the microphone into a binary form? This
requires that we compress the information in a way that permits us to get it back, as when we wish
to listen to the voice signal stored in the computer.

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00004-1
(© 2011, Elsevier Inc. All rights reserved. 65
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One more realization could be that the processing of signals requires us to consider systems. In our
example, one could think of the human vocal system and of a microphone as a system that converts
differences in air pressure into a voltage signal. Signals and systems go together. We will consider the
interaction of signals and systems in the next chapter.

Specifically in this chapter we will discuss the following issues:

The mathematical representation of signals—Generally, how to think of a signal as a function of
either time (e.g., music and voice signals), space (e.g., images), or of time and space (e.g., videos).
In this book we will concentrate on time-dependent signals.

Classification of signals—Using practical characteristics of signals we offer a classification of signals
indicating the way a signal is stored, processed, or both. As indicated, this second part of the book
will concentrate on the representation and analysis of continuous-time signals and systems, while
the next part will discuss the representation and analysis of discrete-time signals and systems.

Signal manipulation—What it means to delay or advance a signal, to reflect it, or to find its odd
or even components. These are signal operations that will help us in their representation and
processing.

Basic signal representation—We show that any signal can be represented using basic signals. This
will permit us to highlight certain characteristics of the signal and to simplify finding the cor-
responding outputs of systems. In particular, the representation in terms of sinusoids is of great
interest as it allows the development of the so-called Fourier representation, which is essential in
the development of the theory of linear systems.

1.2 CLASSIFICATION OF TIME-DEPENDENT SIGNALS

Considering signals as functions of time-carrying information, there are many ways in which they
can be classified:

(a)

(b)

(c)
(d)
(e)
(f)

According to the predictability of their behavior, signals can be random or deterministic. While
a deterministic signal can be represented by a formula or a table of values, random signals can
only be approached probabilistically. In this book we will only consider deterministic signals.

According to the variation of their time variable and their amplitude, signals can be either
continuous-time or discrete-time, analog or discrete amplitude, or digital. This classification relates
to the way signals are either processed, stored, or both.

According to their energy content, signals can be characterized as finite- or infinite-energy signals.
According to whether the signals exhibit repetitive behavior or not as periodic or aperiodic signals.
According to the symmetry with respect to the time origin, signals can be even or odd.

According to the dimension of their support, signals can be of finite or of infinite support. Sup-
port can be understood as the time interval of the signal outside of which the signal is always
Zero.
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1.3 CONTINUOUS-TIME SIGNALS

That signals are functions of time-carrying information is easily illustrated with a recorded voice
signal. Such a signal can be thought of as a continuously varying voltage, generated by a microphone,
that can be transformed into an audible acoustic signal—providing the voice information—by means
of an amplifier and speakers. Thus, the speech signal is represented by a function of time

(), th=t=t (1.1)

where t, is the time at which this signal starts, and ¢ the time at which it ends. The function v(t)
varies continuously with time, and its amplitude can take any possible value (as long as the speakers
are not too loud!). This signal obviously carries the information provided by the voice message.

Not all signals are functions of time alone. A digital image stored in a computer provides visual
information. The intensity of the illumination of the image depends on its location within the image.
Thus, a digital image can be represented as a function of two space variables (m, n) that vary discretely,
creating an array of values called picture elements or pixels. The visual information in the image is thus
provided by the signal p(m, n) where 0 <m <M — 1 and 0 < n < N — 1 for an image of size M x N
pixels. Each of the pixel values can be represented, for instance, by 256 gray scale values or 8 bits/pixel.
Thus, the signal p(m, n) varies discretely in space and in amplitude. A video, as a sequence of images
in time, is accordingly a function of time and of two space variables. How their time or space variables
and their amplitudes vary characterizes signals.

For a time-dependent signal, time and amplitude vary continuously or discretely. Thus, according
to the independent variable, signals are continuous-time or discrete-time signals—that is, t takes an
innumerable or a finite set of values. Likewise, the amplitude of either a continuous-time or a discrete-
time signal can vary continuously or discretely. Thus, continuous-time signals can be continuous-
amplitude as well as discrete-amplitude signals. Continuous-amplitude, continuous-time signals are
called analog signals given that they resemble the pressure variations caused by an acoustic signal. A
continuous-amplitude, discrete-time signal is called a discrete-time signal. A digital signal has discrete
time and discrete amplitude. If the samples of a digital signal are given as binary codes the signal is
called a binary signal.

A good way to illustrate the signal classification is to consider the steps needed to process the voice
signal v(t) in Equation (1.1) with a computer. As indicated above, in v(f) time varies continuously
between , and 7, and the amplitude also varies continuously, and we assume it could take any
possible real value (i.e., v(¢) is an analog signal). As such, v(t) cannot be processed with a computer.
It would require to store an innumerable number of signal values (even when t; is very close to tf)
and for an accurate representation of the amplitude values v(t), we might need a large number of
bits. Thus, it is necessary to reduce the amount of data without losing the information provided by
the signal. To accomplish that, we sample the signal by taking signal values at equally spaced times
nTs, where n is an integer and Ty is the sampling period, which is appropriately chosen for this signal
(in Chapter 7 we will learn how to chose T5).
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As a result of the sampling, we obtain the discrete-time signal
v(nTy) = v(Oli=nr, O0=n=N-1 (1.2)

where Ts = (tf — t;) /N and we have taken samples at times ;, + Tsn. Clearly, this discretization of the
time variable reduces the number of values to enter into the computer, but the amplitudes of these
samples still can take possibly innumerable values. Now, to represent each of the v(nT;) values with a
certain number of bits, we also discretize the amplitude of the samples. To do so, the dynamic range
(the difference between the maximum and the minimum amplitude) of the analog signal is equally
divided into a certain number of levels. A sample value falling within one of these levels is allocated
a unique binary code. For instance, if we want each sample to be represented by 8 bits we have 28 or
256 possible levels. These operations are called quantization and coding. The resulting signal is digital,
where each sample is represented as a binary number.

Given that many of the signals we encounter in practical applications are analog, if it is desirable
to process such signals with a computer, the above procedure is commonly done. The device that
converts an analog signal into a digital signal is called an analog-to-digital converter (ADC) and
it is characterized by the number of samples it takes per second (sampling rate 1/T;) and by the
number of bits that it allocates to each sample. To convert a digital signal into an analog signal a
digital-to-analog converter (DAC) is used. Such a device inverts the ADC process: binary values are
converted into pulses with amplitudes approximating those of the original samples, which are then
smoothed out resulting in an analog signal. We will discuss in Chapter 7 how the sampling, binary
representation, and reconstruction of an analog signal is done.

Figure 1.1 shows how the discretization of an analog signal in time and amplitude can be understood,
while Figure 1.2 illustrates the sampling and quantization of a segment of speech.

A continuous-time signal can be thought of as a real-(or complex-) valued function of time:

x():R—->TR ()
t x(t) (1.3)

) x(t) /

FIGURE 1.1

Discretization in time and amplitude of an analog
signal. The parameters are the sampling period
Ts and the quantization level A. In time, samples
are taken at uniform times {nTs}, and in amplitude __/Z
the range of amplitudes is divided into a finite

number of levels so that each sample value is -
approximated by them.
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(a) A segment of this speech signal is sampled and quantized. (b) The speech segment (continuous line) and
the sampled signal (vertical samples) using a sampling period Ts = 1073 sec. (c) The sampled and the
quantized signal. (d) The quantization error (that is, the difference between the sampled and the quantized
signals) is shown.

Thus, the independent variable is time ¢, and the value of the function at some time tg, x(tg), is a real (or a
complex) value. (Although in practice signals are real, it is useful in theory to have the option of complex-
valued signals.) It is assumed that both time ¢ and signal amplitude x(t) can vary continuously, if needed, from
—o0 to oo.

The term analog used for continuous-time signals derives from the similarity of acoustic signals to the
pressure variations generated by voice, music, or any other acoustic signal. The terms continuous-time
and analog are used interchangeably for these signals.
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m Example 1.1

Characterize the sinusoidal signal

x(t) = V2 cos(mt/2 + 7 /4) —co<t<o00
Solution
The signal x(t) is

Deterministic, as the value of the signal can be obtained for any possible value of t.
Analog, as there is a continuous variation of the time variable ¢ from —oo to oo, and of the
amplitude of the signal between —+/2 to /2.

= Of infinite support, as the signal does not become zero outside any finite interval.

The amplitude of the sinusoid is +/2, its frequency is Q@ = /2 (rad/sec), and its phase is /4 rad
(notice that Qt has radians as units so that it can be added to the phase). Because of the infinite
support, this signal cannot exist in practice, but we will see that sinusoids are extremely important
in the representation and processing of signals. ]

m Example 1.2
A complex signal y(t) is defined as
yO=A+pe"?  0<t<10
and zero otherwise. Express y(t) in terms of the signal x(t) from Example 1.1. Characterize y(t).
Solution
Since 1 +j = +/2¢/4, then using Euler’s identity:
Y(©) = V2T = /2 [cos(t)2 + 1 /4) +jsin(rt/2 + 7/4)] 0<t<10
Thus, the real and imaginary parts of this signal are
Re[y(t)] = V2 cos(mt/2 + 7/4)
Im[y(t)] = V2sin(zt/2 + 7/4)
for 0 < t < 10 and zero otherwise. The signal y(t) can be written as
y(t) = x(t) +jx(t — 1) 0<t<10
and zero otherwise. Notice that
x(t—1) =2 cos(m(t — 1)/2 4+ w/4) = V2 cos(mt/2 — /2 + 7 /4) = /2 sin(wt/2 + 7 /4)
The signal y(t) is

= Analog of finite support—that is, the signal is zero outside the interval 0 < t < 10.
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s  Complex, composed of two sinusoids of frequency = 7 /2 rad/sec, phase 7 /4 in rad, and
amplitude V/21in 0 <t < 10, and it is zero outside that time interval. [ |

m Example 1.3
Consider the pulse signal
p) =1 0<t<10

and zero elsewhere. Characterize this signal, and use it along with x(t) in Example 1.1, to represent
y(t) in the above example.

Solution

The analog signal p(t) is of finite support and real-valued. We have that

Rely(®)] = x(t)p(t)
Imly(®)] = x(t — 1)p(t)

so that

y(@) = [x(t) + jx(t — D)]p®)

The multiplication by p(t) makes x(t)p(t) and x(t — 1)p(¢t) finite-support signals. This operation is
called time windowing as the signal p(t) only allows us to see the values of x(t) wherever p(t) = 1,
while ignoring the values of x(t) wherever p(t) = 0. It acts like a window. [ |

Examples 1.1-1.3 not only illustrate how different types of signal can be related to each other, but
also how signals can be be defined in shorter or more precise forms. Although the representations for
y(t) in Example 1.2 and in this example are equivalent, the one here is shorter and easier to visualize
by the use of the pulse p(t).

1.3.1 Basic Signal Operations—Time Shifting and Reversal
The following are basic signal operations used in the representation and processing of signals (for
some of these operations we indicate the system that is used to realize the operation):

Signal addition—Two signals x(t) and y(t) are added to obtain their sum z(t). An adder is used.
Constant multiplication—A signal x(t) is multiplied by a constant «. A constant multiplier is used.
Time and frequency shifting—The signal x(¢) is delayed t seconds to get x(t — 7), and advanced by
7 to get x(t + 7). A signal can be shifted in frequency or frequency modulated by multiplying it
by a complex exponential or a sinusoid. A delay shifts right a time signal, while a modulator shifts
the signal in frequency.

m Time scaling—The time variable of a signal x(t) is scaled by a constant « to give x(«t). f @ = —1,
the signal is reversed in time (i.e., x(—t)), or reflected. Only the delay can be implemented in
practice.

s Time windowing—A signal x(t) is multiplied by a window signal w(t) so that x(t) is available in the
support of w(t).
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FIGURE 1.3
Diagrams of basic signal operations: (a) adder, (] T
(b) constant multiplier, (c) delay, and (d) time w(t)
(d)

windowing or modulation.

Given the simplicity of the first two operations we will only discuss the others. In this section we
consider time shifting and reflection (a special case of the time scaling) and leave the rest for a later
section.

In Figure 1.3 we show the diagrams used for the implementation of the addition of two signals, the
multiplication of a signal by a constant, the delay of a signal, and the time windowing or modulation
of a signal. These will be used in the block diagrams for systems in the next chapters.

It is important to understand that advancing or reflecting cannot be implemented in real time—that
is as the signal is being processed. Delays can be implemented in real time. Advancing and reflection
require that the signal be saved or recorded. Thus, an acoustic signal recorded on magnetic tape can
be delayed or advanced with respect to an initial time, or played back, faster or slower, but it can only
be delayed if we have the signal coming from a live microphone.

We will see later in this chapter that shifting in frequency results in the process of signal modulation,
which is of great significance in communications. Scaling of the time variable results in a contracted
and expanded version of the original signal and causes changes in the frequency content of the signal.

m Fora positive value 7, a signal x(t — 7) is the original signal x(t) shifted right or delayed t seconds,
as illustrated in Figure 1.4(b). That the original signal has been shifted to the right can be verified
by finding that the x(0) value of the original signal appears in the delayed signal at t =  (which
results from making t — 7 = 0).

m Likewise, a signal x(t 4 1) is the original signal x(t) shifted left or advanced by 7 seconds as illus-
trated in Figure 1.4(c). The original signal is now shifted to the left—that is, the value x(0) of the
original signal occurs now eatrlier (i.e., it has been advanced) at time t = —z.

m  Reflection consists in negating the time variable. Thus, the reflection of x(t) is x(—t). This operation
can be visualized as flipping the signal about the origin. See Figure 1.4(d).

Given an analog signal x(t) and T > 0 we have that with respect to x(t):
(a) x(t — 7) is delayed or shifted right T seconds.
(b) x(t+ 1) is advanced or shifted left T seconds.
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x(t) x(t-1)

v

() (b)

x(t+71) x(-1)

(a) Continuous-time signal, and its
(b) delayed, (c) advanced, and
(d) reflected versions. (c) (d)

v
_ Y »
Y
—~

FIGURE 1.4 ’ 7 |

(c) x(—t) is reflected.
(d) x(—t — 1) is reflected and shifted left T seconds, while x(—t + 1) is reflected and shifted right T seconds.

Remarks Whenever we combine the delaying or advancing with reflection, delaying and advancing are
swapped. Thus, x(—t + 1) is x(t) reflected and delayed, or shifted to the right, by 1. Likewise, x(—t — 1) is
x(t) reflected and advanced, or shifted to the left by 1. Again, the value x(0) of the original signal is found in
x(—=t+Datt=1,andinx(—t—1) att = —1.

m Example 1.4

Consider an analog pulse

1 0<t<l1
0 otherwise

x(t) = {
Find mathematical expressions for x(t) delayed by 2, advanced by 2, and the reflected signal x(—t).

Solution

The delayed signal x(t — 2) can be found mathematically by replacing the variable t by t — 2 so that

Xt —2) = 1 0<t—2<lor2<t<3

~ 10 otherwise
The value x(0) (which in x(t) occurs at t = 0) in x(t — 2) now occurs when t = 2, so that the signal
x(t) has been shifted to the right two units of time, and since the values are occurring later, the
signal x(t — 2) is said to be “delayed” by 2 with respect to x(t).
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Likewise, we have that

1 0<t+2<1lor —-2<t<-1

Xe+2) = {0 otherwise

The signal x(t + 2) can be seen to be the advanced version of x(t), as it is this signal shifted to the
left by two units of time. The value x(0) for x(t + 2) now occurs at t = —2, which is ahead of t = 0.

Finally, the signal x(—t) is given by

X(—t) = 1 0<—-t<lor—-1<t<O0

“ |0 otherwise
This signal is a mirror image of the original: the value x(0) still occurs at the same time, but x(1)
occurs when t = —1. [ |

m Example 1.5

When the shifting and reflecting operations are considered together the best approach to visual-
ize the operation is to make a table computing several values of the new signal and comparing
these with those from the original signal. Consider the pulse in Example 1.4, and plot the signal
x(—t+ 2).

Solution

Although one can see that this signal is reflected, it is not clear whether it is advanced or delayed
by 2. By computing a few values:

t x(—t+2)
2 x(0) =1
1.5  x05 =1
1 x(1) =1
0 x¥2) =0
-1 x3)=0

it becomes clear that x(—t + 2) is reflected and “delayed” by 2. In fact, as indicated above, whenever
the signal is a function of —t (i.e., reflected), the —t 4 t operation becomes reflection and “delay,”
and —t — t becomes reflection and “advancing.” |

Remarks When computing the convolution integral later on, we will consider the signal x(t — 1) as a
function of t for different values of t. As indicated from Example 1.5, this signal is a reflected version of
x(t) being shifted to the right t seconds. To see this, consider t = 0 then x(t — t)|=0 = x(—1), the reflected
version, and x(0) occurs at T = 0. When t = 1, then x(t — t)|;=1 = x(1 — 1) and x(0) occurs at T = 1, so
that x(1 — t) is x(—1) shifted to the right by 1, and so on.
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1.3.2 Even and Odd Signals

Symmetry with respect to the origin differentiates signals and will be useful in their Fourier analysis.
We have that an analog signal x(t) is called

= Even whenever x(t) coincides with its reflection x(—t). Such a signal is symmetric with respect to
the time origin.

= Odd whenever x(t) coincides with —x(—t)—that is, the negative of its reflection. Such a signal is
asymmetric with respect to the time origin.

Even and odd signals are defined as follows:

x(t) even: x(t) = x(—t) (1.4)
x(t) odd: x(t) = —x(—t) (1.5)

Even and odd decomposition: Any signal y(t) is representable as a sum of an even component y.(t) and an
odd component y, (t):

Y@ = ye(®) + yo (D (1.6)

where
Ye(®) = 0.5 [y(t) + y(—1)] (1.7)
Yo(t) = 0.5 [y(t) — y(—=1)] (1.8)

Using the definitions of even and odd signals, any signal y(t) can be decomposed into the sum of an
even and an odd function. Indeed, the following is an identity:

1 1
Y@ = 5 [y(®) +y(=0)] + 5 [y(t) —y(=1)]

where the first term is the even and the second is the odd components of y(t). It can be easily verified
that y,(t) is even and that y,(¢) is odd.

m Example 1.6
Consider the analog signal

x(t) = cos(2mt + 0) -0 <t< 00

Determine the value of 6 for which x(t) is even and odd. If 8 = 7 /4, is x(t) = cos(2wt + 7 /4),
—o0 < t < 00, even or odd?
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Solution
The reflection of x(t) is x(—t) = cos(—2xt + 6). Then:

1. x(t) is even if x(t) = x(—t) or

cos(2mt + 0) = cos(—2mt + 0)

= cos(2mt — 0)

orf = —60 or6 =0, . Thus, x1(t) = cos(2nt) as well as x,(t) = cos(2nt + w) = —cos(2xt) are

even.
2. for x(t) to be odd, we need that x(t) = —x(—t) or

cos(2rwt 4+ 0) = —cos(—2nwt+60) = cos(—2nt+60 £ w) = cos(Qunt — 60 F )

which can be obtained with 6 = —0 F= 7 or 0 = Fx/2. Indeed, cos(2nt — 7/2) = sin(2x7t) and
cos(2mt 4+ m/2) = —sin(2xt) are both odd. Thus, x3(t) = +sin(2xt) is odd.

When 6 = /4, x(t) = cos(2nt + 7 /4) is neither even nor odd according to the above.

m Example 1.7
Consider the signal

2cos(4t) t>0
0 otherwise

x(t) = {

Find its even and odd decomposition. What would happen if x(0) = 2 instead of 0—that is, when

we define the sinusoid at t = 0? Explain.

Solution

The signal x(t) is neither even nor odd given that its values for t < 0 are zero. For its even-odd

decomposition, the even component is given by

Xe(t) = 0.5[x(t) + x(—1)]

cos(4t) t>0
={cos(4t) t<O
0 t=0

and the odd component is given by

Xo(t) = 0.5[x(t) — x(—1)]

cos(4t) t>0
={—cos(4t) t<O
0 t=0

which when added together become the given signal.
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If x(0) = 2, we have

X (1) = 0.5[x(t) + x(—1)]

cos(4t) t>0
={cos4dt) t<O
2 t=20

while the odd component is the same. The even component has a discontinuity at t = 0. |

1.3.3 Periodic and Aperiodic Signals

A useful characterization of signals is whether they are periodic or aperiodic (nonperiodic).

An analog signal x(t) is periodic if
m it is defined for all possible values of t, —oo < t < oo, and
= there is a positive real value Ty, the period of x(t), such that

x(t + kTy) = x(t) (1.9)

for any integer k.
The period of x(t) is the smallest possible value of Tp > 0 that makes the periodicity possible. Thus, although
NT for an integer N > 1 is also a period of x(¢) it should not be considered the period.

Remarks

= The infinite support and the unique characteristic of the period make periodic signals nonexistent in
practical applications. Despite this, periodic signals are of great significance in the Fourier representation
of signals and in their processing, as we will see later. The representation of aperiodic signals is obtained
from that of periodic signals, and the response of systems to periodic sinusoids is fundamental in the theory
of linear systems.

m  Although seemingly redundant, the first part of the definition of a periodic signal indicates that it is not
possible to have a nonzero periodic signal with a finite support (i.e., the analog signal is zero outside an
interval t € [t1, t2]). This first part of the definition is needed for the second part to make sense.

m It is exasperating to find the period of a constant signal x(t) = A; visually x(t) is periodic but its period
is not clear. Any positive value could be considered the period, but none will be taken. The reason is that
x(t) = A = A cos(0¢t) or of zero frequency, and as such its period is not determined since we would have
to divide by zero—not permitted. Thus, a constant signal is a periodic signal of nondefinable period!

m Example 1.8

Consider the analog sinusoid
x(t) = A cos(Qt + 6) —00 <t <0

Determine the period of this signal, and indicate for what frequency Q2 the period of x(t) is not
clearly defined.
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Solution

The analog frequency is Q¢ = 27 /Ty so To = 27/ Qo is the period. Whenever Ty > 0 (or Q¢ > 0)
these sinusoidals are periodic. For instance, consider

x(t) = 2cos(2t — m/2) —00<t< o0

Its period is found by noticing that this signal has an analog frequency Q0 = 2 = 27fy (rad/sec),
or a hertz frequency of fo = 1/m = 1/Ty, so that Tp = x is the period in seconds. That this is the
period can be seen for an integer N,

x(t 4+ NTp) = 2cos(2(t + NTy) — w/2) = 2cos(Qt +2aN — 7 /2)
= 2cos(2t —m/2) = x(t)

since adding 27 N (a multiple of 27) to the angle of the cosine gives the original angle. If Q¢p = 0—
that is, dc frequency—the period cannot be defined because of the division by zero when finding
To = 27‘[/ Qo. [ |

m Example 1.9

Consider a periodic signal x(t) of period Ty. Determine whether the following signals are periodic,
and if so, find their corresponding periods:

(@) y(©) = A+x().

(b) z(t) = x(t) + v(t) where v(¢t) is periodic of period T; = NTy, where N is a positive integer.

(c) w(t) = x(t) + u(t) where u(t) is periodic of period Tj, not necessarily a multiple of Tj.
Determine under what conditions w(t) could be periodic.

Solution

(a) Adding a constant to a periodic signal does not change the periodicity, so y(t) is periodic of
period To—that is, for an integer &, y(t + kTop) = A + x(t + kTp) = A + x(t) since x(¢) is periodic
of period Ty.

(b) The period T; = NTy of v(t) is also a period of x(t), and so z(t) is periodic of period T; since
for any integer k,

z(t + kT1) = x(t + kT1) + v(t + kT7) = x(t + kNTp) + v(t) = x(t) + v(¢)

given that v(t + kT1) = v(t), and that kN is an integer so that x(t + kNTp) = x(t). The peri-
odicity can be visualized by considering that in one period of v(t) we can place N periods
of x(¢).

(c) The condition for w(t) to be periodic is that the ratio of the periods of x(t) and of u(t) be

T7 N

To M
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where N and M are positive integers not divisible by each other so that MT; = NTy becomes
the period of w(t). That is,

w(t + MT7) = x(t + MTy) + u(t + MTy) = x(t + NTo) + u(t + MTy) = x(¢t) + u(®)

m Example 1.10
Let x(t) = ¢?' and y(t) = ¢, and consider their sum z(t) = x(t) + y(t), and their product w(t) =
x()y(t). Determine if z(t) and w(t) are periodic, and if so, find their periods. Is p(t) = (1 + x(¢))(1 +
y(t)) periodic?
Solution

According to Euler’s identity,

x(t) = cos(2t) + jsin(2t)
y(t) = cos(rrt) + jsin(rwt)

indicating x(¢) is periodic of period Ty = 7 (the frequency of x(t) is Q¢ = 2 = 27/Tp) and y(¢) is
periodic of period T = 2 (the frequency of y(t) is 21 = 7 = 2n/T1).

For z(t) to be periodic requires that T, /Ty be a rational number, which is not the case as Ty /Ty =
2/7. So z(t) is not periodic.

The product is w(t) = x(t)y(t) = T = cos(Qyt) 4 jsin(Qyt) where Q) =2 + 7 = 27/T, so
that T, = 27 /(2 + ), so w(t) is periodic of period T5.

The terms 1 + x(t) and 1 + y(t) are periodic of period Top = 7 and T; = 2, and from the case of the
product above, one would hope this product be periodic. But since p(t) = 1 + x(t) + y(t) + x(t)y(¢)
and x(t) + y(t) is not periodic, then p(t) is not periodic. [ |

= Analog sinusoids of frequency g > 0 are periodic of period Tp = 27/ Q. If Qg = 0, the period is not
well defined.

= The sum of two periodic signals x(t) and y(¢), of periods T; and T, is periodic if the ratio of the periods
T, /T is a rational number N/M, with N and M being nondivisible. The period of the sum is MT, = NT5.

m The product of two sinusoids is periodic. The product of two periodic signals is not necessarily periodic.

1.3.4 Finite-Energy and Finite Power Signals

Another possible classification of signals is based on their energy and power. The concepts of energy
and power introduced in circuit theory can be extended to any signal. Recall that for a resistor of unit
resistance its instantaneous power is given by

p(H) = v(Di(t) = () = v (1)
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where i(t) and v(t) are the current and voltage in the resistor. The energy in the resistor for an interval
[to, t1], of duration T = t; — to, is the accumulation of instantaneous power over that time interval,

t1 51

5]
Er = / p(Hdt = / 2(t)dt = / V()dt
to

to to
The power in the interval T = t; — tp is the average energy

51 1

Er 1, 1 / ,
P = — = — —_ —
T= T/l (Hdt T v (t)dt

to to

corresponding to the heat dissipated by the resistor (and for which you pay the electric company).
The energy and power concepts can thus be easily generalized.

The energy and the power of an analog signal x(t) are defined for either finite or infinite-support signals as:

o0
Ey = / [x(0)|2dt (1.10)
—0o0
T
Py = lim i/|x(t)|2alt (1.11)
T—o0 2T '

The signal x(t) is then said to be finite energy, or square integrable, whenever
Ex < 0 (1.12)
The signal is said to have finite power if

Py < o0 (1.13)

Remarks

m  The above definitions of energy and power are valid for any signal of finite or infinite support, since a
finite-support signal is zero outside its support.

m In the formulas for energy and power we are considering the possibility that the signals might be complex
and so we are squaring its magnitude: If the signal being considered is real, this simply is equivalent to
squaring the signal.

m  According to the above definitions, a finite-energy signal has zero power. Indeed, if the energy of the signal
is some constant E, < 0o, then

Ex

Py= lim — =0
T—oo 2T
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m  An analog signal x(t) is said to be absolutely integrable if x(t) satisfies the condition

/ lx(t)|dt < oo (1.14)

m Example 1.11
Find the energy and the power of the following:

(a) The periodic signal x(t) = cos(x t/2+7/4).
(b) The complex signal y(t) = (1 + j)é™"/?, for 0 < t < 10 and zero otherwise.
(c) The pulse z(t) = 1, for 0 < t < 10 and zero otherwise.

Determine whether these signals are finite energy, finite power, or both.

Solution

The energy in these signals is computed as follows:
o
E, = f cosz(nt/z + /4)dt — oo

—00

10 10
@:/ﬁ1+mﬁmﬁm=2/m=zo
0 0

&:/mzw

where we used |(1 + j)e™/2|2 = |1 4 j|?|7/2|2 = |1 4 j|> = 2. Thus, x(t) is an infinite-energy sig-
nal while y(t) and z(t) are finite-energy signals. The power of y(t) and z(t) are zero because they
have finite energy. The power of x(t) can be calculated by using the symmetry of the signal squared
and letting T = NT:

T NTo
2 1
Px:Tli_)noloEﬂ/cosz(rrt/2+ﬂ/4)dt:[\}i_r)r;o[\]—TO / cos?(mt/2 + m/4)dt
0 0
To To
1 1
=[\}i_r)r;o[\]—T0 N/cosz(nt/2+n/4)dt = T—O/cosz(nt/2+n/4)dt
0 0

Using the trigonometric identity

cos?(wt/2 + m/4) = % [cos(mt +m/2) + 1]
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we have that
4 4

1 1

P, = 3 / cos(mwt + 7 /2)dt + gfdt =04+05=0.5
0 0

The first integral is the area of the sinusoid over two of its periods, thus zero. So we have that x(t)

is a finite-power but infinite-energy signal, while y(t) and z(t) are finite-power and finite-energy
signals. |

m Example 1.12

Consider an aperiodic signal x(t) = ¢™%, a > 0, for t > 0 and zero otherwise. Find the energy and
the power of this signal and determine whether the signal is finite energy, finite power, or both.

Solution

The energy of x(t) is given by

o0
1
E, = -/Aefzatdt =— <00
2a
0

for any value of a > 0. The power of x(t) is then zero. Thus, x(t) is a finite-energy and finite-power
signal. ]

m Example 1.13
Consider the following analog signal, which we call a causal sinusoid because it is zero for t < 0:

2cos(4t—m/4) t>0
0 otherwise

x(t) = {

This is the kind of signal that you would get from a signal generator that is started at a certain
initial time (in this case 0) and that continues until the signal generator is switched off (in this
case possibly infinity). Determine if this signal is finite energy, finite power or both.

Solution

Clearly, the analog signal x(t) has infinite energy:
o

E, = / X% (t)dt

—00

o0
=/4cos7‘(4t—n/4)dt—> 00
0
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Although this signal has infinite energy, it has finite power. Letting T = NT, where T is the period
of 2 cos(4t — /4) (or Top = 2 /4), then its power is

T T
1 1
Py = lim — [ ¥*@®dt = lim — [ «?
x TLn;o 2T/x (Ddt Tin;o 2fo (Ddt
—T 0
To

To
1
= lim /xz(t)dt = — / 4 cos® (4t — /4)dt
N—oo 2NT() 2T()
0 0

which is a finite value and therefore the signal has finite power but infinite energy. [

As we will see later in the Fourier series representation, any periodic signal is representable as a pos-
sibly infinite sum of sinusoids of frequencies multiples of the fundamental frequency of the periodic
signal being represented. These frequencies are said to be harmonically related, and for this case the
power of the signal is shown to be the sum of the power of each of the sinusoidal components—that
is, there is superposition of the power. This superposition is still possible when a sum of sinusoids
creates a nonperiodic signal. This is illustrated in Example 1.14.

m Example 1.14

Consider the signals x(t) = cos(2nt) + cos(4xt) and y(t) = cos(2nt) 4+ cos(2t), —oo <t < o0.
Determine if these signals are periodic, and if so, find their periods. Compute the power of these
signals.

Solution

The sinusoids cos(27nt) and cos(47t) periods Ty = 1 and T, = 1/2, so x(t) is periodic since T1 /Ty =
2 with period Ty = 2T, = 1. The two frequencies are harmonically related. The sinusoid cos(2¢t)
has as period Ts = 7. Therefore, the ratio of the periods of the sinusoidal components of y(t) is
T1/T5 = 1/m, which is not rational, and so y(t) is not periodic and the frequencies 2 and 2 are
not harmonically related.

Using the trigonometric identities
cos? () = %(1 + cos(20))
cos(a) cos(B) = % (cos(a + B) + cos(ax — B))
we have that
xz(t) = c052(271t) + cos? (4mt) + 2 cos(2mt) cos(4mt)

1 1
=1+ 3 cos(4mnt) + 3 cos(8mnt) + cos(6mt) + cos(2nt)
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which is again a sum of harmonically related frequency sinusoids, so that x?(t) is periodic of period
To = 1. As in the previous examples, we have

To
1
Pr=— [ X¥@dt =1

To
0

which is the integral of the constant since the other integrals are zero. In this case, we used the
periodicity of x(t) and x?(t) to calculate the power directly. That is not possible when computing

the power of y(t) because it is not periodic, so we have to consider each of its components. We
have that

yz(t) = cos?(27t) + cos?(2t) 4 2 cos(27t) cos(2t)
=1+ %cos(4nt) + % cos(4t) 4+ cos(2(wr + 1)t) + cos(2(w — 1)t)

and the power of y(t) is

T
. 1 5
Py = Jlim o7 / y (odt
-T

Ty Ts
14— / (@bt + — / (at)de
= -_— cos(4am — COS
2T, 2Ts
0 0

1 i 1 v
+ — / cos(2(w + Dt)dt + — / cos2(r — Ddt =1
TG T7
0

where Ty, Ts, Ts, and T7 are the periods of the sinusoidal components of y?(t). Fortunately, only
the first integral is not zero and the others are zero (the average over a period of the sinusoidal
components of y?(t)). Fortunately, too, we have that the power of x(t) and the power of y(t) are the
sum of the powers of its components. That is if

x(t) = cos(2mt) + cos(4mt) = x1(t) + x2(t)
y(t) = cos(2rt) 4+ cos(2t) = y1(t) + y2(t)
then as in previous examples Py, = Py, = P,; = P, = 0.5, so that
Py=Py +Py, =1

Py =Py, + Py, =1
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The power of a sum of sinusoids,

x(1) =Y Apcos(Qt) = x(0) (1.15)
I I

with harmonically or nonharmonically related frequencies {2}, is the sum of the power of each of the
sinusoidal components,

Px=Zka (1.16)
k

1.4 REPRESENTATION USING BASIC SIGNALS

A fundamental idea in signal processing is to attempt to represent signals in terms of basic signals,
which we know how to process. In this section we consider some of these basic signals (complex
exponentials, sinusoids, impulse, unit-step, and ramp) that will be used to represent signals and for
which we will obtain their responses in a simple way in the next chapter.

1.4.1 Complex Exponentials

A complex exponential is a signal of the form
x(t) = Ae®™

= |Ale" [cos(Qot + 6) +jsin(Qot +6)] —o0 <t < 00 (1.17)

where A = |Alé?, anda = + j0 are complex numbers.

Using Euler'’s identity, ¢ = cos(¢) +jsin(¢), and from the definitions of A and a as complex
numbers, we have that

x(t) = |A|ej9€(r+j90)t — |A|er‘te(j§20t+9)

= |Ale" [cos(Qot + 6) + jsin(Qot + 6)]
We will see later that complex exponentials are fundamental in the Fourier representation of signals.

Remarks

= Suppose that A and a are real, then

x(t) = Ae™ —00 <t < 00

is a decaying exponential if a < 0, and a growing exponential if a > 0. See Figure 1.5.
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If A is real, but a = jQo, then we have
x(t) = A
= A cos(20t) + jA sin(20t)
where the real part of x(t) is Re[x(t)] = Acos(Qot) and the imaginary part of x(t) is Im[x(t)] =
Asin(Qot), and j = /—1.

If both A and a are complex, x(t) is a complex signal and we need to consider separately its real and
imaginary parts. For instance, the real part function is

g(t) = Re[x(1)]
= |Ale"" cos(Qot + 0)

The envelope of g(t) can be found by considering that
—1 <cos(RQot+60) <1

and that when multiplied by |Ale™ > 0, we have
—|Ale" < |Ale™ cos(Qt + 0) < |Ale™
so that
—lAle" < 8(1) < |Aje"
Whenever r < 0 the g(t) signal is a damped sinusoid, and when r > 0 then g(t) grows, as illustrated in

Figure 1.5.
According to the above, several signals can be obtained from the complex exponential.

4 4
5 3 5 3
‘&D 5 D 5
1 1
-2 0 2 -2 0 2
t t
(a) (b)
4 4
= 2 ~ = 2 ,
oA - vauiuil
g o NAomed 8 osaat /N
FIGURE 1.5 5 \/ \//V—/" n \-,\/\\/ \/
Analog exponentials: o 2 v P < 2 < v
(a) decaying exponential, 4 4 A
b) growing exponential, and -2 0 2 -2 0 2

(
(c-
(

d) modulated exponential
¢) decaying and (d) growing. (c) (d)
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Sinusoids

Sinusoids are of the general form

A cos(Qot + 0) = Asin(Qot + 0 + 7/2) —0<t< (1.18)
where A is the amplitude of the sinusoid, ¢ = 27 fg(rad/sec) is the frequency, and 6 is a phase shift. The
frequency and time variables are inversely related, as follows:

Q 27 2
0=2nfo = —
To

The cosine and the sine signals, as indicated above, are out of phase by 7/2 radians. The frequency
can also be expressed in hertz or 1/sec units, and in that case Q¢ = 27 fp, and the period is found by
the relation fy = 1/T) (it is important to point out the inverse relation between time and frequency
shown here, which will be important in the representation of signals later on).

Recall from Chapter 0, that the Euler’s identity provides the relation of the sinusoids with the complex
exponential

S0t = cos(Qt) + jsin(Qpt) (1.19)

that will allow us to represent in terms of sines and cosines any signal that is represented in terms of
complex exponentials. Likewise, the Euler’s identity also permits us to represent sines and cosines in
terms of complex exponentials, since

1. :
cos(Qot) = 3 (e]QOt + eﬂgot) (1.20)

1 /. )
sin(Qot) = o (e]QOt - e—JQOt) (1.21)
j

Remarks A sinusoid is characterized by its amplitude, frequency, and phase. When we allow these three
parameters to be functions of time, or

A(t) cos(QD)E + 6(D)

the following different types of modulation systems in communications are obtained:

= Amplitude modulation (AM)—The amplitude A(t) changes according to the message, while the
frequency and the phase are constant,

m Frequency modulation (FM)—The frequency Q(t) changes according to the message, while the
amplitude and phase are constant,

= Phase modulation (PM)—The phase 6(t) varies according to the message and the other parameters are
kept constant.
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1.4.2 Unit-Step, Unit-Impulse, and Ram Signals

Unit-Step and Unit-Impulse Signals
Consider a rectangular pulse of duration A and unit area

1
— —=A/2<t<A/2
pa(t)y =41 A [2=t=b/ (1.22)
0 t<—-A/2andt> A/2
Its integral is
¢ 1 t>A/2
1 A
ua(t) = / pa(r)dr = Z<t+ 5) —A/2<t<A/2 (1.23)
- 0 t<—A/2

The pulse pa (¢) and its integral ua (t) are shown in Figure 1.6.
Suppose that A — 0, then

m  The pulse pa(t) still has a unit area but is an extremely narrow pulse. We will call the limit the
unit-impulse signal,

5(t) = iiElOpA(t) (1.24)

which is zero for all values of t except at t = 0 when its value is not defined.
m Theintegral ua(t), as A — 0 has a left-side limit of ua (—e¢) — 0 and a right-side limit of ux (¢) —
1, for some infinitesimal € > 0, and at t = 0 it is 1/2. Thus, the limit is

1 t>0
lim upa(®) =71/2 t=0 (1.25)
a-0 0 <0
pa(t) u(t)
1/A 1
0.5
-A/2 A2 < —A/2 A2 >

3(1) u(®)

FIGURE 1.6
Generation of §(t) and u(t) from limitas A — 0 of a
pulse pa (t) and its integral u (t). >t » ¢
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Ignoring the value at t = 0 we define the unit-step signal as

u(t) = 1 t>0
“l0 t<0

You can think of the u(t) as the switching of a dc signal generator from off to on, while §(¢) is a very
strong pulse of very short duration.

The impulse signal §(t) is:
m  Zero everywhere except at the origin where its value is not well defined (i.e., §(t) = 0, t # 0, and undefined
att=0).
m its areais unity, i.e,
t
1 t>0
S§(r)dr = 1.26
/ (¥)de {0 t <0. (1.26)
—00
The unit-step signal is
1 t>0
) =
uo {0 t<0
The §(t) and u(t) are related as follows:
t
u(t) = / S(t)dr (1.27)
—0oQ
du(t)
§(t) = 1.28
=" (128)

According to calculus we have

t
ua(t) = /PA(T)dT

dun (1)
dt

pa(t) =

and so letting A — 0, we obtain the relation between u(t) and §(¢).

Remarks

m  Since u(t) is not a continuous function, it jumps from O to 1 instantaneously around t = 0, from the
calculus point of view it should not have a derivative. That 8(t) is its derivative must be taken with
suspicion, which makes the §(t) signal also suspicious. Such signals can, however, be formally defined
using the theory of distributions.
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m  The impulse §(t) is impossible to generate physically, but characterizes very brief pulses of any shape. It
can be derived using pulses or functions different from the rectangular pulse (see Eq. 1.22). In Problem
1.7 at the end of the chapter it is indicated how it can be derived from either a triangular pulse or a sinc
function of unit area.

s Signals with jump discontinuities can be represented as the sum of a continuous signal and unit-step
signals at the discontinuities. This is useful in computing the derivative of these signals.

Ramp Signal

The ramp signal is defined as
r(t) = tu(r) (1.29)

Its relation to the unit-step and the unit-impulse signals is

ar(t)
dr()
2 - 3(t) (1.31)

The ramp is a continuous function and its derivative is given by

dr(t)  du() @ .
= o =u(t) +t o =u(t) +td()

= u() + 0 8(t) = u(0)

m Example 1.15

Consider the discontinuous signals
x1(t) = cosQut)[u(t) — u(t — 1)]
xo(t) = u(t) —2u(t—1) +u(t —2)

Represent each of these signals as the sum of a continuous signal and unit-step signals, and find
their derivatives.
Solution

The signal x; (¢) is a period of a cosine of period Tp = 1, 0 < t < 1, with a discontinuity of 1 att = 0
and t = 1. Subtracting u(t) — u(t — 1) from x; (t) we obtain a continuous signal, but to compensate
we must add a unit pulse between t = 0 and ¢ = 1, giving

x1(t) = (cos(2mt) — Dfu(t) — ut — D] + [u(®) — ut — D] = x14(0) + x15(1)
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where the first term x1,(t) is continuous and the second x;;(t) is discontinuous. The derivative is

dx;t(t) = =2m sin(2wt)[u(t) — ut — 1)] + (cos(2nt) — D[§(t) =8t — D] +8@) — (¢t — 1)

= —2msin2ut)[ut) —u(t — 1)] +8(t) — 8(t — 1)
since
(cos(2mt) — D[8() — 8(t — 1)] = (cos(2mt) — 1)5(t) — (cos(2mt) — 1)6(t — 1)
= (cos(0) — 1)§(t) — (cos(2m) — 1)é(t — 1)
=0§()+05(t—1)=0

The term §(¢) in the derivative indicates that there is a jump from 0 to 1 in x; (t) at t = 0 and that
in —8(t — 1) there is a jump of —1 (from 1 to 0) at t = 1. See Figure 1.7.

—

x4(t)

X1 a(t)
o

-2

t
(©)
FIGURE 1.7

(a) Decomposition of x1 () = cos(27t)[u(t) — u(t — 1)] into (b) a continuous and (c) a discontinuous signal
(a pulse).
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The signal x,(t) has jump discontinuities at t =0, t = 1, and t = 2, and we can think of it as
completely discontinuous so that its continuous component is 0. The derivative is

dx; (1)
S =80 = 28— +8(t-2)
The area of each of the deltas coincides with the jump in the discontinuities. |

Signal Generation with MATLAB

In the following examples we illustrate how to generate analog signals using MATLAB. This is done by
either approximating continuous-time signals by discrete-time signals or by using the symbolic tool-
box. The function plot uses an interpolation algorithm that makes the plots of discrete-time signals
look like analog signals.

m Example 1.16

Write a script and the necessary functions to generate a signal,
y(t) =3r(t+3) — 6r(t+ 1) 4+ 3r(t) — 3u(t — 3)

Then plot it and verify analytically that the obtained figure is correct.

Solution

We wrote functions ramp and ustep to generate ramp and unit-step signals for obtaining a numeric
approximation of the signal y(t). The following script shows how these functions are used to gen-
erate y(t). The arguments of ramp determine the support of the signal, the slope, and the shift (for
advance, a positive number, and for delay, a negative number). For ustep we need to provide the
support and the shift.

9% % % % % % % % % % % % % % % % % % %

% Example 1.16

%% % % % % % % % % % % % % % % % % %

Clear all; cIf

Ts=0.01; t=-5:Ts:5; % support of signal

% ramp with support [-5, 5], slope of 3 and advanced
% (shifted left) with respect to the origin by 3
y1=ramp(t,3,3);

y2 =ramp(t,-6,1);

y3 =ramp(t,3,0);

% unit-step function with support [-5,5], delayed by 3
y4 =-3* ustep(t,-3);

y=y1+y2+y3+vy4;

plot(t,y,’k’); axis([-5 5 -1 7]); grid

Our functions ramp and ustep are as follows.
function y = ramp(t,m,ad)
% ramp generation
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% t: time support
% m: slope of ramp
% ad : advance (positive), delay (negative) factor
% USE: y =ramp(t,m,ad)
N =length(t);
y =zeros(1,N);
fori=1:N,
if () >=-ad,
y(i)=m* (t{)+ad);
end
end

function y = ustep(t,ad)
% generation of unit step
% t: time
% ad : advance (positive), delay (negative)
% USE y = ustep(t,ad)
N =length(t);
y =zeros(1,N);
fori=1:N,
if t(i) >=-ad,
y(i)=1;
end
end

Analytically,

m y() =0 fort < —3 and for ¢ > 3, so the chosen support —5 <t < 5 displays the signal in a
region where the signal occurs.

m For—3<t<-—1,p(t)is3r(t+3) =3(t+3), whichisOatt=—-3 and 6 att = —1.

m For—1<t<0,pt)is3r(t+3)—6r(t+1)=3(t+3)—6(t+1)=—-3t+3, whichis6att=
—land3att=0.

m ForO<t<3,y@®)is3r(t+3)—6r(t+1)+3r(t)=—-3t+3+3t=3.

m Fort > 3 thesignalis 3r(t+3) — 6r(t+ 1) +3r(t) —3u(t—3) =3 -3 =0.

These coincide with the signal shown in Figure 1.8. [ |

m Example 1.17

Consider the following script that uses the functions ramp and ustep to generate a signal y(t). Obtain
analytically the formula for the signal y(t). Write a function to compute and plot the even and odd
components of y(t).

clear all; clf

t=-5:0.01:5;

y1=ramp(t,2,2.5);

y2 =ramp(t,-5,0);
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y(t)
Now
\\

FIGURE 1.8

Generation of 1

y(t) = 3r(t +3) — 6r(t + 1) + 3r(t) — -5 0 5
3u(t — 3), =5 < t < 5, and zero otherwise. f(sec)

y3 =ramp(t,3,-2);

y4 = ustep(t,-4);
y=y1+y2+y3+vy4;

plot(t,y,’k’); axis([-5 5 -3 5]); grid

The signal y(t) = 0 fort < —5 and t > 5.

Solution

The signal y(t) displayed on Figure 1.9(a) is given analytically by
y(t) = 2r(t + 2.5) — 57(1) + 37(t — 2) + u(t — 4)

Clearly, y(t) is neither even nor odd. To find its even and odd components we use the function
evenodd, shown in the following code with inputs as the signal and its support and outputs as the
even and odd components. The results are shown on the bottom plots of Figure 1.9. Adding these
two signals gives back the original signal y(t). The script used is as follows.

% % % % % % % % % % % % % % % % % % %
% Example 1.17

% % % % % % % % % % % % % % % % % % %
[ye, yo] =evenodd(t,y);

subplot(211)

plot(t,ye,’r’)

grid

axis([min(t) max(t) -2 5])

subplot(212)

plot(t,yo,’r)
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y(t)
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t (sec)
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FIGURE 1.9

(a) Signal y(t) = 2r(t 4+ 2.5) — 5r(t) 4+ 37(t — 2) + u(t — 4), (b) even component y,(t), and (c) odd component
Yo(0).
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grid
axis([min(t) max(t) -1 5])

function [ye,yo] = evenodd(t,y)

% even/odd decomposition

% t: time

% y: analog signal

% ye, yo: even and odd components
% USE [ye,yo] = evenodd(t,y)

%

yr =fliplr(t,y);

ye=0.5"(y +yr);

yo=0.5"(y-yn);

The MATLAB function fliplr reverses the values of the vector y giving the reflected signal. ]

m Example 1.18
Use symbolic MATLAB to generate the following analog signals.

(a) For the damped sinusoid signal
x(t) = et cos(2nt)

obtain a script to generate x(t) and its envelope.
(b) For a rough approximation of a periodic pulse generated by adding three cosines of
frequencies multiples of Q¢ = 7 /10—that is

x1(t) = 1+ 1.5cos(2R0t) — 0.6 cos(42pt)

write a script to generate x (t).

Solution

The following script generates the damped sinusoid signal, and its envelope y(t) = +e™".

9% % % % % % % % % % % % % % % % % % %
% Example 1.18 --- damped sinusoid
9% % % % % % % % % % % % % % % % % % %
t=sym(t);

X =exp(-t) *cos(2 * pi*1);

y=exp(-t);

ezplot(x,[-2,4])

grid

hold on

ezplot(y,[-2,4])
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1+3/2 cos(1/5mt)—3/5 cos(2/5nt)

-10 -5 0 5 10

FIGURE 1.10

(a) Damped sinusoid, and (b) sum of weigthed cosines approximating a pulse.

hold on
ezplot(-y,[-2,4])
axis([-2 4 -8 8))
hold off

The approximate pulse signal is generated by the following script.

cClear; clf

t=sym(’t));

% sum of constant and cosines
x=1+1.5%cos(2*pi*t/10)-.6 *cos(4 *pi*t/10);
ezplot(x,[-10,1Q]); grid

The plots of the damped sinusoid and the approximate pulse are given in Figure 1.10.

m Example 1.19

Consider the generation of a triangular signal,

t 0<t<l1
At)=1—-t+2 1<t<2
0 otherwise

using ramp signals r(¢). Use the unit-step signal to represent the derivative of dA (t)/dt.
Solution

The triangular pulse can be represented as

AW =r@®) —2rt—1) +r(t—2) (1.32)
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dA(t)
Alt) A dt
1 1
>t >t
0 1 2 0 1 2
FIGURE 1.11 -1
(a) The triangular signal A(t) and (b) its derivative. (a) (b)

In fact, since r(t — 1) and r(t — 2) have values different from 0 for t > 1 and t > 2, respectively,
then

A)=r@t)=t for0<t<1
and thatfor1 <t <2,
AO)=r@®)—-2rt—1)=t—-2t—-1)=—-t+2
Finally, for t > 2 the three ramp signals are different from zero, so
AW =r@t) =2r(t—1) +rt—2)
—t—20t—-1+ (-2

=0 t>2

and by definition A(t) is zero for t < 0. So the given expression for A(t) in terms of the ramp
functions is identical to its given mathematical definition.

Using the mathematical definition of the triangular function, its derivative is given by

1 0<t<l1
-1 1<t<?2
0 otherwise

dA@)
d

Using the representation in Equation (1.32) this derivative is also given by

dA (D)
—o =0 = 2u(t = 1) +ut—2)
which are two unit pulses, as shown in Figure 1.11. |

m Example 1.20

Consider a full-wave rectified signal,

x(t) = |cos(2mt)| —00<t< o0
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FIGURE 1.12
Eight periods of full-wave rectified signal -2 -1 0 1 2
x(t) = | cos(2nt)|, —oo <t < 00. t(sec)

of period Ty = 0.5. Obtain a representation for a period between 0 and 0.5, and represent x(t) in
terms of shifted versions of it. A full-wave rectified signal is used in designing dc sources. It is a first
step in converting an alternating voltage into a dc voltage. See Figure 1.12.

Solution
The period between 0 and 0.5 can be expressed as

p(t) = x(O)[u(t) — u(t — 0.5)] = |cos(2mt)|[u(t) — u(t — 0.5)]
Since x(t) is a periodic signal of period Ty = 0.5, we have then that

x()= Y p(t—kTo)
k=—00 |

m Example 1.21

Generate a causal train of pulses that repeats every two units of time using as first period
s =u@®) —2ut—1) 4+u(t—2)

Find the derivative of the train of pulses.

Solution

Considering that s(t) is the first period of the train of pulses of period two, then

[e.0]

p(t) = s(t—2k)

k=0
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p(t) _

+ M @)

-1

FIGURE 1.13

Causal train of pulses p(t) and its derivative. The number enclosed in () is the area of the corresponding delta
function and it indicates the jump at the particular discontinuity—positive when increasing and negative when
decreasing.

is the desired signal. Notice that p(t) equals zero for ¢t < 0, thus it is causal. Given that the derivative
of a sum of signals is the sum of the derivative of each of the signals, the derivative of p(t) is

o]

dp(t) _ Z ds(t — 2k)

dt P dt

= [8(t—2k) — 28(t — 1 — 2k) + 8(t — 2 — 2k)|
k=0

which can be simplified to

=8 +2) 8(t—2k)—2) 8(t—2k+1)

k=1 k=1

where 8(t), 28(t — 2k), and —28(t —2k+ 1) for k> 1 occur at t =0, t = 2k, and t = 2k — 1 for
k > 1, or the times at which the discontinuities of p(t) occur. The value associated with the §(t)
corresponds to the jump of the signal from the left to the right. Thus, §(¢) indicates there is a

discontinuity in p(t) at zero as it jumps from 0 to 1, while the discontinuities at 2, 4, ... have a
jump of 2 from —1 to 1, increasing. The discontinuities indicated by §(t — 2k — 1) occurring at 1,
3,5,...arefrom 1to —1 (i.e, decreasing, so the value of —2). See Figure 1.13. [ |

1.4.3 Special Signals—the Sampling Signal and the Sinc

Two signals of great significance in the sampling of continuous-time signals and their reconstruction
are the sampling signal and the sinc. Sampling a continuous-time signal consists in taking samples of
the signal at uniform times. One can think of this process as the multiplication of a continuous-time
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signal x(t) by a train of very narrow pulses of the sampling period Ts. For simplicity, considering that
the width of the pulses is much smaller than T, the train of pulses can be approximated by a train of
impulses that is periodic of period T;—that is, the sampling signal é7,(t) is

e ¢]

51.(t) = Z 8(t — nTy) (1.33)

n=—oo

The sampled signal x;(t) is then
x5(t) = x(0)37,(1)

o]

= Y x(nT)8(t —nTy) (1.34)

n=—oo

or a sequence of uniformly shifted impulses with amplitude the value of the signal x(¢) at the time
when the impulse occurs.

A fundamental result in sampling theory is the recovery of the original signal, under certain con-
strains, by means of an interpolation using sinc signals. Moreover, we will see that the sinc is connected
with ideal low-pass filters. The sinc function is defined as

i t
s =" w<cr<oco (1.35)
This signal has the following characteristics:
The time support of this signal is infinite.
It is an even function of ¢, as
in(—mt —si L
S(—0) = sin(—mt) _ sin(rrt) — S (1.36)
—nt —nt

®m Att = 0 the numerator and the denominator of the sinc are zero; thus the limit as t — 0 is found
using L'Hopital’s rule—that is,

lim S(t) = lim dsin(rt)/dt
t—

t—0 dmt/dt
— Jim 608D _ 4 (1.37)
t—0 T
®  S(t) is bounded—that is, since —1 < sin(wt) < 1, then fort > 0,
-1 in(st 1
LS gy < L (1.38)
Tt Tt Tt

and given that S(¢) is even, it is equally bounded fort < 0. As t — 400, S(t) — 0.

m The zero-crossing time of S(t) are found by letting the numerator equal zero—that is, when
sin(rt) = 0, the zero-crossing times are such that =t = kx, or t = k for a nonzero integer k or
k=41,42,....



m CHAPTER 1: Continuous-Time Signals

m A property that is not obvious and that requires the frequency representation of S(t) is that the
integral

/ IS(O)2dt = 1 (1.39)

Recall that we showed this in Chapter 0 using numeric and symbolic MATLAB.

The sinc signal will appear in several places in the rest of the book.

1.4.4 Basic Signal Operations—Time Scaling, Frequency Shifting, and
Windowing

Given a signal x(t), and real values ¢ # 0 or 1, and ¢ > 0:

x(at) is said to be contracted if |a| > 1, and if @ < 0 it is also reflected.
x(at) is said to be expanded if |«| < 1, and if @ < 0 it is also reflected.
x(t)&#?! is said to be shifted in frequency by ¢ radians.

For a window signal w(t), x(t)w(t) displays x(t) within the support of w(t).

To illustrate the time scaling, consider a signal x(t) with a finite support ty <t < t;. Assume that
a > 1, then x(at) is defined in tp < at <t or tp/a <t < t;/a, a smaller support than the original
one. For instance, for @ = 2, to = 2, and t; = 4, then the support of x(2t) is 1 <t < 2, while the
support of x(t) is 2 < t < 4. If & = —2, then x(—2t) is not only contracted but also reflected. Similarly,
x(0.5¢t) would have a support of 2ty < t < 2t;, which is larger than the original support.

Multiplication by an exponential shifts the frequency of the original signal. To illustrate this consider
the case of an exponential x(t) = &/%¢ of frequency 2. If we multiply x(t) by an exponential ¢/%‘, then

x(0)e? = 0TI = cos((Qo + P)1) +jsin((Qo + P)1)

so that the frequency of the new exponential is greater than ¢ if ¢ > 0 or smallerif¢ < 0. So we have
shifted the frequency of x(¢). If we have a sum of exponentials (they do not need to be harmonically
related as in the Fourier series we will consider later),

x(t) = ) A
k

then
x(t)ej‘pt — ZAkej(Qk+¢)t
k

so that each of the frequencies of the signal x(t) has been shifted. This shifting of the frequency is
significant in the development of amplitude modulation, and as such this frequency shift process
is called modulation—that is, the signal x(t) modulates the exponential and x(t)é®’ is the modulated
signal.
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Notice that time scaling also changes the frequency content of the signal. For instance, a signal x(t) =
&%t is periodic of period Ty = 27/ Qo, while x(at) = ¢**! has a period Ty/a or a frequency a S,
which is larger than the original frequency of Qp when o > 1 and smaller than Qo when 0 <o < 1.

Remarks We can thus summarize the above as follows:

If x(¢) is periodic of period Ty then the time-scaled signal x(at), @ # 0, is also periodic of period Ty/|c|.
The support in time of a periodic or nonperiodic signal is inversely proportional to the support in frequency
for that signal.

m  The frequencies present in a signal can be changed by modulation—that is, multiplying the signal by
a complex exponential or, equivalently, by sines and cosines. The frequency change is also possible by
expansion and compression of the signal.

m  Reflection is a special case of time scaling with @ = —1.

m Example 1.22

Let x1(t), for 0 < t < Ty, be one period of a periodic signal x(t) of period Ty. Represent x(t) in terms
of advanced and delayed versions of x; (t). What would be x(2t)?

Solution

The periodic signal x(t) can be written as

x(t) =+ 4+ x1(t+ 2To) +x1(t + To) + x1(t) +x1(t — To) +x1(t — 2Tp) + - - -
= D x(t—kTy)
k=—00

and the contracted signal x(2t) is then

[e¢]

x(21) = Z x1(2t — kTp)

k=—00

and periodic of period Ty/2. |

m Example 1.23

An acoustic signal x(t) has a duration of 3.3 minutes and a radio station would like to use the
signal for a three-minute segment. Indicate how to make it possible.

Solution

We need to contract the signal by a factor of « = 3.3/3 = 1.1, so that x(1.1t) can be used in the
three-minute piece. If the signal is recorded on tape, the tape player can be run 1.1 times faster
than the recording speed. This would change the voice or music on the tape, as the frequencies
x(1.1¢t) are increased with respect to the original frequencies in x(t). |
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m Example 1.24

One way of transmitting a message over the airwaves is to multiply it by a sinusoid of frequency
higher than those in the message, thus changing the frequency content of the signal. The resulting
signal is called an amplitude-modulated (AM) signal: The message changes the amplitude of the
sinusoid. To recover the message from the transmitted signal, one can make the envelope of the
modulated signal be related to the message. Use again the ramp and ustep functions to generate a
signal y(t) = 2r(t + 2) — 4r(t) + r(t — 2) + r(t — 3) + u(t — 3) to modulate a so-called carrier signal
x(t) = sin(57t) to give the AM signal z(t). Obtain a script to generate and plot the AM signal.
Indicate whether the envelope of the AM signal is connected with the message signal y(t).

Solution

The signal y(¢) analytically equals

0 < =2

2r(t+2) =2(t+ 2) —2<t<0
y() = 12r(t+2) —4r(t) = -2t + 4 0<t<?2

2rt+2) —4r(t) +r(t—2) = —t+2 2<t<3

2rE+2) -4 +r@¢—-2)+r@¢—-3)+u@t—-3)=0 t>3

The following script is used to generate the message signal y(t), the AM signal z(t), and the cor-
responding plots. The MATLAB function sound is used to produce the sound corresponding to
100z(t). In Figure 1.14 we show z(t) and emphasize the envelope (dashed line) that corresponds
to £y(1).

9% % % % % % % % % % % % % % %
% Example 1.24 --- AM signal
9% % % % % % % % % % % % % % %

t=-5:0.01:5;

x=sin(5*pi*t);

y1=ramp(t,2,2);

y2 =ramp(t,-4,0);

y3 =ramp(t,1,-2);

y4 =ramp(t,1,-3)

y5 = ustep(t,-3);

y=y1+y2+y3+y4+y5;

Z=y. "X

sound(100*z,1000)

plot(t,z,’k’); hold on

plot(t,y,’r’,t,-y,’r’); axis([-5 5 -5 5]); grid

hold off

xlabel(’t’); ylabel(’z(t)’)

3
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z(t)

FIGURE 1.14
AM signal. -5 0 5

1.4.5 Generic Representation of Signals
Consider the following integral:

f f®s(t)dt

The product of f(t) and §(t) gives zero everywhere except at the origin where we get an impulse of
area f(0)—that is, f(£)§(t) = f(0)8(¢) (let to = 0 in Figure 1.15). Therefore,

/ F8(0de = / FO3@)dt = f(0) / 5(t)dt = f(0) (1.40)

since the area under the curve of the impulse is unity. This property of the impulse function is appro-
priately called the sifting property. The result of this integration is to sift out f (¢) for all t except fort = 0,
where §(t) occurs. If we delay or advance the §(¢) function in the integrand, the result is that all values
of f(t) are sifted out except for the value corresponding to the location of the delta function—that is,

/f(t)S(t—t)dt: /f(t)S(t—r)dt:f(r)/B(t—r)dt
=f(1) forany t

since the last integral is still unity. Figure 1.15 illustrates the multiplication of a signal f(t) by an
impulse signal §(t — tp), located at t = t.
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FIGURE 1.15 /\'\ g T T ))T
Multiplication of a signal f(t) by an impulse signal 0 N

8(t — to). ! 't b

~V

x(t)

\ X () x(8)
x(0)
v
= + + .
>t >t t
|

| N A A 2A

f(t) S(t—1ty) f(to) 8(t—to)
(

FIGURE 1.16
Generic representation of x(t) as an infinite sum of pulses of height x(kA) and width A when A — 0, so that the
sum becomes an integral of weighted impulse signals.

By the sifting property of the impulse function §(t), any signal x(t) can be represented by the following generic
representation:

o]

x(t) = / x(1)8(t — 1)dt (1.41)

—00

Figure 1.16 shows a generic representation. Equation (1.41) basically indicates that any signal can
be viewed as a stacking of pulses x(kA)pa(t — kA), which in the limit as A — 0 become impulses
x(7)é6(t — 7).

Equation (1.41) provides a generic representation of a signal in terms of basic signals, in this case
impulse signals. As we will see in the next chapter, once we determine the response of a system to an
impulse we will use the generic representation to find the response of the system to any signal.

1.5 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO FROM
HERE?

We have taken another step in our long journey. In this chapter we discussed the main classification of
signals and have started the study of deterministic, continuous-time signals. We have also discussed
important characteristics of signals such as periodicity, energy, power, evenness, and oddness, and
learned basic signal operations that will be useful as we will see in the next chapters. Interestingly,
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Table 1.1 Basic Signals

Signal Definition

Complex exponential |Ale" [cos(Qt + 6) +jsin(Qot +6)] —oo <t < o0
Sinusoid Acos(Qot +0) = Asin(Qot+60 +7/2) —o0 <t <00
Unit impulse 8(t) =0 t#0,undefinedatt =0

t
[ d8(@dr=1, t>0

—0Q

J f@5(t—vydr = f(0)

1 t>0
Unit ste t) =
P uo) {O t<0
t t>0
Ram 1) = tu(t) =
p () = tu(t) 0 t<O0

8(t) = du(t)/dt

u(t) = f[ 8(t)dr

t

@ = [ u(r)de

—00

Rectangular pulse p() =Afu@®) —ut—1)] = {A 0= tf_ !
0 otherwise
At 0<t<l1
Triangular pulse A =Alr@®) —2r¢t— D +rt—2)] =1AQR—-1t) 1<t<2
0 otherwise
Sampling 81, () = D, 8(t — kTy)
Sinc S(t) = sin(xt)/(wt)
S(0) =1

S(k) = 0 k # 0 integer

}o S2(tdt =1

—00

we began to see how some of these operations lead to practical applications, such as amplitude, fre-
quency, and phase modulations, which are basic in the theory of communications. Very importantly,
we have also begun to represent signals in terms of basic signals, which in later chapters will allow us
to simplify the analysis and will give us flexibility in the synthesis of systems. These basic signals are
used as test signals in control systems. Table 1.1 displays basic signals.

Our next step is to connect signals with systems. We are particularly interested in developing a
theory that can be used to approximate, to some degree, the behavior of most systems of inter-
est in engineering. After that we consider the analysis of signals and systems time and frequency
domains.
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PROBLEMS

1.1. Signal energy and RC circuit—MATLAB
The signal x(t) = ¢!l is defined for all values of t.

1.2.

1.3.

(a)

(c)

Plot the signal x(t) and determine if this signal is finite energy. That is, compute the integral

o0
[ wor
—0o0
and determine if it is finite.
If you determine that x(t) is absolutely integrable, or that the integral

o
/ |x(t)|dt
—0o0

is finite, could you say that x(¢) has finite energy? Explain why or why not. Hint: Plot |x(¢t)| and |x(t)|2
as functions of time.
From your results above, is it true the energy of the signal

y(©) = e~ Fcos2mtyu(t)

is less than half the energy of x(t)? Explain. To verify your result, use symbolic MATLAB to plot y(t)
and to compute its energy.

To discharge a capacitor of 1 mF charged with a voltage of 1 volt we connect it, at time t = 0, with a
resistor of R . When we measure the voltage in the resistor we find it to be vr(t) = e~‘u(t). Determine
the resistance R. If the capacitor has a capacitance of 1 wF, what would be R? In general, how are R
and C related?

Power in RL circuits
Consider a circuit consisting of a sinusoidal source vs(t) = cos(t)u(t) volts connected in series to a resistor
R and an inductor L and assume they have been connected for a very long time.

(a)
(b)

(c)

LetR = 0and L = 1 H. Compute the instantaneous and the average powers delivered to the inductor.
LetR =1 Qand L = 1 H. Compute the instantaneous and the average powers delivered to the resistor
and the inductor.

LetR =1 Qand L = 0 H. Compute the instantaneous and the average powers delivered to the resistor.
Hint: In the above parts of the problem use phasors or the trigonometric formula

cos(a) cos(B) = 0.5[cos(a — B) + cos(a + B)]
The average power used by the resistor is what you pay to the electric company, but there is also a
reactive power for which you do not. The complex power supplied to the circuit is defined as

1
P=—V*
2

where Vi and I are the phasors corresponding to the source and the current in the circuit, and I* is the
complex conjugate of I. Consider the values of the resistor and the inductor given above, and compute
the complex power and relate it to the average power computed in each case.

Power in periodic and nonperiodic sum of sinusoids
Consider the periodic signal x(t) = cos(2Q¢t) + 2 cos(pt), —00 < t < 0o, and Qg = 7. The frequencies of
the two sinusoids are said to be harmonically related (one is a multiple of the other).



1.4.

1.5.

1.6.

Problems

(a) Determine the period Ty of x(t).

(b) Compute the power Py of x(t).

(c) Verify that the power Py is the sum of the power P; of x1(t) = cos(2xt) and the power P of x5 (t) =
2 cos(mrt).

(d) In the above case you are able to show that there is superposition of the powers because the fre-
quencies are harmonically related. Suppose that y(t) = cos(t) + cos(rt) where the frequencies are not
harmonically related. Find out whether y(t) is periodic or not. Indicate how you would find the power
Py of y(t). Would Py = Py + P, where P is the power of cos(t) and P, is the power of cos(rt)? Explain
what is the difference with respect to the case of harmonic frequencies.

Periodicity of sum of sinusoids—MATLAB

Consider the periodic signals x1 (t) = 4 cos(rt) and x, (t) = —sin(3nwt + 7 /2).

(a) Find the periods of x7 () and x5 (t).

(b) Isthe sum x(t) = x1 (t) + xo (¢t) periodic? If so, what is its period?

(c) In general, two periodic signals x1 (t) and x (t) having periods T; and T, such that their ratio T1 /T, =
M/K is a rational number (i.e., M and K are positive integers), then the sum x(t) = x1(t) + x2(¢) is
periodic. Suppose the rationality condition is satisfied and M = 3 and K = 12. Determine the period of
x(t).

(d) Determine whether x(t) = x1 (t) + x5 (¢) is periodic when
m x1(t) =4 cos(2mt) and xp (t) = —sin(3nwt + 7 /2)

m x1(t) =4 cos(2t) and xp(t) = —sin(3wt + 7 /2)
Use symbolic MATLAB to plot x(¢) in the above two cases and confirm your analytic results about the
periodicity or lack of periodicity of x(t).

Time shifting

Consider a finite-support signal

x)=t 0<t<1

and zero elsewhere.
(a) Carefully plot x(t + 1).

(b) Carefully plot x(—t + 1).

(c) Add the above two signals to get a new signal y(¢). To verify your results, represent each of the above
signals analytically and show that the resulting signal is correct.

(d) How does y(t) compare to the signal A(t) = (1 — |t])(u(t+ 1) — u(t — 1)? Plot them. Compute the
integrals of y(t) and A(t) for all values of t and compare them. Explain.

Even and odd hyperbolic functions—MATLAB
According to Euler’s identity the sine and the cosine are defined in terms of complex exponentials. You
would then ask what if instead of complex exponentials you were to use real exponentials. Well, using
Euler's identity we obtain the hyperbolic functions defined in —oo < t < o0:
ert + e—Qo[

2
Qot __ e—SZ()t

2

cosh(Qpt) =
sinh(Qqt) = ¢

(a) Let Q¢ = 1rad/sec. Use the definition of the real exponentials to plot cosh(t) and sinh(t).
(b) Is cosh(t) even or odd?
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1.7.

1.8.

1.9.

(c) Issinh(t) even or odd?

(d) Obtain an expression for x(t) = e~‘u(t) in terms of the hyperbolic functions. Use symbolic MATLAB to
plot x(t) = e~ fu(t) and to plot your expression in terms of the hyperbolic functions. Compare them.

Impulse signal generation—MATLAB

When defining the impulse or §(t) signal, the shape of the signal used to do so is not important. Whether

we use the rectangular pulse we considered in this chapter or another pulse, or even a signal that is not a

pulse, in the limit we obtain the same impulse signal. Consider the following cases:

(a) The triangular pulse,

AA) = % (1 - ‘i‘) (u(+ A) —u(t—A))

Carefully plot it, compute its area, and find its limit as A — 0. What do you obtain in the limit? Explain.
(b) Consider the signal
sin(wt/A)

Tt

Use the properties of the sinc signal S(t) = sin(srt)/(rrt) to express S (t) in terms of S(t). Then find its
area, and the limit as A — 0. Use symbolic MATLAB to show that for decreasing values of A the Sa (t)
becomes like the impulse signal.

SAt) =

Impulse and unit-step signals

By introducing the impulse §(t) and the unit-step u(t) signals, we expand the conventional calculus. One
of the advantages of having the §(¢) function is that we are now able to find the derivative of discontinuous
signals. Let us illustrate this advantage. Consider a periodic sinusoid defined for all times,

x(t) = cos(RQot) —oco<t< oo

and a causal sinusoid defined as
x1(t) = cos(Qot)u(t)

where the unit-step function indicates that the function has a discontinuity at zero, since for t = 0+ the

function is close to 1, and for ¢t = 0— the function is zero.

(a) Find the derivative y(t) = dx(t)/dt and plot it.

(b) Find the derivative z(t) = dx1 (t)/dt (treat x1 (t) as the product of two functions cos(2gt) and u(t)) and
plot it. Express z(t) in terms of y(t).

(c) Verify that the integral of z(t) gives you back x1 (t).

Series RC circuit response to a unit-step signal

A unit-step function u(t) can be considered a causal constant source (e.g., a battery in a circuit if the units

of u(t) is volts).

(a) From basic principles consider the response of an RC circuit to u(t)—that is, a battery connected in
series with the resistor and the capacitor. Remember that the voltage across the capacitor results
from an accumulation of charge, and that the presence of the resistor simply means that the charge is
slowly accumulated. Therefore, plot what would be the voltage across the capacitor for ¢ > 0 (assume
the capacitor has no initial voltage at t = 0).

(b) What would be the voltage across the capacitor in the steady state? Explain.

(c) Finally, suppose that the capacitor is disconnected from the circuit at some time tg > 0. Ideally, what
would be the voltage across the capacitor from then on?

(d) If you disconnect the capacitor, again at tg > 0, but somehow it is left connected to the resistor, so
they are in parallel, what would happen to the voltage across the capacitor? Plot approximately the
voltage across the capacitor for all times and explain the reason for your plot.



Problems

1.10. Ramp in terms of unit-step signals
A ramp, r(t) = tu(t), can be expressed as

o
r(t) = /u(r)u(t —1)dt
0

(a) Show that the above expression for r(t) is equivalent to
t
r(t) = /dr = tu(t)
0

(b) Compute the derivative of
o0
r(t) = /u(r)u(t —1)dt
0

to show that
o
u(t) = [u(r)&(t —1)dt
0

1.11. Sampling signal and impulse signal—MATLAB
Consider the sampling signal

o0
Sp(t) =Y 8(t—kT)
k=0
which we will use in the sampling of analog signals later on.
(a) Plot ér(t). Find
t

ssT(t) = / St(t)dr
—0o0
and carefully plot it for all . What does the resulting signal ss(t) look like? In reference 17, Craig calls it
the “stairway to the stars.” Explain.
(b) Use MATLAB function stairs to plot ssp(t) for T = 0.1. Determine what signal would be the limit as
T— 0.
(c) A sampled signal is
o
xs(t) = x(0)7 (1) = Z x(kTs)8(t — kTs)
k=0
Let x(t) = cos(2mt)u(t) and T; = 0.1. Find the integral

t

/ xs(t)dt

—00

and use MATLAB to plot it for 0 < t < 10. In a simple way this problem illustrates the operation of a
discrete-to-analog converter, which converts a discrete-time into a continuous-time signal (its cousin
is the digital-to-analog converter or DAC).
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1.12. Reflection and time shifting
Do the reflection and the time-shifting operations commute? That is, do the two block diagrams in
Figure 1.17 provide identical signals (i.e., is y(t) equal to z(t))? To provide an answer to this consider the
signal x(t) shown in Figure 1.17. Reflect x(t) to get v(t) = x(—t) and then shift it to get y(t) = v(t — 2). Then
consider delaying x(t) to get w(t) = x(t — 2), and reflecting it to get z(t) = w(—t). Perform each of these
operations on x(t) to get y(t) and z(t); plot them and compare these plots. What is your conclusion? Explain

x(t) v(t) y(t)
—| Reflection » Delayby2 —»

x(t) w(t) z(t)
—»| Delay by 2 Reflection —»

A 4

x(t)

FIGURE 1.17 t
Problem 1.12. 1

1.13. Contraction and expansion of signals
Let x(t) be the analog signal considered in Problem 1.12 (see Figure 1.17). In this problem we would like to
consider expanded and compressed versions of that signal.
(a) Plot x(2t) and determine if it is a compressed or expanded version of x(¢).

(b) Plot x(t/2) and determine if it is a compressed or expanded version of x(t).

(c) Suppose x(t) is an acoustic signal—let’s say it is a music signal recorded in a magnetic tape. What
would be a possible application of the expanding and compression operations? Explain.

1.14. Even and odd decomposition and power
Consider the analog signal x(t) in Figure 1.18.

x(t)

FIGURE 1.18
Problem 1.14. 0 1

(a) Plot the even—odd decomposition of x(¢) (i.e., find and plot the even x,(t) and the odd x, (t) components
of x(1)).



Problems

(b) Show that the energy of the signal x(t) can be expressed as the sum of the energies of its even and
odd components—that is, that

o0 0 o0
/ K (t)dt = / x2(t)dt + / x2(tydt
—00 —00 —00

(c) Verify that the energy of x(t) is equal to the sum of the energies of x,(t) and x,(¢).

1.15. Generation of periodic signals

A periodic signal can be generated by repeating a period.

(a) Find the function g(t), defined in 0 < t < 2 only, in terms of basic signals and such, that when repeated
using a period of 2, generates the periodic signal x(t), as shown in Figure 1.19.

(b) Obtain an expression for x(t) in terms of g(¢) and shifted versions of it.

(c) Suppose we shift and multiply by a constant the periodic signal x(t) to get new signals y(t) = 2x(t — 2),
z(t) = x(t + 2), and v(t) = 3x(t). Are these signals periodic?

(d) Let then w(t) = dx(t)/dt, and plot it. Is w(t) periodic? If so, determine its period.

x(t) &

1

FIGURE 1.19
Problem 1.15.

1.16. Contraction and expansion and periodicity—MATLAB

Consider the periodic signal x(t) = cos(rrt) of period Ty = 2 sec.

(a) Isthe expanded signal x(t/2) periodic? If so, indicate its period.

(b) Isthe compressed signal x(2t) periodic? If so, indicate its period.

(c) Use MATLAB to plot the above two signals and verify your analytic results.
1.17. Derivatives and integrals of periodic signals

Consider the triangular train of pulses x(¢) in Figure 1.20.

x(t)

FIGURE 1.20 >
Problem 1.17.
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1.18.

1.19.

FIGURE 1.21

(a) Carefully plot the signal y(t) = dx(t)/dt, the derivative of x(t).
(b) Can you compute

z(t) = / [x(t) — 0.5]dt

If so, what is it equal to? If not, explain why.

(c) Isx(t) a finite-energy signal? How about y(t)?

Complex exponentials '

For a complex exponential signal x(t) = 2¢/27¢:

(a) Determine its analog frequency €2 in rad/sec and its analog frequency f in hertz. Then find the signal’s
period. ‘

(b) Suppose y(t) = ¢™¢. Would the sum of these signals z(t) = x(t) + y(t) also be periodic? If so, what is
the period of z(t)?

(c) Suppose we then generate a signal v(t) = x(¢)y(t), with the x(t) and y(t) signals given before. Is v(t)
periodic? If so, what is its period?

Full-wave rectified signal—MATLAB

Consider the full-wave rectified signal

y(t) = | sin(wt)| —0<t<

part of which is shown in Figure 1.21.

Problem 1.19. t

(a) Asaperiodic signal, y(t) does not have finite energy, but it has a finite power Py. Find it.

(b) It is always useful to get a quick estimate of the power of a periodic signal by finding a bound for the
signal squared. Find a bound for [y(t) |2 and show that Py < 1.

(c) Use symbolic MATLAB to check if the full-wave rectified signal has finite power and if that value
coincides with the P, you found above. Plot the signal and provide the script for the computation of
the power. How does it coincide with the analytical result?



Problems

1.20. Multipath effects, first part—MATLAB

In wireless communications, the effects of multipath significantly affect the quality of the received signal.
Due to the presence of buildings, cars, etc. between the transmitter and the receiver, the sent signal does
not typically go from the transmitter to the receiver in a straight path (called line of sight). Several copies
of the signal, shifted in time and frequency as well as attenuated, are received—that is, the transmission
is done over multiple paths each attenuating and shifting the sent signal. The sum of these versions of
the signal appears quite different from the original signal given that constructive as well as destructive
effects may occur. In this problem we consider the time-shift of an actual signal to illustrate the effects of
attenuation and time shift. In the next problem we consider the effects of time and frequency shifting and
attenuation.

Assume that the MATLAB “handel.mat” signal is an analog signal x(t) that it is transmitted over three
paths, so that the received signal is

y(®) = x(t) + 0.8x(t — 1) + 0.5x(t — 27)

and let T = 0.5 seconds. Determine the number of samples corresponding to a delay of r seconds by using
the sampling rate Fs (samples per second) given when the file “handel. mat” is loaded.

To simplify matters, just work with a signal of duration 1 second—that is, generate a signal from “han-
del.mat” with the appropriate number of samples. Plot the segment of the original “handel. mat” signal x(t)
and the signal y(t) to see the effect of multipath. Use the MATLAB function sound to listen to the original
and the received signals.

1.21. Multipath effects, second part—MATLAB
Consider now the Doppler effect in wireless communications. The difference in velocity between the trans-
mitter and the receiver causes a shift in frequency in the signal, which is called the Doppler effect (e.g., this
is just like the acoustic effect of a train whistle as a train goes by).
To illustrate the frequency-shift effect, consider a complex exponential x(r) = &/t Assume two paths:
One that does not change the signal, while the other causes the frequency shift and attenuation, resulting
in the signal

Y(t) = &S0t 4 S0t eidt
= %! [1 + aej"”]

where « is the attenuation and ¢ is the Doppler frequency shift, which is typically much smaller than the

signal frequency. Let Qg = 7, ¢ = /100, and « = 0.7. This is analogous to the case where the received

signal is the sum of the line-of-sight signal and an attenuated signal affected by Doppler.

(a) Consider the term !, a phasor with frequency ¢ = = /100 to which we add 1. Use the MATLAB
plotting function compass to plot the addition 1 + 0.7¢/%! for times from 0 to 256 sec, changing in
increments of T = 0.5 sec.

(b) If we write y(1) = A1) €01+0®)  give analytical expressions for A(t) and 6(t), and compute and plot
them using MATLAB for the times indicated above.

(c) Compute the real part of the signal

y1(6) = x(t) + 0.7x(t — 100)e/? ¢—100)

That is, the effects of time and frequency delays, put together with attenuation, for the times indicated
in part (a). Use the function sound (let Fs = 2000 in this function) to listen to the different signals.
1.22. Beating or pulsation—MATLAB
An interesting phenomenon in the generation of musical sounds is beating or pulsation. Suppose NP dif-
ferent players try to play a pure tone, a sinusoid of frequency 160 Hz, and that the signal recorded is the
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1.23.

sum of these sinusoids. Assume the NP players while trying to play the pure tone end up playing tones
separated by 0.02 Hz, so that the recorded signal is

NP
y(t) = Z 10 cos(27 f;t)

i=1

where the f; are frequencies from 159 to 161 separated by A Hz.

(a) Generate the signal y(t) 0 <t < 200 sec in MATLAB. Let each musician play a unique frequency.
Consider an increasing number of players, letting NP be first 51 players with A = 0.04 Hz, and then
101 players with A = 0.02 Hz. Plot y(¢) for each of the different number of players.

(b) Explain how this is related with multipath and Doppler effects discussed in the previous problems.

Chirps—MATLAB

Pure tones or sinusoids are not very interesting to listen to. Modulation and other techniques are used to
generate more interesting sounds. Chirps, which are sinusoids with time-varying frequency, are some of
those more interesting sounds. For instance, the following is a chirp signal:

y(t) = A cos(2ct + s(t))

(a) Let A=1, Q; =2, and s(t) = ¢2 /4. Use MATLAB to plot this signal for 0 <t < 40 sec in steps of
0.05 sec. Use the sound function to listen to the signal.

(b) LetA =1, Q. =2, and s(t) = —2sin(t). Use MATLAB to plot this signal for 0 < ¢t < 40 sec in steps of
0.05 sec. Use the sound function to listen to the signal.

(c) The frequency of these chirps is not clear. The instantaneous frequency IF(t) is the derivative with
respect to t of the argument of the cosine. For instance, for a cosine cos(qt), the IF(t) = dQqt/dt =
Qp, so that the instantaneous frequency coincides with the conventional frequency. Determine the
instantaneous frequencies of the two chirps and plot them. Do they make sense as frequencies?
Explain.



CHAPTER 2

Continuous-Time Systems

Things should be made as simple as possible,
but not any simpler.

Albert Einstein (1879-1955)

physicist

2.1 INTRODUCTION
In this chapter we will consider the following topics:

= Systems and their classification—The concept of system is useful in dealing with actual devices or
processes for purposes of analysis and synthesis. A transmission line, for instance, carrying infor-
mation from one point to another is a system, even though physically it is just wires connecting
two terminals. Voltages and currents in this system are not just functions of time but also of
space. It takes time for a voltage signal to “travel” from one point to another separated by miles—
Kirchhoff’s laws do not apply. Resistance, capacitance, and inductance of the line are distributed
over the length of the line—that is, the line is modeled as a concatenation of circuits charac-
terized by values of resistance, capacitance, and inductance per unit length. A less complicated
system could be one consisting of resistors, capacitors, and inductors where ideal models are
used to represent these elements and to perform analysis and synthesis. The word “ideal” indi-
cates that the models only approximate the real behavior of resistors, capacitors, and inductors. A
more realistic model for a resistor would need to consider possible changes in the resistance due
to temperature, and perhaps other marginal effects present in the resistor. Although this would
result in a better model, for most practical applications it would be unnecessarily complicated.

m Linear time-invariant systems—We initiate the characterization of systems, and propose the linear
time-invariant (LTI) model as a mathematical idealization of the behavior of systems—a good
starting point. It will be seen that most practical systems deviate from it, but despite that, the
behavior of many devices is approximated as linear and time invariant. A transistor, which is a
nonlinear device, is analyzed using linear models around an operating point. Although the vocal
system is hardly time invariant or linear, or even represented by a differential equation, in speech
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synthesis short intervals of speech are modeled as the output of linear time-invariant models.
Finally, it will be seen that the LTI model is not appropriate to represent communication systems;
rather, nonlinear or time-varying systems are more appropriate.

s Convolution integral, causality, and stability— The output of a LTI system due to any signal is
obtained by means of the generic signal representation obtained in Chapter 1. The response due
to an impulse, together with the linearity and time-invariance of the system, gives the output as
an integral. This convolution integral, although difficult to compute, even in simple cases, has
significant theoretical value. It allows us not only to determine the response of the system for very
general cases, but also provides a way to characterize causal and stable systems. Causality relates
to the cause and effect of the input and the output of the system, giving us the conditions for
real-time processing while stability characterizes useful systems. These two conditions are of great
practical significance.

2.2 SYSTEM CONCEPT

Although we view a system as a mathematical transformation of an input signal (or signals) into an
output signal (or signals), it is important to understand that such transformation results from an
idealized model of the physical device or process we are interested in.

For instance, in the interconnection of physical resistors, capacitors, and inductors, the model
idealizes how to deal with the resistors, capacitors, and inductors. In this simple RLC circuit, we
would ignore, for instance, stray inductive and capacitive effects and the effect of temperature on
the resistors. The resistance, capacitance, and impedance would be assumed localized in the physical
devices and the wires would not have resistance, inductance, or capacitance. We would then use the
circuits laws to obtain a differential equation to characterize the interconnection. A wire that in the
RLC circuit model connects two elements, in a transmission line a similar wire is modeled as having
capacitance, inductance, and resistance distributed over the line to realize the way the voltages travel
over it. In practice, the model and the mathematical representation are not unique.

A system can be considered a connection of subsystems. Thinking of the RLC circuit as a system, for
instance, the resistor, the capacitor, the inductor, and the source are the subsystems.

In engineering, the models are typically developed in the different areas. There will be, however,
analogs as it is the case between mechanical and electrical systems. In such cases, the mathematical
equations are similar, or even identical, but their significance is very different.

2.2.1 System Classification
According to general characteristics attributed to systems, they can be classified as follows:

m  Static or dynamic systems—A dynamic system has the capability of storing energy, or remembering
its state, while a static system does not. A battery connected to resistors is a static system, while
the same battery connected to resistors, capacitors, and inductors constitutes a dynamic system.
The main difference is the capability of capacitors and inductors to store energy, to remember the
state of the device, that resistors do not have.
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= Lumped- or distributed-parameter systems—This classification relates as to how the elements of the
system are viewed. In the case of the RLC circuit, the resistance, capacitance, and inductance
are localized so that these physical elements are modeled as lumped elements. In the case of
a transmission line resistance, capacitance and inductance are modeled as distributed over the
length of the line.

m  Passive or active systems—A system is passive if it is not able to deliver energy to the outside world.
Constant resistors, capacitors, and inductors are passive elements. An operational amplifier is an
active system.

Dynamic systems with lumped parameters, such as the RLC circuit, are typically represented by ordi-
nary differential equations, while distributed-parameter dynamic systems like the transmission line
are represented by partial differential equations. In the case of lumped systems only the time varia-
tion is of interest, while in the case of distributed systems we are interested in both time and space
variations of the signals. In this book we consider only dynamic systems with lumped parameters,
possibly changing with time, with a single input and a single output.

A further classification of systems is obtained by considering the types of signals present at the input
and the output of the system.

Whenever the input(s) and output(s) are both continuous time, discrete time, or digital, the corresponding
systems are continuous time, discrete time, or digital, respectively. It is also possible to have hybrid systems
when the input(s) and output(s) are not of the same type.

Of the systems presented in Chapter 0, the CD player is a hybrid system as it has a digital input (the
bits stored on the disc) and an analog output (the acoustic signal put out by the player). The SDR
system, on the other hand, can be considered to have an analog input (in the transmitter) and an
analog output (at the receiver), making it an analog system, but having hybrid subsystems.

2.3 LTI CONTINUOUS-TIME SYSTEMS

A continuous-time system is a system in which the signals at its input and output are continuous-time signals.
Mathematically we represent it as a transformation S that converts an input signal x(t) into an output signal
y(t) = S[x(1)] (see Figure 2.1):

x(t) =y =S[x®)] (2.1)
Input Output

FIGURE 2.1 Input Output

System S with input x(t) and x(1) y(t)=S[x(t)]
output y(). » S >
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When developing a mathematical model for a continuous-time system it is important to contrast the
accuracy of the model with its simplicity and practicality. The following are some of the characteristics
of the model being considered:

Linearity

Time invariance
Causality
Stability

The linearity between the input and the output, as well as the constancy of the system parameters,
simplify the mathematical model. Causality, or nonanticipatory behavior of the system, relates to
the cause-effect relationship between the input and the output. It is essential when the system is
working under real-time situations—that is, when there is limited time for the system to process
signals coming into the system. Stability is needed in practical systems. A stable system behaves well
under reasonable inputs. Unstable systems are useless.

2.3.1 Linearity

A system represented by S is said to be linear if for inputs x(t) and v(t), and any constants « and g,
superposition holds—that is,

Slax(®) + pv()] = Slax(®)] + S[Br(1)]
= aS[x(0)] + BS[v()] (2.2)

When checking the linearity of a system we first need to check the scaling—that is, if the output
y(t) = S[x(t)] for some input x(t) is known, then for a scaled input ax(t) the output should be ay(t) =
aS[x(t)]. If this condition is not satisfied, the system is nonlinear. If the condition is satisfied, you
would then test the additivity or that the response to the sum of weighted inputs, S[ax(t) + Bv(t)], is
the sum of the corresponding responses aS[x(t)] + BS[v(D)].

The scaling property of linear systems indicates that whenever the input of a linear system is zero
the output is zero. Thus, if the output corresponding to an input x(t) is y(t), then the output
corresponding to ax(t) is ay(t); and if, in particular, « = 0, then both input and output are zero.

m Example 2.1

Consider a biased averager—that is, the output y(¢) of such a system is given by

t

y(t) = % / x(t)dt + B

t—=T

for an input x(t). The system finds the average over an interval T and adds a constant value B. Is
this system linear? If not, is there a way to make it linear? Explain.



2.3 LTI Continuous-Time Systems

Solution

Let y(t) be the system response corresponding to x(t). Assume then that we scale the input by a
factor « so that the input is ax(t). The corresponding output is then

t t

! / (t)dt +B= < / dr +B
T ax(t)dr =7 x(t)drt
T =T
which is not equal to

t

/ x(t)dt +aB

t—T

ay(t) =

~IR

so the system is not linear. Notice that the difference is due to the term associated with B, which is
not affected at all by the scaling of the input. So to make the system linear we let B = 0.

The constant B is the response due to zero input, and as such, the response can be seen as the sum
of a linear system and a zero-input response. This type of system is called incrementally linear given
that if

Sxi®] =y () —B

S[x2®] =y2(0) — B

then
S[x1(0) —x2(0)] = S[x1(D] — S[x2(O)] = y1(©) — y2(0)
t
1
=7 [ m@ - nol
—T
That is, the difference of the responses to two inputs is linear. |

m Example 2.2

Whenever the explicit relation between the input and the output of a system is represented by a
nonlinear expression the system is nonlinear. Consider the following input-output relations that
show the corresponding systems are nonlinear:

(@) y(®) = [x@®)|
(i1) z(t) = cos(x(t)) assuming [x(t)| <1

(iii) v(t) = x> (1)

where x(t) is the input and y(t), z(t), and v(t) are the outputs.
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Solution

Superposition is not satisfied for the first system. If the outputs for x; (t) and x, (t) are y1 (t) = |x1(¢)|
and y;, (t) = |x2(t)], respectively, the output for x; (t) + x2(¢) is

y12(1) = |x1(0) +x2(0)] < |x1 ()| + 2 (D] = y1(0) + y2(0)

For the second system, if the response for x(t) is z(t) = cos(x(t)), the response for —x(t) is not —z(t)
because the cosine is an even function of its argument. Thus,

—x(t) — cos(—x(t)) = cos(x(t)) = z(t)

For the third system, if x1(t) — v1(t) = (x1(£))? and x,(t) — v2(t) = (x2(t))? are corresponding
input-output pairs, then

x1(0) +x2(0) = (x1(0) +x2(0) = (x1(1)* + (x2()? + 2x1 (Dx2(£) # v1(8) +v2(t)

Thus, it is nonlinear. [

m Example 2.3

Consider each of the components of an RLC circuit and determine under what conditions they are
linear.
Solution

Because a resistor, a capacitor, and an inductor are one-port or two-terminal elements, input and
output variables are not obvious. However, from physics the cause and effect are well understood.

A resistor R has a voltage-current relation
u(t) = Ri(t) (2.3)

If this relation is a straight line through the origin the resistor is linear; otherwise it is non-linear.
A diode is an example of a nonlinear resistor: and its voltage—current relation is nonlinear.

If the voltage-current relation is a straight line of constant slope R, considering the current is the
input, superposition is satisfied. Indeed, if we apply to the resistor a current i, (t) to get Ri;(t) =
v1(t) and get Riy(t) = v2(t) when we apply a current i,(t), then when a current ai; (t) + bi (),
for any constants a and b, is applied, the voltage across the resistor is v(t) = R(aiy (t) + bix(t)) =
avi (t) + bvy (t)—that is, the resistor R is a linear system.

A capacitor is characterized by the charge—voltage relation

q(t) = Cu(1) (2.4)

If this relation is not a straight line, the capacitor is nonlinear. A varactor is a diode for which its
capacitance depends nonlinearly on the voltage applied to its terminals, and thus it is a nonlinear
capacitor.
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When the relation is a straight line through the origin with a constant slope C, using the current-
charge relation i(t) = dq(t)/dt, we get the differential equation

i(t) = Cdve(t)/dt

characterizing the capacitor. Letting i(t) be the input, solving this differential equation gives as
output the voltage

t

v.(t) = é/i(f)dl’ + v:(0) (2.5)

0

which explains the way the capacitor works. For time t > 0, the capacitor accumulates charge on
its plates beyond the original charge due to an initial voltage v.(0). The capacitor is seen to be a
linear system if v.(0) = 0; otherwise it is not. In fact, when v.(0) = 0, the outputs corresponding
to i1 (t) and i, (t) are

¢
1
ver(t) = E/il(f)df

0
L

1
U2 (1) = Efiz(f)df

0

respectively, and the output due to a combination ai; (t) + biy (t) is
1 t
E /[dil (t) + bix(v)]dr = ave1 (t) + bvea(t)
0

Thus, a linear capacitor is a linear system if it is not initially charged. When the initial condition is
not zero, the capacitor is affected by the current input i(t) as well as by the initial condition v.(0),
and as such it is not possible to satisfy linearity, as only the current input can be changed. The
capacitor is thus an incrementally linear system.

The inductor L is the dual of the capacitor (replacing currents by voltages and C by L in the above
equations, we obtain the equations for the inductor). A linear inductor is characterized by the
magnetic flux—current relation

¢ (1) = Lir(0) (2.6)

being a straight line of slope L > 0. If the plot of the magnetic flux ¢ (t) and the current iy (¢) is not
a line, the inductor is nonlinear. The voltage across the inductor is

dg () _ | dir(®

v = dt dt
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according to Faraday’s induction law. Solving this differential equation for the current we obtain

t

ir(t) = %/v(r)dt +11.(0) (2.7)

0

Like the capacitor, the inductor is not a linear system unless the initial current in the inductor is
zero. The inductor can be considered an incrementally linear system.

Notice that an explicit relation between the input and the output was necessary to determine
linearity. u

Op-Amps and Feedback

Operational amplifiers, or op-amps, are high-gain amplifiers typically used with feedback. In the 1930s, Harold S. Black
developed the principles of feedback amplifiers—that is the application of a portion of the output back to the input to
reduce the overall gain. By doing so, the characteristics of the amplifier are greatly enhanced. In the late 1930s, George A.
Philbrick developed a vacuum-tube circuit that performed some of the op-amp functions. Professor John Ragazzini, from
Columbia University, coined the name of “operational amplifier” in 1947. Early op-amps were vacuum-tube based, and thus
bulky and expensive. The trend to cheaper and smaller op-amps began in the 1960s [50, 72].

The Op-Amp

An excellent example of a device that can be used as either a nonlinear or a linear system is the
operational amplifier or op-amp. It is a two-port device (see Figure 2.2) with two voltage inputs: v_(t),
in the inverting terminal, and v (t), in the noninverting terminal. The output voltage vy(t) is a nonlinear
function of the difference between the two inputs—that is,

Uo(t) = flve(t) —v— ()] = fwa(®)

The function f(v4(t)) is approximately linear for small values £AV of v4(¢), in the order of millivolts,
and it becomes constant beyond £AV. The output voltage v () is, however, in the order of volts, so
that letting

Uo(t) = Avy(t) — AV <y() < AV
Vo(t)
4 Vsat
- A -AV
MR ) —f— > vq(l)
* + AV

H o+
FIGURE 2.2 vl T
Operational amplifier: (a) circuit v,(1) Vo(t)
diagram, and (b) input—output - - - ~ Vsat

voltage relation. (a) (b)
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be a line through the origin, its slope A is very large. If |v;(t)] > AV the output voltage is a constant
V. That is, the gain of the amplifier saturates. Furthermore, the input resistance of the op-amp is
large so that the currents into the negative and the positive terminals are very small. The op-amp
output resistance is relatively small.

Thus, depending on the dynamic range of the input signals, the op-amp operates in either a linear
region or a nonlinear region. Restricting the operational amplifier to operate in the linear region sim-
plifies the model. Assuming that A — oo, and that R;;, — oo, then we obtain the following equations
defining an ideal operational amplifier:

ii=ip =0
va(t) =ve(@) —v—(t) =0 (2.8)

These equations are called the virtual short and are valid only if the output voltage of the operational
amplifier is limited by the saturation voltage V,,,—that is, when

—Vsat S 0o(t) < Vg

Later in the chapter we will consider ways to use the op-amp to get inverters, integrators, adders, and
buffers.

2.3.2 Time Invariance

A continuous-time system S is time invariant if whenever for an input x(t) with a corresponding output
S|[x(®)], the output corresponding to a shifted input x(t  t) (delayed or advanced) is the original output shifted
in time S[x(t F 7)] (delayed or advanced). Thus,

x(t) = yt) = S[x®)]
x(tF1) = ytFr)=Sx(tL1)] (2.9)

That is, the system does not age—its parameters are constant.

A system that satisfies both the linearity and the time invariance is called a linear time-invariant or LTI
system.

Remarks

m It should be clear that linearity and time invariance are independent of each other. Thus, one can have
linear time-varying or nonlinear time-invariant systems.

= Although most actual systems are, according to the above definitions, nonlinear and time varying, linear
models are used to approximate around an operating point the nonlinear behavior, and time-invariant
models are used to approximate in short segments the system’s time-varying behavior. For instance, in
speech synthesis the vocal system is typically modeled as a linear time-invariant system for intervals of
about 20 msec, attempting to approximate the continuous variation in shape in the different parts of the
vocal system (mouth, cheeks, nose, etc.). A better model for such a system is clearly a linear time-varying
model.
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m In many cases time invariance can be determined by identifying—if possible—the input and the output,
and letting the rest represent the parameters of the system. If these parameters change with time, the system
is time varying. For instance, if the input x(t) and the output y(t) of a system are related by the equation

Y = f(O)x(t)

the parameter of the system is the function f(t), and if it is not constant, the system is time varying. Thus,
the system y(t) = tx(t) is time varying as can be easily verified. Likewise, the AM modulation system given
by y(t) = cos(Qot)x(t) is time varying as the function f(t) = cos(2,t).

AM Communication Systems

Amplitude modulation (AM) communication systems arose from the need to send an acoustic sig-
nal, the “message,” over the airwaves using a reasonably sized antenna to radiate it. The size of the
antenna depends inversely on the frequencies present in the message, and voice and music have rel-
atively low frequencies. A voice signal typically has frequencies in the range of 100 Hz to about 5
KHz (the frequencies needed to make a telephone conversation intelligible), while music typically
displays frequencies up to about 22 KHz. The transmission of such signals with a practical antenna
is impossible. To make the transmission possible, modulation was introduced—that is, multiplying
the message m(t) by a periodic signal such as a cosine cos(2pt), the carrier, with a frequency Q¢
much larger than those in the acoustic signal. Amplitude modulation provided the larger frequencies
needed to reduce the size of the antenna. Thus, y(t) = m(t) cos(Q0t) is the signal to be transmitted,
and we will see later that the effect of this multiplication is to change the frequency content of the
input. Such a system is clearly linear, but time-varying. Indeed, if the input is m(t — t) the output
would be m(t — t) cos(R2t), which is not y(t — 1) = cos(Qo(t — 7))m(t — t), as a time-invariant sys-
tem would give. Figure 2.3 illustrates the AM transmitter and receiver. In Chapter 6, we will discuss
AM and other modulation systems and will illustrate them with MATLAB simulations.

In comparison with the AM system, a frequency modulation (FM) system is represented by the
following input-output equation, where m(t) is the input message and z(t) the output:

t

z(t) = cos(Qt + f m(t)dr)

—00

FIGURE 2.3
AM modulation: transmitter and receiver. Transmitter
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The FM system is nonlinear. Suppose that we scale the message to ym(t), for some constant y, the
corresponding output is given by

L

cos(Q2:t + y f m(t)dr)

—0o0

which is not the previous output scaled (i.e., yz(t)); thus FM is a nonlinear system.

The Beginnings of Radio

The names of Nikola Tesla (1856-1943) and Reginald Fessenden (1866—1932) are linked to the invention of radio and ampli-
tude modulation [3, 68, 75]. Radio was initially called “wireless telegraphy” and then “wireless.” Tesla was a mechanical
as well as an electrical engineer, but mostly an inventor. He has been credited with significant contributions to electricity
and magnetism in the late 19th and early 20th centuries. His work is the basis of the alternating-current (AC) power system
and the induction motor. His work on wireless communications using the “Tesla coils” was capable of transmitting and
receiving radio signals. Although Tesla submitted a patent application for his basic radio before Guglielmo Marconi, it was
Marconi who was initially given the patent for the invention of the radio (1904). The Supreme Court in 1943 reversed the
decision in favor of Tesla [45].

Fessenden has been called the “father of radio broadcasting.” His early work on radio led to demonstrations in December
1906 of the capability of point-to-point wireless telephony, and what appears to be the first radio broadcasts of entertainment
and music ever made to an audience (in this case, shipboard radio operators in the Atlantic). Fessenden was a professor of
electrical engineering at Purdue University and the first chairman of the electrical engineering department of the University
of Pittsburgh in 1893.

Vocal System

A remarkable system that we all have is the vocal system (see Figure 2.4). The air pushed out from
the lungs in this system is directed by the trachea through the vocal cords, making them vibrate and
create resonances similar to those from a wind musical instrument. The generated sounds are then
muffled by the mouth and the nasal cavities, resulting in an acoustic signal carrying a message. Given
the length of the typical vocal system, it is modeled as a distributed system and represented by partial
differential equations. Due to the complexity of this model, it is the speech signal along with the
understanding of the speech production that is used to obtain models of the vocal system. Speech
processing is one of the most fascinating areas of electrical engineering.

A typical linear time-invariant model for speech production considers segments of speech of about
20 msec, and for each develops a low-order LTI system. The input is either a periodic pulse for the
generation of voiced sounds (e.g., vowels) or a noiselike signal for unvoiced sounds (e.g., the /sh/
sound). Processing these inputs gives speechlike signals. A linear time-varying model would take into
consideration the variations of the vocal system with time and it would thus be more appropriate.

m Example 2.4

Characterize time-varying resistors, capacitors, and inductors. Assume zero initial conditions in the
capacitors and inductors.



m CHAPTER 2: Continuous-Time Systems

\f/ Vellum Unvoiced
ety ——

Epiglottis ?Q LTl system —» s(1)

e,(t)
Vocal Vo‘ilced SpeeCh

chords

() (b)

FIGURE 2.4
(a) Vocal system: principal organs of articulation. (b) Model for speech production.

Solution

If we generalize the characteristic equations for the resistor, capacitor, and inductor to be

v(t) = R(®)i(t)
q(t) = C(v(1)
¢ = L)L)

as straight lines with time-varying slope, we have linear but time-varying elements. Using i(t) =
dq(t)/dt and v(t) = d¢(t)/dt, we obtain the following voltage—current relations:

v(t) = R(¥)i(t)
dve(t)  dC(p)

i(0) = C(O) == + ——ue(0)
L din® L.
w0 = LO == + — =it ()

As R(t) is a function of time, the resistor is a time-varying system. The second and third equation

are linear differential equations with time-varying coefficients representing time-varying capacitors
and inductors. |
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m Example 2.5

Consider constant linear capacitors and inductors, represented by differential equations

Av(1) _ 1,
@ —c®
dii 1
o~ '®

with initial conditions v.(0) = 0 and i;(0) = 0. Under what conditions are these time-invariant
systems?
Solution

Given the duality of the capacitor and the inductor, we only need to consider one of these. Solving
the differential equation for the capacitor, we get

t

ve(t) = é / i(r)de

0

Let us then find out what happens when we delay (or advance) the input current i(¢) by A sec. The
corresponding output for t > A is given by

t 0 t—A
1 [, 1 [. 1 )
E/l(r —Adt = E/l(p)dp + 5 / i(p)dp (2.10)
0 —A 0

by changing the integration variable to p = v — A. For Equation (2.10) to equal the voltage at the
capacitor delayed A sec, given by
t—>

1 .
ve(t—2) = = | i(p)dp
C
0

we need that i(t) = 0 for t < 0, so that the first integral in the right expression in Equation (2.10) is
zero. Thus, the system is time invariant if the input current i(t) = 0 for t < 0. If the initial condition
v(0) is not zero, or if the input i(t) is not zero for t < 0, then linearity or time invariance, or both,
are not satisfied. A similar situation occurs with the inductor.

Thus, an RLC circuit is an LTI system provided that it is not energized for t < 0—that is, that the
initial conditions as well as the input are zero for t < 0. |

RLC Circuits

An RLC circuit is represented by an ordinary differential equation of order equal to the number of
independent inductors and capacitors (i.e., if two or more capacitors are connected in parallel, or
if two or more inductors are connected in series they share the same initial conditions and can be
simplified to one capacitor and one inductor), and with constant coefficients (due to the assumption
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+
FIGURE 2.5 v

RLC circuit.

that the R, L, and C values are constant). If the initial conditions of the RLC circuit are zero, and the
input is zero for t < 0, then the system represented by the linear differential equation with constant
coefficients is LTI.

Consider, for instance, the circuit in Figure 2.5 consisting of a series connection of a resistor R, an
inductor L, and a capacitor C. The switch has been open for a very long time and it is closed at t = 0,
so that there is no initial energy stored in either the inductor or the capacitor (the initial current in
the inductor is i (0) = 0 and the initial voltage in the capacitor is vc(0) = 0) and the voltage applied
to the elements is zero for t < 0. This circuit is represented by a second-order differential equation
with constant coefficients. According to Kirchhoff's voltage law,

t
v(t) = Ri(t) + L% + é/i(r)dt
0

and taking a derivative of v(t) with respect to t we obtain

dv(t)  di(1) dazi(t) 1.
a R thge Tl

a second-order differential equation, with input the voltage source v(t) and output the current i(z).

2.3.3 Representation of Systems by Differential Equations

Given a dynamic system represented by a linear differential equation with constant coefficients,

N M
aoy(t)+a1m+-- d y(t)=b0x(t)+bl%+'“+bMd *()

) >0
dt deN

aM -

with N initial conditions y(0), dky(t) /dtkltzo fork=1,...,N—1 and input x(t) = 0 for ¢t < 0, its complete
response y(t) for t > 0 has two components:

m  The zero-state response, ys(t), due exclusively to the input as the initial conditions are zero.

m  The zero-input response, y,;(t), due exclusively to the initial conditions as the input is zero. So that

Y(®) = yas(O) + yzi(0) (2.11)

Thus, when the initial conditions are zero, then y(t) depends exclusively on the input (i.e., y(t) = y(1)), and
the system is linear and time invariant or LTI.
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On the other hand, if the initial conditions are different from zero, when checking linearity and time invariance
we only change the input and do not change the initial conditions so that y,;(¢) remains the same, and thus
the system is nonlinear. The Laplace transform will provide the solution of these systems.

Most continuous-time dynamic systems with lumped parameters are represented by linear ordinary
differential equations with constant coefficients. By linear it is meant that there are no nonlinear
terms such as products of the input and the output, quadratic terms of the input and the output, etc.
If the coefficients change with time the system is time varying. The order of the differential equation
equals the number of independent elements capable of storing energy.

Consider a dynamic system represented by an Nth-order linear differential equation with constant
coefficients, and with x(t) as the input and y(t) as the output:

dy(t) aNy(t) dx(t) dMx(t)

ot e =hoxO b — =+ b

aoy(t) + a1 t>0 (2.12)

The corresponding N initial conditions are y(0), dky(t) Jdtf|—o for k=1,...,N —1. Defining the
derivative operator as

ay(t
Dy = 10

D°[y(®)] = y(0)

n > 0, integer

we write the differential Equation (2.12) as

(ap+a1D+--- +DN)[y(t)] =(0bo+biD+--- +bMDM)[x(t)] t>0
Dy®lizo,  k=0,...,N—1

As indicated before, the system represented by this differential equation is LTI if the initial conditions
as well as the input are zero for ¢ < 0—that is, the system is not energized for ¢ < 0. However, many
LTI systems represented by differential equations have nonzero initial conditions. Considering that
the input signal x(¢) is independent of the initial conditions, we can think of these as two different
inputs. As such, using superposition we have that the complete solution of the differential equation is
composed of a zero-input solution, due to the initial conditions when the input x(t) is zero, and the
zero-state response due to the input x(t) with zero initial conditions.

Thus, to find the complete solution we need to solve the following two related differential equations:
(ag+ai1D + -+ DM)[y()] = 0 (2.13)

with initial conditions D*[y(t)],—0,k = 0, ..., N — 1, and the differential equation
(@0 +a1D + -+« + DV)[y(t)] = (bo + b1D + - - - + by DM)[x(1)] (2.14)

with zero initial conditions. If y,;(¢) is the response of the zero-input differential Equation (2.13),
and y(t) the zero-state (or zero initial conditions) differential Equation (2.14), we have that the
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complete response is their sum,
V(@) = Yzi(t) + yas(D)
Indeed, y,;(t) and y.(t) satisfy

(@0 +a1D+ - +DV)[yi(0] =0
D lys®imo,  k=10,...,N—1
(ao +aiD + -+ + DY) [ys(0)] = (bo + b1D + - - - 4+ by D) [x(1)]

Adding these equations gives

(@0 +a1D + -+ + DV)[yzi(0) + (0] = (bo + b1D + - - - + by D) [x(1)]
D[y(®)]i=0, k=0,...,N—1

indicating that y,;(t) + y.s(t) is the complete solution.

To find the solution of the zero-input and the zero-state equations we need to factor out the derivative
operator ag + a;D + - - - + DN. We can do so by replacing D by a complex variable s, as the roots will
be either real or in complex-conjugate pairs, simple or multiple. The characteristic polynomial

ag+ars+-+sN=[Jec—p
k

is then obtained. The roots of this polynomial are called the natural frequencies or eigenvalues and
characterize the dynamics of the system as it is being represented by the differential equation. The
solution of the zero-state can be obtained from a modified characteristic polynomial.

The solution of differential equations will be efficiently done using the Laplace transform in the next
chapter.

m Example 2.6

Consider a circuit that is a series connection of a resistor R = 1 € and an inductor L = 1 H, with
a voltage source v(t) = Bu(t), and Ip amps is the initial current in the inductor. Find and solve
the differential equation for B = 1 and B = 2 for initial conditions Iy = 1 and Iy = 0, respectively.
Determine the zero-input and the zero-output responses. Under what conditions is the system
linear and time invariant?

Solution

The first-order differential equation representing this circuit is given by

i
v(t) = i(t) + a

i0) = Io
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The solution of this differential equation is given by
i(t) = [loe™" + B(1 — e H]u(t) (2.15)

which satisfies the initial condition i(0) = I and the differential equation. In fact, if t = 0+
(slightly larger than 0) we have that the solution gives i(0+) = Iy, and that for ¢ > 0 when we
replace in the differential equation the input voltage by B, i(t), and di(t)/dt (using the above
solution), we get

_ —t _—t -t _ —t7 _
B =|lpe "+ B(1—e "]+ [Be Ipe '] =B t>0
v(®) i(t) di(r)/dt

or an identity indicating i(t) in Equation (2.15) is the solution of the differential equation.

Initial Condition Different from Zero
When Ip = 1 and B = 1, the complete solution given by Equation (2.15) becomes
i) =[e”" + (1 —eHu
= u(r) (2.16)

The zero-state response (i.e., the response due to v(t) = u(t) and zero initial condition) is

i1z5(t) = (1 — e u(t)
which is obtained by letting B = 1 and I = 0 in Equation (2.15). The zero-input response, when
v(t) = 0 and the initial condition is Iy = 1, is
i12i(t) = e~ "u(t)
obtained by subtracting the zero-state response from the complete response in Equation (2.16).

If we then consider B =2 (i.e, we double the original input) and keep Ip = 1, the complete
solution is given by

ir(t) =[e " +2(1 —e H]u()
=2 —e¢ Hu

which is completely different from the expected 2i; (t) = 2u(t) for a linear system. Thus, the system
is not linear (see Figure 2.6). In this case we have that the zero-state response due to v(t) = 2u(t)
and zero-initial conditions is doubled so that

izs(1) = 2(1 — e Hu(t)
while the zero-input response remains the same, as the initial condition did not change. So,
i2i(t) = e~ "u(t)

and we get the complete solution shown above. The output in this case depends on the input v(t)
and on the initial condition, and when testing linearity we are only changing v(t).
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1F : : : : ‘ v(t) [
— i

v(t), k(1)

05 F -

FIGURE 2.6

Nonlinear behavior of RL
circuit: (top) Ip = 1,
B=1,

v(t) = u(0), i1 (t) = u(o),
and (bottom) Iy = 1,

B =2,v(t) = 2u(t),

(1) = (2 —e Hu(),
and iz (1) # 2i;(t).

Zero initial conditions
Suppose then we perform the above experiments with Iy = 0 when B = 1 and when B = 2. We get

i1() = (1 —e Hu()
for B =1, and for B = 2 we get

i) =21 — e Hu()
= 2i1 (1)

which indicates the system is linear. In this case the response only depends on the input v(¢).

Time invariance
Suppose now that B = 1, v(t) = u(t — 1), and the initial condition is Iy. The complete response is

is(0) = Ipe " 'u@®) + (1 — e~ “Dyu — 1)

If I = 0, then the above response is i3(t) = (1 — e~ “~D)u(t — 1), which equals i(t — 1) (Equa-
tion (2.15) with B =1 and Ip = 0 delayed by 1) indicating the system is time invariant. On the
other hand, when Iy = 1 the complete response is not equal to i(t — 1) because the term with the
initial condition is not shifted like the second term. The system in that case is time varying. Thus,
if Ip = 0 the system is LTI. |
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Analog mechanical systems

Making the analogy shown in Table 2.1 between the different variables and elements in a circuit and
in a mechanical system the differential equations representing mechanical systems are found to be
like those for RLC circuits.

Consider the translational mechanical system shown in Figure 2.7, composed of a mass M to which

an external force f () is being applied, and is moving at a velocity w(t). It is assumed that between the

mass and the floor there is a damping with a damping coefficient D. Just as with Kirchhoff’s voltage

law, the applied force equals the sum of the forces generated by the mass and the damper. Thus,
dw(t)

f(©) = M—= + Du()

which is analogous to the differential equation of an RL series circuit with a voltage source v(t):

®) Ldi(t) + Ri(t)
v(t) =L—— i
dt
Exactly the same as with the RL circuit, if the initial velocity and the external force are zero fort < 0,

the above differential equation represents a LTI mechanical system.

2.3.4 Application of Superposition and Time Invariance

The computation of the output of an LTI system is simplified when the input can be represented as
the combination of signals for which we know their response. This is done by applying superposition
and time invariance. This property of LTI systems will be of great importance in their analysis as you
will soon learn.

Table 2.1 Equivalences in
Mechanical and Electrical
Systems

Mechanical System Electrical System

force fit) voltage v(t)
velocity wi(t) current i(t)
mass M inductance L
damping D resistance R
compliance K capacitance C
FIGURE 2.7 ’—> w(t) L
Analog mechanical and electrical systems. Using f(t) N
the equivalences R = D, L = M, v(t) = f(t), and M —  v(t) O i(t)> R
i(t) = w(t), the two systems are represented by D -

identical differential equations. l
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If S is the transformation corresponding to an LTT system, so that the response of the system is

y(t) = S[x(1)] for an input x(t)

then we have that

S |:2Akx(t - rk)] =Y ARS[x(t = )] =) Ayt — 1)
k k ke

S [/ g(o)x(t — r)dr] = /g(r)S[x(t —1)]dr = /g(t)y(t —1)dt

In the next section we will see that this property allows us to find the response of a linear time-invariant
system due to any signal, if we know the response of the system to an impulse signal.

m Example 2.7

The response of an RL circuit to a unit-step source v(t) = u(t) is
i(t) = (1 — e Hu(®)
Find the response to a source v(t) = u(t) — u(t — 2).

Solution

Using superposition and time invariance, the output current due to the pulse v(t) = u(t) — u(t — 2)
volts is

i) —i(t—2) =21 — e Hu@) —2(1 — e Dyu(t — 2)

Figure 2.8 shows the responses to u(t) and u(t —2) and the overall response to v(t) = u(t)
—u(t—2). [ |

m Example 2.8

Suppose we know that the response to a rectangular pulse v;(t) is the current i;(f) shown in
Figure 2.9. If the input voltage is a train of two pulses, v(t), find the corresponding current i(t).

Solution

Graphically the response to v(t) of the LTI system is given by i(t) as shown in Figure 2.9. |

2.3.5 Convolution Integral

In this section we consider the computation of the output of a continuous-time linear time-invariant
(LTT) system due to any continuous-time input signal.
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FIGURE 2.8
Response of an RL
circuit to a pulse

v(t) = u(t) — u(t — 2)
using superposition and
time invariance.

i(t) - i(t-2)

A vy(1) A iy(t)

0.5

.

A V(1) A i(t)

FIGURE 2.9 0.5 /
Application of

superposition and 0 1 2 0 ! \‘\t\z/S
time invariance to -0.5 / s

find the response of
an LTI system.

.
-~V

» ~iy(t-1)

Recall that the generic representation of a signal x(¢) in terms of shifted & (¢) signals found in Chapter 1
is given by

e @]

x(t) = f x()8(t — t)dt (2.17)

—00
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Next we define the impulse response of an LTI and find the response due to x(t). The impulse response of
an analog LTT system, h(t), is the output of the system corresponding to an impulse §(t) as input, and initial
conditions equal to zero.

If the input x(¢) in Equation (2.17) is seen as an infinite sum of weighted and shifted impulses
x(t)8(t — 1) then the output of an LTI system is the superposition of the responses to each of these
terms.

The response of an LTI system S represented by its impulse response h(t) = S[5(t)] (i.e., the output of the
system to an impulse signal §(t) and zero initial conditions) to any signal x(t) is the convolution integral

o o
y(t) = / x(T)h(t — t)dt = / x(t — t)h(t)dT
—0oQ —oQ0
=[x *h]() = [h*x]() (2.18)
where the symbol * stands for the convolution integral of the input signal and the impulse response of the

system.

The above can be seen as follows:

= Assuming no energy is initially stored in the system (i.e., initial conditions are zero) the response
to §(t) is the impulse response h(t).

= Given that the system is time invariant, the response to §(t — ) is h(t — ) and by linearity the
response to x(7)8(t — t) is x(z)h(t — 7) since x(z) is not a function of time t.

m  Thus, the response of the system to the generic representation Equation (2.17)

o0

x(t) = / x(1)8(t — 1)dt

—0o0
is by superposition

o0

y(t) = / x(t)h(t — 1)dt

—00
or equivalently

oo
y(t) = / x(t — o)h(o)do
—00
after letting o0 = t — 7. The two integrals are identical—each gives the response of the LTI system.

The impulse response h(t) represents the system. Notice that in the convolution integral the input
and the impulse response commute (i.e., are interchangeable).
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Remarks

m  We will see that the impulse response is fundamental in the characterization of linear time-invariant
systems.

m  Any system characterized by the convolution integral is linear and time invariant by the above construction.
The convolution integral is a general representation of LTI systems, given that it was obtained from a
generic representation of the input signal.

m  We showed before that a system represented by a linear differential equation with constant coefficients and
no initial conditions, or input, before t = 0 is LTI. Thus, one should be able to represent that system by a
convolution integral after finding its impulse response h(t).

m Example 2.9

Obtain the impulse response of a capacitor and use it to find its unit-step response by means of
the convolution integral. Let C=1F.

Solution

For a capacitor with a initial voltage v.(0) = 0, we have that
t
1 [,
ve(t) = C i(t)dt
0

The impulse response of a capacitor is found by letting the input i(t) = §(¢) and the output v.(t) =
h(t), which according to the above equation becomes

t
1 1
h(t)=6/8(r)dr=6 t>0
0

and zero if t < 0, or h(t) = (1/C)u(t). For C = 1F, to compute the unit-step response of the
capacitor we let the input i(t) = u(t), and v.(0) = 0. The voltage across the capacitor is

V() = / h(t — v)i(r)dr = / éu(t — Du(r)dr

and since, as a function of 7, u(t — 7)u(r) = 1 for 0 < v < t and zero otherwise, we have that

t
V() = /dr =t
0

for t > 0 and zero otherwise (as the input is zero for t < 0 and there are no initial conditions),
or v.(t) = r(t). The above result makes physical sense since the capacitor is accumulating charge
and the input is providing a constant charge, so that the result is a ramp function. Notice that the
impulse response is the derivative of the unit-step response.
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The relation between the impulse response and the unit-step and the ramp responses can be gen-
eralized for any system as the impulse response h(t), the unit-step response s(t), and the ramp
response p(t) are related by

ds(t)/dt

h) = {dzp(t)/dt2

(2.19)

This can be shown by computing first 5(f) (the output due to a unit-step input):

o8] t

s(t) = / u(t — t)h(r)dr = / h(t)dr
since
1 <t
u(t—r):{o T>t

The derivative of s(t) is h(t).
Similarly, the ramp response p(t) of a LTI system, represented by the impulse response h(t), is

given by

(e%e] t t t
o) = / h(x)(t — DHu(t — v)dr = / h(t)t—1)dr =t / h(t)dr — / h(t)tdr

and its derivative is

¢ t
do® _ / h(tydr +th(t) —  th() = / h(r)dt
dt ~—~—

d( fl h(t)zdr)/dt

t
dt [ h(r)dr)/dt

so that the second derivative of p(t) is h(t)—that is,

t
& d
%2“) == [/ h(t)dt:| = h(»)

Using the Laplace transform, one is able to obtain the above relations in a much simpler way. M

m Example 2.10
The output y(t) of an analog averager is given by

t

/ x(7)dt

t=T

|-

y(©) =
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which corresponds to the accumulation of values of x(t) in a segment [t — T, t] divided by its
length T, or the average of x(t) in [t — T, t]. Use the convolution integral to find the response of the
averager to a ramp.

Solution

To find the ramp response using the convolution integral we first need h(t). The impulse response
of an averager can be found by letting x(t) = §(t) and y(t) = h(t) or

t

h(t) = % / S(r)dr

t—T

Ift < Oorift — T > O this integral is zero as in these two situations t = 0, where the delta function
occurs, is not included in the integral limits. However, whent —T < Oandt > 0,0r0 <t < T, the
integral is 1 as the origin t = 0, where §(t) occurs, is included in this interval. Thus, the impulse
response of the analog averager is

1

7 O0<t<T
hty=1T1 :
® {O otherwise

We then have that the output y(¢), for a given input x(¢), is given by the convolution integral

[e'e) T
y(t) = / h(o)x(t — t)dt = / %x(t —1)dt
—00 0

which can be shown to equal the definition of the averager by a change of variable. Indeed, let
o =t—r1, so when t =0 then ¢ =t, and when t =T then o0 =t — T. Moreover, we have that
do = —dr. The above integral becomes

t—T t

y(t) = —% /x(a)da = % /x(a)do
t —T
Thus, we have that
t t
(t) = ! fx(t )dt = ! /x( )d (2.20)
y(@® = T 7)dt = T o)do .
0 t~T

If the input is a ramp, x(t) = tu(t), the ramp response p(t) is

t t

p(t) = % / x(o)do = % / ou(o)do

t—T t—T
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Ift — T < 0and ¢t > 0, the above integral becomes

p(t) =

~| -

t P

/adaz— 0<t<T
2T

0

butif t — T > 0, we would then get

t

p(t)=%/od0 =

t—T

?——-1)7°
2T -

t—

T
— t>T
2

So that the ramp response is

0 t<0
o) =1t?/2T) 0<t<T
t—T/2 t>T

Notice that the second derivative of p(t) is

Ap(t)  [1/)T 0<t<T
Tz [ otherwise

which is the impulse response of the averager as found before.

m Example 2.11

Find the convolution integral yr(t) of a pulse x(t) = u(t) — u(t — Tp) with a sampling signal

o]

Sr(1) = Z 8(t — kT)

k=—00

Consider T = Ty and T = 2Ty. Find and plot the corresponding yr(t).

Solution

For any value of T the convolution integral is given by

yr(t) = / Sr(v)x(t — t)dt = Z 8(t — kT)x(t — t)dt
—00 _o0 k=—00
= Z / 8(t — kT)x(t — 7)dt = Z x(t — kT) / 8(t — kT)dt
k=—00 5o k=—00 —00

= Z x(t — kT)

=—0Q0
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where we used the sifting property of the impulse and that its area is unity. If we let T = Ty and
let the unit step be u(0) = 0.5, the signal yr,(t) = 1 for —co < t < co. When T = 2T, the signal
y2T, (t) is a periodic train of rectangular pulses of period 2Ty. See Figure 2.10.

Yro(t) Yoro(t)

A A

» >t

-Ty Ty 2T, 3T, -Ty T, 2T, 3T,

FIGURE 2.10
Convolution with a sequence of unit impulses as input. Notice the result is the superposition of the input signal
shifted by the time-shift kKT of the impulses. For T = Ty, y7(t) = 1 and for T = 2Ty is a sequence of pulses. W

2.3.6 Causality

Causality relates to the conditions under which processing of a signal can be performed in real time—
when it is necessary to process the signal as it comes into the system. For real-time processing the
system needs to be causal. In many situations the data can be stored and processed without the
requirements of real-time processing; under such circumstances causality is not necessary.

A continuous-time system S is called causal if:
= Whenever the input x(t) = 0 and there are no initial conditions, the output is y(t) = 0.
= The output y(t) does not depend on future inputs.

For a value t > 0, when considering causality it is helpful to think of

m  The time ¢ (the time at which the output y(t) is being computed) as the present.
= Timest — t as the past.
m  Times t + 7 as the future.

Remarks

Causality is independent of the linearity and the time-invariance properties of a system. For instance, the
system represented by the input-output equation

y(6) = x%(t)

where x(t) is the input and y(t) the output, is nonlinear but time invariant, and according to the above
definition is a causal system. Likewise, an LTI system can be noncausal. Consider the following averager:

t+T

y(t) = % /x(f)dr
-T

t
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which can be written as

t t+T

1 1
y() = 57 /x(‘t)dl’ + 5T / x(t)dr
t

t—=T

At the present time t, y(t) consists of the average of a past and present values in [t — T, t] of the input, and

of the average of future values of the signal (i.e., the average of values x(t) for [t, t + T]). Thus, this system is
not causal.

An LTT system represented by its impulse response h(t) is causal if
h(t)=0 fort <0 (2.21)

The output of a causal LTI system with a causal input x(¢) (i.e., x(t) = 0 for t < 0) is

t
y(t) = /x(r)h(t —1)dt (2.22)
0

One can understand the above results by considering the following:

m The choice of the starting time as t = 0 is for convenience. It is purely arbitrary as the system being
considered is time invariant, so that similar results are obtained for any other starting time.
= When computing the impulse response h(t), the input §(t) only occurs at t = 0 and there are no

initial conditions. Thus, h(t) should be zero for t < 0 since for t < 0 there is no input and there
are no initial conditions.

m A causal LTI system is represented by the convolution integral

o]

y(@®) = / x(D)h(t — t)dr

t ee)

= / x(t)h(t — t)dt +/x(t)h(t —1)drt

—00 t

where the second integral is zero according to the causality of the system (h(t — 7) = Owhent > ¢
since the argument of h(.) becomes negative). Thus, we obtain

t

y(@) = / x(0)h(t — 7)dt

—00
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m If the input signal x(t) is causal (i.e., x(tf) = 0 for t < 0), we can simplify further the above
equation. Indeed

t
y(t) = /x(t)h(t —1)dt
0

where the lower limit of the integral is set by the causality of the input signal, and the upper
limit is set by the causality of the system. This equation clearly indicates that the system is causal,
as the output y(t) depends on present and past values of the input (considering the integral an
infinite sum, the integrand depends continuously on x(t), from 7 = 0 to t = t, which are past
and present input values). Also if x(t) = 0 the output is also zero.

2.3.7 Graphical Computation of Convolution Integral

Graphically, the computation of the convolution integral, Equation (2.18), consists in multiplying
x(7) (as a function of 7) by a reflected (again as function of t) and shifted to the right t sec impulse
response h(t — 7). Once this product is obtained we integrate it from 0 to ¢t (the time at which we
are computing the convolution). The computational cost of this operation is rather high considering
that these operations need to be done for each value of ¢ for which we are interested in finding the
output y(t). A more efficient way will be by using the Laplace transform as we will see in the next
chapter.

m Example 2.12

Graphically find the unit-step y(t) response of an averager, with T = 1 sec, which has an impulse
response

h(t) = u(t) — u(t — 1)

Solution

Plotting the input signal x(r) = u(t) and the reflected and delayed impulse response h(t — t), both
as functions of t, for some value of t (notice that when t = 0, h(—7) is the reflected version of
the impulse response, and for t > 0, h(t — ) is h(—7) shifted by t to the right) are as shown in
Figure 2.11. Notice the position of h(t — t) with respect to x(t) as it moves from left to right as ¢
goes from —oo to oo.

We then have the following results for different values of t:

m Ift <0, then h(t — ) and x(r) do not overlap and so the convolution integral is zero, or
y(t) = 0 for t < 0. That is, the system for ¢t < 0 has not yet been affected by the input.

m Fort>0andt—1 <0, orequivalently 0 <t < 1, h(t — t) and x(r) increasingly overlap, and
as such the integral increases linearly from 0 at t =0 to 1 when t = 1. So that y(t) =t for
0 <t < 1. That is, for this period of time the system starts reacting slowly to the input.
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h(t-1) y(t)

> T >t
t-1 t 0 0 1
A X(‘[')
FIGURE 2.11 !
Graphical convolution for a
unit-step input into an 5 > T
averager with T = 1.

m Fort > 1, the overlap of h(t — 7) and x(t) remains constant, and as such the integral is unity
from then on, or y(t) = 1 for t > 1. The response for t > 1 has attained steady state. Thus, the
complete response is given as

Yo =r@®—rt—1)

where r(t) = tu(t), the ramp function. [

m Example 2.13

Consider the graphical computation of the convolution integral of two pulses of the same duration
(see Figure 2.12).

h(t-1) y(t)

t—1 t lo 0 1 2
A X(T)
FIGURE 2.12 1
Graphical convolution of two equal
pulses—that is, a system with input
x(t) = u(t) — u(t — 1) and impulse 0 1 .

response h(t) = x(t).
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Solution

In this case, x(t) = h(t) = u(t) — u(t — 1). Again we plot x(r) and h(t — t) both as functions of t,
for —oco < t < o0.

= It should be noticed that while computing the convolution integral for t increasing from nega-
tive to positive values, h(t — ) moves from left to right while x(7) remains stationary, and that
they only overlap on a finite support.
Fort < 0, h(t — 7) and x(7) do not overlap, so y(t) = 0 for t < 0.
h(t — 7) and x(t) increasingly overlap for 0 < t < 1 and decreasingly overlap for 1 <t < 2. So
thaty(t) =tforO<t<1l,andy(t) =2 —tforl <t < 2.

m  Fort > 2, there is no overlap and so y(t) = 0 for ¢t > 2.

Thus, the complete response is
@O =r@®) —2rt—1)+r(t—2)

where r(t) = tu(t) is the ramp signal.
Notice in this example that:

= The result of the convolution of these two pulses, y(t), is smoother than x(t) and h(t). This is
because y(t) is the continuous average of x(t), as h(t) is the impulse response of the averager in
example 2.12.

= The length of the support of y(t) equals the sum of the lengths of the supports of x(t) and h(t).
This is a general result that applies to any two signals x(t) and h(t). [ |

The length of the support of y(t) = [x * h](¢) is equal to the sum of the lengths of the supports of x(t) and h(t).

2.3.8 Interconnection of Systems—Block Diagrams

Systems can be considered a connection of subsystems. In the case of LTI systems, to visualize the
interaction of the different subsystems each of the subsystems is represented by a block with the
corresponding impulse response, or equivalently by its Laplace transform as we will see in the next
chapter. The flow of the signals is indicated by arrows, and the addition of signals or multiplication
of a signal by a constant is indicated by means of circles.

Two possible connections, the cascade and the parallel connections, result from the properties of
the convolution integral, while the feedback connection is found in many natural systems and has
been replicated in engineering, especially in control. The concept of feedback is one of the greatest
achievements of the 20th century. See Figure 2.13.

Cascade Connection
When connecting LTI systems in cascade the impulse response of the overall system can be found
using the convolution integral.
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T» (1) b Ma(t)  —— (1)
X
(@
> (1)
x(t) y(t)
> ho(t)
(b)
x(t e(t)
FIGURE 2.13 2O M) —> ¥
Block diagrams for connecting two LTI systems
with impulse responses hq (t) and h;(t) in (a) hal)
cascade, (b) parallel, and (c) negative 2
feedback. (c)

Two LTI systems with impulse responses hj (t) and hj (t) connected in cascade have as an overall impulse
response

h(t) = [hy * ha](t) = [ha = h1](¢)

where hq(t) and h; (t) commute (i.e., they can be interchanged).

In fact, if the input to the cascade connection is x(t), the output y(¢) is found as

y(@®) = [[x* hi] = ha] ()
= [x = [y * ha]](®)
=[x [ha * i ]](®)

where the last two equations show the commutative property of convolution. The impulse response of
the cascade connection indicates that the order in which we connect LTI systems is not important—
that we can put the system with impulse response h; () first, or the system with impulse response h; (t)
first with no effect in the overall response of the system (we will see later that this is true provided
that the two systems do not load each other). When dealing with linear but time-varying systems,
however, the order in which we connect the systems in cascade is important.
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Parallel Connection

If we connect in parallel two LTI systems with impulse responses hq (t) and hj (t), the impulse response of the
overall system is

h(t) = h1(t) + ha (1)

In fact, the output of the parallel combination is

y(t) = [x*x h1](t) + [x * ha](2)
= [x * (h + hz)](t)

which is the distributive property of convolution.

Feedback Connection

In these connections the output of the system is fed back and compared with the input of the system.
The fedback output is either added to the input giving a positive feedback system or subtracted from the
input giving a negative feedback system. In most cases, especially in control systems, negative feedback
is used. Figure 2.13(c) illustrates the negative feedback connection.

Given two LTI systems with impulse responses hq (t) and h; (), a negative feedback connection (Figure 2.13(c))
is such that the output is

y(®) = [h1 = e](0)
where the error signal is
e(t) = x(1) — [y x ha (1)

The overall impulse response h(t), or the impulse response of the closed-Ioop system, is given by the implicit
expression

h(t) = [h1 — hxhy x ha (O

If hy(t) = 0 (i.e, there is no feedback) the system is called an open-loop system and h(t) = h (¢).

Using the Laplace transform we will obtain later an explicit expression for the Laplace transform of
h(t). To obtain the above result we consider the output of the system as the overall impulse response
y(t) = h(t) due to an input x(t) = §(t). Then e(t) = 5(t) — [h * h2](t), and so when replaced in the
expression for the output

h(t) = [exhi](t) = [(§ — h* hy) x h1[(t) = [h1 — h* hy % ha] (1)

the implicit expression is as given above. When there is no feedback, h;(t) = 0, then h(t) = h; (¢).
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m Example 2.14

Consider the block diagram in Figure 2.14 with input a unit-step signal, u(t). The averager is such
that for an input x(t) its output is

t

y(t) = % /x(r)dr

=T

Determine what the system is doing as we let the delay A — 0. Consider that the averager and the
system with input u(t) and output x(t) are LTI

Averager ——»

FIGURE 2.14
Block diagram of the cascading of two LTI
systems, one of them being an averager.

Solution

Since it is not clear from the given block diagram what the system is doing, using the LTI of the two
systems connected in cascade lets us reverse their order so that the averager is first (see Figure 2.15),
obtaining an equivalent block diagram.

1
u(t) s(t) % A + YY)
FIGURE 2.15 >| Averager [mHX QO
Equivalent block diagram of the cascading of two
. Delay A
LTI systems, one of them being an averager.

The output of the averager is

1 L 0 t<0
s(t)=f/u(r)dt= t/T 0<t<T
i 1 t>T

as we obtained before in example 2.12. The output y(¢) of the other system is given by

y(t)—Z[s(t)—s(t— )]
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If we then let A — 0 we have that (recall that ds(t) /dt = h(¢) is the relation between the unit-step
response s(t) and the impulse response h(t))

. ds(t) 1
1 = — = = — — — T
Jim y(©) = —- h(t) T [u(t) —u(t —T)]
That is, this system approximates the impulse response of the averager. |

m Example 2.15

Consider the circuits obtained with an operational amplifier when we feed back its output with a

wire, a resistor, and a capacitor (Figure 2.16). Assume the linear model for the op-amp. The circuits
in Figure 2.16 are called a voltage follower, an integrator, and an adder.

Solution

Virtual follower circuit. Although the operational amplifier can be made linear, its large gain
A makes it not useful. Feedback is needed to make the op-amp useful. The voltage follower circuit
(Figure 2.16(a)), which is used to isolate cascaded circuits, is a good example of a feedback system.

Given that the voltage differential is assumed to be zero, then v_(t) = v;(t), and therefore the
output voltage is

vo(t) = vi(t)

Crr
1<

I\t
/
=
=

(a) (b)

I\t
/

FIGURE 2.16

Operational amplifier circuits:
(a) virtual follower, (b) inverting
integrator, and (c) adder with =
inversion.
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The input resistance of this circuit is Rj; = oo and the output resistance is Ry, = 0 so that the
output behaves as an ideal voltage source. The voltage follower is used to isolate two circuits con-
nected in cascade, as the connected circuit at either the input or the output port does not draw any
current from the first—that is, it does not load the other circuit. This is because of the infinite input
resistance, or the behavior of the circuit as a voltage source (R, = 0). This circuit is very useful in
the implementation of analog filters.

Inverting integrator circuit. If we let the feedback element be a capacitor, we obtain the follow-
ing equation from the virtual short equations. The current through the resistor R is v;(t)/R given
that v_(t) = 0 and it is the current through the capacitor as no current enters the negative terminal.
Therefore, the output voltage is

C
0

t
vwﬁrwmz—l/%?m—w©

where v,(0) is the voltage across the capacitor at t = 0, when the voltage source is turned on. If we
let v.(0) = 0 and RC = 1 the above equation is the negative of the integral of the voltage source.
Thus, we have a circuit that realizes an integrator with a sign inversion. Again this circuit will be
very useful in the implementation of analog filters.

Adder circuit. Since the circuit components are linear, the circuit is linear and we can use super-
position. Letting v, (t) = 0 the output voltage due to it is zero, and the output voltage due to v (t) is
Vo1 (t) = —v1 ()R/R;. Similarly, if we let v (t) = 0, its corresponding output is zero, and the output
due to v, (t) is vop (t) = —v2(t)R/R>, so that when both v; (t) and v, (t) are considered the output is

£ = vo1 (8) )= -2 — ol
Vo(t) = vo1 () + vo2(t) = —11 Rl—vz()R2

Using this circuit:
1. When R; = R, = R, we have an adder with a sign inversion:
vo(t) = —[v1(t) +v2(1)]
2. When R, — oo and R; = R, we get an inverter of the input
Vo(t) = —v1(1),
3. When R; — oo and R; = R, we get a constant multiplier with sign inversion:
bo(®) = =01 (0
a
i.e., the inverted input with a gain 1/«.

The above three circuits illustrate the realization of a buffer, an integrator, and an adder that
can be used to realize analog filters. [ |
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2.3.9 Bounded-Input Bounded-Output Stability

Stability characterizes useful systems. A stable system is such that well-behaved outputs are obtained
for well-behaved inputs. Of the many possible definitions of stability, we consider here bounded-
input bounded-output (BIBO) stability.

Bounded-input bounded-output (BIBO) stability establishes that for a bounded (i.e., well-behaved) input x(t)
the output of a BIBO stable system y(t) Is also bounded. This means that if there is a finite bound M < oo such

that |x(t)] < M (you can think of it as an envelope [-M, M] inside which the input is in) the output is also
bounded.

An LTI system with an absolutely integrable impulse response—that is,

oo

/ [h(t)|dt < oo (2.23)

—00

is BIBO stable. A simpler way, using the Laplace transform, to test the BIBO stability of a system is given later.

For a bounded input, the output y(t) of an LTI system is represented by a convolution integral that is
bounded as follows:

o]

(o] = / %(t — Dh(T)dx

—00

< / ix(t — )lIh(0)|dx

o0
<M / |h(z)|dT
—0oQ
<ML < o©

where L is the bound for ffooo |h(t)|dt, or equivalently the impulse response is absolutely integrable.

m Example 2.16

Consider the BIBO stability and causality of RLC circuits. Consider, for instance, a series RL circuit

where R =1Q and L = 1 H, and a voltage source vs(t), which is bounded. Discuss why such a
system would be causal and stable.

Solution

RLC circuits are naturally stable. As you know, inductors and capacitors simply store energy and
so LC circuits simply exchange energy between these elements. Resistors consume energy, which
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is transformed into heat, and so RLC circuits spend the energy given to them. This characteristic
is called passivity, indicating that RLC circuits can only use energy, not generate it. Clearly, RLC
circuits are also causal systems as one would not expect them to provide any output before they
are activated.

According to Kirchhoff’s voltage law, the RL circuit is represented by a first-order differential
equation
di(t)y . di(t)

vs(t) = i(H)R + LT =i(t) + o

To find its impulse response we would need to solve this equation with input vs(t) = §(t) and zero
initial condition, i(0) = 0. In the next chapter, the Laplace domain will provide us an algebraic way
to solve the differential equation and will confirm our intuitive solution given here. Intuitively, in
response to a large and sudden impulse vs(t) = §(t), the inductor tries to follow it by instanta-
neously increasing its current. But as time goes by and the input is not providing any additional
energy, the current in the inductor goes to zero. Thus, we conjecture that the current in the inductor
is i(t) = h(t) = e 'u(t) when vs(t) = §(t) and initial conditions are zero, i(0) = 0. It is possible to
confirm that is the case. Replacing v5(t) = 8(t) and i(t) = e 'u(t) in the differential equation, we get

8(t) = e ut) + [e7'8(t) — e ut)] = e%8(t) = 8(1)
vs (1) i(t) di(t)/dt

which is an identity, confirming that indeed our conjectured solution is the solution of the dif-
ferential equation. The initial condition is also satisfied by remembering that there is no initial
current at the source—that is, §(t) is zero right before we close the switch—and that physically the
inductor remains at that point for an extremely short time before reacting to the strong input.

Thus, the RL circuit where R = 1 Q and L = 1 H has an impulse response of
h(t) = e "u(r)

indicating that it is causal since h(t) = 0 for t < 0; that is, the circuit output is zero given that the
initial conditions are zero, and that the input §(t) is also zero before 0. We can also show that the

RL circuit is stable. In fact,
o o0
/ |h(t)|dt = /e*tdt =1
[ |
—00 0

m Example 2.17

Consider the causality and BIBO stability of an echo system (or a multipath system). See
Figure 2.17. Let the output y(t) be given by

y(t) = a1x(t — 71) + ax(t — 12)
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6

x(t) ® y(®)
€
FIGURE 2.17 4
Echo system with two paths. @2

where x(t) is the input, and «;, 7; > 0, for i = 1 and 2, are attenuation factors and delays. Thus,
the output is the superposition of attenuated and delayed versions of the input. Typically, the
attenuation factors are less than unity. Is this system causal and BIBO stable?

Solution

Since the output depends only on past values of the input, the echo system is causal. To determine
if the system is BIBO stable we consider a bounded input signal x(t), and determine if the output
is bounded. Suppose x(t) is bounded by a finite value M, or |x(t)| < M < oo, for all times, which
means that the value of x(t) cannot exceed an envelope [—M, M] at all times. This would also hold
when we shift x(t) in time, so that

YOI < lea|lx(t — T)] + leallx(t — ©2)| < [lea] + || M
so the corresponding output is bounded. The system is BIBO stable.

We can also find the impulse response h(t) of the echo system, and show that it satisfies the abso-
lutely integrable condition of BIBO stability. Indeed, if we let the input of the echo system be
x(t) = §(t) the output is

y(t) = h(t) = a18(t — 11) + a28(t — 12)
and the integral is

00 oo 00
/ [h()|dt = || / 3(t — Ty)dt + |aa| / 8(t — rp)dt = |aq| + |aa| < 00
-0 ) -0

m Example 2.18

Consider a positive feedback system created by a microphone close to a set of speakers that are
putting out an amplified acoustic signal (see Figure 2.18). The microphone picks up the input
signal x(t) as well as the amplified and delayed signal By(t — t), |8| > 1. Find the equation that
connects the input x(f) and the output y(t) and recursively from it obtain an expression for y(t) in
terms of past values of the input. Determine if the system is BIBO stable or not—use x(t) = u(t),
B =2,and T = 1 in doing so.
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FIGURE 2.18

Positive feedback system: the microphone picks
up input signal x(t) and the amplified and
delayed signal By(t — ), making the system
unstable.

Solution
The input-output equation is
y(©) = x(t) + Byt — 1)
If we use this expression to obtain y(t — t), we get that
Yt — 1) =x(t— 1) + Byt — 21)

and replacing it in the input-output equation, we get

y(t) = x(t) + Blx(t — T) + By(t — 27)] = x(t) + Bx(t — T) + B2y(t — 27)

Repeating the above scheme, we will obtain the following expression for y(t) in terms of the input
y() = x(t) + Bx(t — ) + B2x(t — 27) + B3x(t — 31) + - -
If we let x(t) = u(t) and 8 = 2, the corresponding output is
y() = u() +2u(t—1)+4ut —2)+8u(t—3)+---

which continuously grows as time increases. The output is clearly not a bounded signal, although
the input is bounded. Thus, the system is unstable, and the screeching sound from the speakers
will prove it—you need to separate the speakers and the microphone to avoid it. ]

2.4 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO FROM
HERE?

By now you should have begun to see the forest for the trees. In this chapter we connected signals
with systems. Especially, we initiated the study of linear time-invariant dynamic systems. As you will
learn throughout your studies, this model is of great use in representing systems in many engineering
applications. The appeal is its simplicity and mathematical structure. We also indicated some practi-
cal properties of systems such as causality and stability. Simple yet significant examples of systems,
ranging from the vocal system to simple RLC circuits, illustrate the use of the LTI model and point
to its practical application. At the same time, modulators also show that more complicated systems
need to be explored to be able to communicate wirelessly. Finally, you were given a system'’s approach
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to the theory of differential equations and shown some features that will come back when we apply
transforms.

Our next step is to do the analysis of systems with continuous-time signals by means of transforms. In
Chapter 3 we discuss the Laplace transform that allows transient as well as steady-state analysis and
that will convert the solution of differential equations into an algebraic problem. More important,
it will provide the concept of transfer function that connects with the impulse response and the
convolution integral covered in this chapter. The Laplace transform is very significant in the area of
classic control.

PROBLEMS

2.1. Temperature measuring system—MATLAB
The op-amp circuit shown in Figure 2.19 is used to measure the changes of temperature in a system. The
output voltage is given by

vo(t) = —R()v; (1)
Suppose that the temperature in the system changes cyclically after t = 0, so that

R(t) = [1 + 0.5 cos(20mt) | u(t)

Let the input be v;(t) = 1 volt.

Thermistor R(t)

O
FIGURE 2.19 vi(t) Vo (1)

Problem 2.1. - - -

(a) Assuming that the switch closes at tg = 0 sec, use MATLAB to plot the output voltage v, (t) for 0 <
t < 0.2 secin time intervals of 0.01 sec.

(b) 1If the switch closes at g = 50 msec, plot the output voltage vg(t) for 0 < t < 0.2 sec in time intervals
of 0.01 sec.

(c) Use the above results to determine if this system is time invariant. Explain.

2.2. Zener diode—MATLAB

A zener diode circuit is such that the output corresponding to an input vs(t) = cos(xt) is a “clipped”
sinusoid

0.5  |us(t)] > 0.5
vs(t) otherwise

x(t) = {

as shown in Figure 2.20 for a few periods. Use MATLAB to generate the input and the output signals and
plot them in the same plot for 0 < ¢ < 4 at time intervals of 0.001.

(a) Isthis system linear? Compare the output obtained from v,(t) with that obtained from 0.3wvs(¢).
(b) Isthe system time invariant? Explain.
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0.5
X o
-0.5
-1
FIGURE 2.20 -4 3 =2 A 0 1 2 3
Problem 2.2. t(sec)

2.3.

2.4.

2.5.

Analog averaging system
Consider the analog averager
t+T/2
L [ st
y@® = T x(v)dr
t—T/2
where x(t) is the input and y(t) is the output.
(a) Find the impulse response h(t) of the averager. Is this system causal?
(b) Let x(t) = u(t). Find the output of the averager.

LTI determination from input-output relation
An analog system has the input—output relation

t

y(t) = /e_(t_r)x(r)dr t>0
0

and zero otherwise. The input is x(t) and y(t) is the output.

(a) Is this a linear time-invariant system? If so, can you determine without any computation the impulse
response of the system? Explain.

(b) Isthis system causal? Explain.

(c) Find the unit-step response s(t) and from it find the impulse response h(t). Is this a BIBO-stable
system? Explain.

(d) Find the response due to a pulse x(t) = u(t) — u(t — 1).

p-n diode—MATLAB

The voltage—current characterization of a p-n diode is given by (see Figure 2.21)

i(0) = IO/ — 1)

where i(t) and v(t) are the current and the voltage in the diode (in the direction indicated in the diode), I,
is the reversed saturation current, and kT/q is a constant.
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Problems

i(t)

FIGURE 2.21 0 v(1)
Problem 2.5: p-n diode and i-v characteristic. T

(a) Consider the voltage v(t) as the input and the current i(t) as the output of the diode. Is the p-n diode a
linear system? Explain.

(b) An ideal diode is such that when the voltage is negative, v(t) < 0, the current is zero (i.e., open circuit),
and when the current is positive, i(t) > 0, the voltage is zero or short circuit. Under what conditions
does the p-n diode voltage—current characterization approximate the characterization of the ideal
diode? Use MATLAB to plot the current—voltage plot for a diode with Iy = 0.0001 and kT/1 = 0.026,
and compare it to the ideal diode current-voltage plot. Determine if the ideal diode is linear.

(c) Consider the circuit using an ideal diode in Figure 2.22, where the source is a sinusoid signal v(t) =
sin(2rt)u(t) and the output is the voltage in the resistor R = 1 Q or vg(t). Plot vg(t). Is this system
linear? Where would you use this circuit?

R
WWY
. e Ideal diode
v O AV
FIGURE 2.22 <
Problem 2.5: ideal diode circuit. i)

Capacitor/inductor circuit

Consider the circuit in Figure 2.23, where the value of the capacitor is C = 1 F, and the initial condition

is v.(0) = —1 volts. Assume the input is the current source is(t) and the voltage in the capacitor v.(t) the

output.

(a) Letthe currentin the circuit be is(t) = u(t) — u(t — 1), and the initial voltage in the capacitor be v.(0) =
—1 volts. Plot the voltage in the capacitor v.(t) for all times. Suppose then we double the current,
is(t) = 2(u(t) — u(t — 1)), but keep the same initial condition. Plot the voltage in the capacitor v.(t) for
all times, and compare it with the one obtained before. Is the capacitor with non-zero initial conditions
a linear system? Explain.

(b) Consider the dual circuit where the value of the inductor is L = 1 H, the initial current in the inductor
is i (0) = —1 amps, and the input is the source vs(t). Let vs(t) = u(t) — u(t — 1). Plot the corresponding
current iy (t) for all times. Double the voltage source vs(t) = 2[u(t) — u(t — 1)], and plot the correspond-
ing current in the inductor iy (¢) for all times. Compare the two currents and determine if the inductor
with the initial current is linear. What if i; (0) = 0?
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Problem 2.6.

2.7. Time-varying capacitor
A time-varying capacitor is characterized by the charge—voltage equation

q(t) = CHw(1)

That is, the capacitance is not a constant but a function of time.

(a) Given that i(t) = dq(t)/dt, find the voltage—current relation for this time-varying capacitor.

(b) Let C(t) =1 + cos(2xt) and v(t) = cos(2nt). Determine the current i; (¢) in the capacitor for all t.
(c) Let C(t) be as above, but delay v(t) by 0.25 sec. Determine i, (¢) for all time. Is the system TI?

2.8. Sinusoidal Test for LTI
A fundamental property of linear time-invariant systems is that whenever the input of the system is a sinu-
soid of a certain frequency, the output will also be a sinusoid of the same frequency but with an amplitude
and phase determined by the system. For the following systems let the input be x(t) = cos(t), —oc0 <t <
00, and find the output y(t) and determine if the system is LTT.

(@) y(t) = |x(0)|?

(b) y(t) = 0.5[x(t) +x(t — 1)]
© y(©) = x(Ou()

t
f x(t)dt
-2
2.9. Testing the time invariance of systems
Consider the following systems and find the response to x1 (t) = u(t) and x, (t) = u(t — 1). Determine from
the corresponding outputs whether the system is time-varying or not.

@ y =

N =

t

(@) y(t) = x(¢) cos(rt)
(&) y® =x®[u(®) —ut — 2)]
(©) y(®) = 0.5[x(t) +x(t — 1)]
Plot y (t) and y; (¢) for each case.
2.10. Window/modulator
Consider the system where for an input x(¢) the output is y(t) = x(¢)f (¢t) for some function f(¢).
(a) Letf(r) = u(t) — u(t — 10). Determine whether the system with input x(¢) and output y(z) is linear, time
invariant, causal, and BIBO stable.
(b) Suppose x(t) = 4 cos(nt/2), and f(t) = cos(6mt/7) and both are periodic. Is the output y(t) also
periodic? What frequencies are present in the output? Is this system linear? Is it time invariant?
Explain.



Problems

(c) Let f(t) = u(t) — u(t — 2) and the input x(t) = u(t). Find the corresponding output y(t). Suppose you
shift the input so that it is x; () = x(t — 3). What is the corresponding output y; (¢). Is the system time
invariant? Explain.

2.11. Initial conditions, LTI, steady state, and stability
The input-output characterization of a system is

t
() = e 2ty(0) + 2 / e 2=Dyydr  t>0
0

and zero otherwise. In the above equation x(¢) is the input and y(t) is the output.

(a) Is this system LTI? Is it possible to determine a value for y(0) that would make this an LTT system?
Explain.

(b) Find the differential equation that also characterizes this system.

(c) Suppose for x(t) = u(t) and any value of y(0), we wish to determine the steady-state response of the
system. Is the value of y(0) of any significance—that is, do we get the same steady-state response if
y(0) = 0 or y(0) = 1? Explain.

(d) Compute the steady-state response when y(0) = 0 and x(t) = u(t) using the convolution integral. To
do so, first find the impulse response of the system h(t). Then relate the integral in the equation given
above with the convolution integral and graphically compute it.

(e) Suppose the input is zero. Is the system depending on the initial condition BIBO stable? Find the
zero-input response y(t) when y(0) = 1. Is it bounded?

2.12. Amplifier with saturation
The input—output equation characterizing an amplifier that saturates once the input reaches certain values
is

100x(t) —10 < x(1) < 10
y® =14 1000  x(t) > 10
—1000 x(t) < 10

where x(¢) is the input and y(¢) is the output.

(a) Plot the relation between the input x(t) and the output y(t). Is this a linear system? Explain.

(b) For what range of input values is the system linear, if any?

(c) Suppose the input is a sinusoid x(t) = 20 cos(2m t)u(t). Carefully plot x(t) and y(¢) for t = —2 to 4.

(d) Let theinput be delayed by two units of time (i.e., the input is x1 (t) = x(¢t — 2)). Find the corresponding
output y; (t) and indicate how it relates to the output y(t) due to x(¢) found above. Is the system time
invariant?

2.13. QAM system
A quadrature amplitude modulation (QAM) system is a communication system capable of transmitting two
messages mq (t), my(t) at the same time. The transmitted signal s(¢) is

s(t) = mq(t) cos(:t) + my(t) sin(Rt)

Carefully draw a block diagram for the QAM system.

(a) Determine if the system is time invariant or not.

(b) Assume mq(t) = my(t) = m(t)—that is, we are sending the same message using two different modu-
lators. Express the modulated signal in terms of a cosine with carrier frequency ., amplitude A, and
phase 6. Obtain A and 6. Is the system linear? Explain.
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2.14.

2.15.

2.16.

Steady-state response of averager—MATLAB
An analog averager is given by

i

Y@ =

t
/ x(t)dt
T

(a) Let x(t) = u(t) — u(t — 1). Find the average signal y(t) using the above integral. Let T = 1. Carefully
plot y(¢). Verify your result by graphically computing the convolution of x(t) and the impulse response
h(t) of the averager.

(b) To see the effect of T on the averager, consider the signal to be averaged to be x(t) = cos(2wt/To)u(t).
Select the smallest possible value of T in the averager so that the steady-state response of the system,
y(t) as t — oo, will be 0.

(c) Use MATLAB to compute the output in part (b). Compute the output y(t) for 0 <t < 2 at intervals
Ts = 0.001. Approximate the convolution integral using the function conv (use help to find about conv)
multiplied by Ts.

Echo system modeling

An echo system could be modeled as follows:

(a) Using feedback systems is of great interest in control and in the modeling of many systems. An echo
is created as the sum of one or more delayed and attenuated output signals that are fed back into the
present signal. A possible model for an echo system is

t

y() =x@) + a1yt —1) + - +any(t — N71)

where x(t) is the present input signal, y(¢) is the present output, y(¢t — kt) is the previous delayed
outputs, and the |oy,| < 1 values are attenuation factors. Carefully draw a block diagram for this system.
(b) Consider the echo model for N = 1 and parameters t = 1 and @7 = 0.1. Is the resulting echo system
LTI? Explain.
(c) Another possible model is given by a nonrecursive, or without feedback, system,

z(t) = x(t) + B1x(t — ) + - - - + Bmx(t — M7)

where several present and past inputs are delayed and attenuated and added up to form the output.
The parameters | ;| < 1 are attenuation factors and t is a delay. Carefully draw a block diagram for the
echo system characterized by the above equation. Does the above equation represent an LTI system?
Explain.

An ideal low-pass filter—MATLAB

The impulse response of an ideal low-pass filter is

sin(t)

h(t) = ;

or a sinc signal.

(a) Given that the impulse response is the response of the system to an input x(t) = §(t) with zero initial
conditions, can an ideal low-pass filter be used for real-time processing? Explain.

(b) Is the ideal low-pass filtering bounded-input bounded-output stable? Use MATLAB to check if the
impulse response satisfies the condition for BIBO stability.



Problems

2.17. Response to unbounded inputs versus BIBO stability
The BIBO stability assumes that the input is always bounded, limited in amplitude. If that is not the case,
even a stable system would provide an unbounded output. Consider the analog averager, with an input—
output relationship of

S

Y@ =

t
/ x(t)dt
-T

(a) Suppose that the input to the averager is a bounded signal x(t) (i.e., there is a finite value M such that
lx(t)] < M). Find the value for the bound of the output y(t) and determine whether the averager is BIBO
stable or not.

(b) Lettheinput to the averager be x(t) = tu(z) (i.e., a ramp signal). Compute the output y(¢) and determine
if it is bounded or not. If y(¢) is not bounded, does that mean that the averager is an unstable system?
Explain.

t

2.18. Sampler and hold circuit

In an analog-to-digital converter (ADC), the analog signal is first sampled and then each of its samples is

converted into a digital value. Since each of the samples is obtained momentarily, there is the need for a

circuit that holds the value long enough for the ADC to convert it into a binary number. The circuit having

the sampler and the hold circuit is called the sampler and hold circuit, an example of which is shown in

Figure 2.24. The input is the sampled signal xs(t), which we are considering a train of rectangular pulses of

duration A and periodicity Ts and different magnitudes corresponding to x(nTs).

The value 1C << A, where A is the duration of the pulse and RC >> Ts where Ty >> A, is the sampling

period. The first condition allows the capacitor to be charged fast in A seconds, and the second condition

allows slow discharge in Ts seconds.

(a) Consider the first sample conversion. Let the input to the hold circuit be a pulse of duration A and
amplitude x(0). The switch has been opened before t = 0 so that the capacitor is discharged. The
switch closes at t = 0 and remains closed until t = A and then it opens. Carefully draw the voltage in
the capacitor from t = 0 to Ts.

(b) Since the RC circuit is a linear time-invariant system, the output corresponding to the other samples
can be found from the result of the first sample. Suppose the analog signal is a ramp x(t) = tu(t),
sampled with Ts = 1 and A = 0.1. Plot the voltage in the capacitor from t = 0 to t = 4 sec.

2.19. AM envelope detector—MATLAB
Consider an envelope detector that is used to detect the message sent in the AM system shown in the
examples. The envelope detector as a system is composed of two cascaded systems: one that computes
the absolute value of the input (implemented with ideal diodes), and a second that low-pass filters its input
(implemented with an RC circuit). The following is an implementation of these operations in the discrete
time so we can use numeric MATLAB.

S

Xs(1) — X (t
FIGURE 2.24 ) TS RE X

Problem 2.18: sample and hold circuit. - -
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2.20.

Let the input to the envelope detector be
x(t) = [p(t) + P] cos(01)

where P is the minimum of p(t) scaled. Use MATLAB to solve numerically this problem.
(a) Consider first

p(t) = 20[u(t) — u(t — 40)] — 10 [u(t — 40) — u(t — 60)
Let Q9 = 27, P = 1.1/ min (p(t) |. Generate the signals p(t) and x(t) for 0 < ¢t < 100 with an interval of
Ts = 0.01.
(b) Consider then the subsystem that computes the absolute value of the input x(z).
(c) Compute the low-pass filtered signal by using an RC circuit with impulse response h(t) = e~ 0-8tu(r).
To implement the convolution use the conv function multiplied by Ts. Plot together the message signal

p(t), the modulated signal x(t), the absolute value y(t), and the envelope of x(t). Does this envelope look
like p(1)?

(d) Consider the message signal p(t) = 2 cos(0.2nt), Q¢ = 107, and P = | min (p(t) |, and repeat the
process. Scale the signal to get the original p(t).

Frequency modulation (FM)—MATLAB
Frequency modulation, or FM, uses a wider bandwidth than amplitude modulation, or AM, but it is not
affected as much by noise as AM is. The output of an FM transmitter is of the form

t
y(t) = cos(Qct + 27y f m(t)drt)
0

where m(t) is the message and v is a factor in Hz/volt if the units of the message are in volts.
(a) Create as the message a signal

m(t) = cos(t)

Find the FM signal y(t) for v = 10 and then for v = 1. Let the carrier frequency Q. = 2. Use MATLAB
to generate the different signals for times 0 < t < 10 at intervals of T; = 0.01. Plot m(t) and the two FM
signals (one for v = 10 and the other for v = 1) in the same plot. Is the FM transmitter a linear system?
Explain.

(b) Create a message signal

© = 1 whenm(t) >0
MW= 21 whenm() <0

Find the corresponding FM signal for v = 1.



CHAPTER 3

The Laplace Transform

What we know is not much.

What we do not know is immense.
Pierre-Simon marquis de Laplace (1749-1827)
French mathematician and astronomer

3.1 INTRODUCTION

The material in this chapter is very significant for the analysis of continuous-time signals and systems.
The main issues discussed are:

m  Frequency domain analysis of continuous-time signals and systems—We begin the frequency domain
analysis of continuous-time signals and systems using transforms. The Laplace transform, the
most general of these transforms, will be followed by the Fourier transform. Both provide com-
plementary representations of a signal to its own in the time domain, and an algebraic character-
ization of systems. The Laplace transform depends on a complex variable s = o + j2, composed
of damping o and frequency 2, while the Fourier transform considers only frequency .

m  Damping and frequency characterization of continuous-time signals—The growth or decay of a signal —
damping—as well as its repetitive nature—frequency—in the time domain are characterized in
the Laplace domain by the location of the roots of the numerator and denominator, or zeros and
poles, of the Laplace transform of the signal.

= Transfer function characterization of continuous-time LTI systems—The Laplace transform provides a
significant algebraic characterization of continuous-time systems: The ratio of the Laplace trans-
form of the output to that of the input—or the transfer function of the system. It unifies the
convolution integral and the differential equations system representations. The concept of trans-
fer function is not only useful in analysis but also in design, as we will see later. The location
of the poles and the zeros of the transfer function relates to the dynamic characteristics of the
system.

= Stability, and transient and steady-state responses—Certain characteristics of continuous-time sys-
tems can only be verified or understood via the Laplace transform. Such is the case of stability,

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00006-5
(© 2011, Elsevier Inc. All rights reserved. 165
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and of transient and steady-state responses. This is a significant reason to study the Laplace
analysis before the Fourier analysis, which deals exclusively with the frequency characterization
of continuous-time signals and systems. Stability and transients are important issues in classic
control theory, thus the importance of the Laplace transform in this area. The frequency character-
ization of signals and the frequency response of systems—provided by the Fourier transform—are
significant in communications.

m  One- and two-sided Laplace transforms—Given the prevalence of causal signals (those that are zero
for negative time) and of causal systems (having zero impulse responses for negative time) the
Laplace transform is typically known as “one-sided,” but the“two-sided” transform also exists.
The impression is that these are two different transforms, but in reality it is the Laplace transform
applied to two different types of signals and systems. We will show that by separating the signal
into its causal and its anti-causal components, we only need to apply the one-sided transform.
Care should be exercised, however, when dealing with the inverse transform so as to get the
correct signal.

m  Region of convergence and the Fourier transform—Since the Laplace transform requires integration
over an infinite domain, it is necessary to consider if and where this integration converges—or
the “region of convergence” in the s-plane. Now, if such a region includes the jQ2 axis of the s-
plane, then the Laplace transform exists for s = j€2, and when computed there it coincides with
the Fourier transform of the signal. Thus, the Fourier transform for a large class of functions
can be obtained directly from their Laplace transforms—a good reason to study first the Laplace
transform. In a subtle way, the Laplace transform is also connected with the Fourier series rep-
resentation of periodic continuous-time signals. Such a connection reduces the computational
complexity of the Fourier series by eliminating integration in cases when we can compute the
Laplace transform of a period.

m  Eigenfunctions of LTI systems—LTI systems respond to complex exponentials in a very special way:
The output is the exponential with its magnitude and phase changed by the response of the
system at the exponent. This provides the characterization of the system by the Laplace transform,
in the case of exponents of the complex frequency s, and by the Fourier representation when the
exponent is jQ2. The eigenfunction concept is linked to phasors used to compute the steady-state
response in circuits (see Figure 3.1).

3.2 THE TWO-SIDED LAPLACE TRANSFORM

Rather than giving the definitions of the Laplace transform and its inverse, let us see how they could
be obtained intuitively. As indicated before, a basic idea in characterizing signals—and their response
when applied to LTI systems—is to consider them a combination of basic signals for which we can
easily obtain a response. In Chapter 2, when considering the time-domain solutions, we represented
the input as an infinite combination of impulses occurring at all possible times and weighted by
the value of the input signal at those times. The reason we did so is because the response due to
an impulse is the impulse response of the LTI system, which is fundamental in our studies. A similar
approach will be followed when attempting to obtain the frequency-domain representation of signals
and their responses when applied to an LTI system. In this case, the basic functions used are com-
plex exponentials or sinusoids that depend on frequency. The concept of eigenfunction is somewhat
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LTI System

x(t) = e y(t)=x(t) H(sp)
— H(s) s

FIGURE 3.1

Eigenfunction property of LTI systems. The input of the system is x(t) = %! = €90t /€%t and the output of the
system is the same input multiplied by the complex value H(sg) where H(s) = L[h(t)] —that is, the Laplace
transform of the impulse response h(t) of the LTI system.

abstract at the beginning, but after you see it applied here and in the Fourier representation later
you will think of it as a way to obtain a representation analogous to the impulse representation. You
will soon discover the importance of using complex exponentials, and it will then become clear that
eigenfunctions are connected with phasors that greatly simplify the sinusoidal steady-state solution
of circuits.

3.2.1 Eigenfunctions of LTI Systems

Consider as the input of an LTI system the complex signal
x(t) =" 5o =00 +jQ

for —oo < t < 00, and let h(t) be the impulse response of the system. According to the convolution
integral, the output of the system is

oo oo

Y = / h(t)x(t — t)dt = / h(7)e0 =D dr
= ¢t / h(t)e "0dr = x(t)H(sg) (3.1)

Since the same exponential at the input appears at the output, x(t) = %! is called an eigenfunction'
of the LTI system. The input x(¢) is changed at the output by the complex function H(sp), which is
related to the system through the impulse response h(t). In general, for any s, the eigenfunction at the
output is modified by a complex function

H(s) = / h(t)e dr

which corresponds to the Laplace transform of h(t)!

! German mathematician David Hilbert (1862-1943) seems to be the first to use the German word eigen to denote eigenvalues and
eigenvectors in 1904. The word eigen means own or proper.
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An input x(t) = €%, s = o + jQ, is called an eigenfunction of an LTI system with impulse response h(t) if
the corresponding output of the system is

y(©) = x(1) f h(De " = x(t)H(so)

where H(sg) is the Laplace transform of h(t) computed at s = so. This property is only valid for LTI systems—it
is not satisfied by time-varying or nonlinear systems.

Remarks

You could think of H(s) as an infinite combination of complex exponentials, weighted by the impulse
response h(t). One can use a similar representation for signals.
Consider now the significance of applying the eigenfunction result. Suppose a signal x(t) is expressed as a
sum of complex exponentials in s = o + j<2,

o+joo

x(t) = 2%[] / X(s)e'tds

o—joo

That is, an infinite sum of exponentials in s each weighted by the function X(s)/(2rj) (this equation is
connected with the inverse Laplace transform as we will see soon). Using the superposition property of LTI
systems, and considering that for an LTI system with impulse response h(t) the output due to e is H(s)e",
then the output due to x(t) is

. o +Hjoo . o +joo
_ = N ge — t
Y@ = 7] / X(s) [H(s)e" ] ds i / Y(s)e'ds
o —joo 0—joo

where we let Y (s) = X(s)H(s). But from Chapter 2 we have that y(t) is the convolution y(t) = [x * h](t).
Thus, these two expressions are connected:

v =lxxhl®) & Y()=X©OHE)

The expression on the left indicates how to compute the output in the time domain, and the one on the
right shows how to compute the Laplace transform of the output in the frequency domain. This is the most
important property of the Laplace transform: It reduces the complexity of the convolution integral in time
to the multiplication of the Laplace transforms of the input X(s) and of the impulse response H(s).

Now we are ready for the proper definition of the direct and inverse Laplace transforms of a signal or
of the impulse response of a system.
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The two-sided Laplace transform of a continuous-time function f(¢) is

EGs) = L[f(®)] = f f(eStdt s eROC (3.2)

where the variable s = o + j2, with © as the frequency in rad/sec and o as a damping factor. ROC stands for
the region of convergence—that is, where the integral exists.

The inverse Laplace transform is given by

o +joo
) = £V F@)] = ziﬂ] / Fo)e'ds o € ROC (3.3)

o —joo

Remarks

m  The Laplace transform F(s) provides a representation of f(t) in the s-domain, which in turn can be con-
verted back into the original time-domain functon in a one-to-one manner using the region of convergence.
Thus,

F(ss) ROC &  f()

= Iff(t) = h(t), the impulse response of an LTI system, then H(s) is called the system or transfer function
of the system and it characterizes the system in the s-domain just like h(t) does in the time-domain. If f(t)
is a signal, then F(s) is its Laplace transform.

m  The inverse Laplace transform in Equation (3.3) can be understood as the representation of f(t) (whether
it is a signal or an impulse response) by an infinite summation of complex exponentials with weights
F(s) at each. The computation of the inverse Laplace transform using Equation (3.3) requires complex
integration. Algebraic methods will be used later to find the inverse Laplace transform, thus avoiding the
complex integration.

Laplace and Heaviside

The Marquis Pierre-Simon de Laplace (1749-1827) [2, 7] was a French mathematician and astronomer. Although from hum-
ble beginnings he became royalty by his political abilities. As an astronomer, he dedicated his life to the work of applying
the Newtonian law of gravitation to the entire solar system. He was considered an applied mathematician and, as a member
of the Academy of Sciences, knew other great mathematicians of the time such as Legendre, Lagrange, and Fourier. Besides
his work on celestial mechanics, Laplace did significant work in the theory of probability from which the Laplace transform
probably comes. He felt that “the theory of probabilities is only common sense expressed in number.” Early transformations
similar to Laplace's had been used by Euler and Lagrange. It was, however, Oliver Heaviside (1850-1925) who used the
Laplace transform in the solution of differential equations. Heaviside, an Englishman, was a self-taught electrical engineer,
mathematician, and physicist [76].
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m Example 3.1

A problem in wireless communications is the so-called multipath effect on the transmitted message.
Consider the channel between the transmitter and the receiver as a system like the one depicted
in Figure 3.2. The sent message x(t) does not necessarily go from the transmitter to the receiver
directly (line of sight) but it may take different paths, each with different length so that the signal
in each path is attenuated and delayed differently.? At the receiver, these delayed and attenuated
signals are added, causing a fading effect—given the different phases of the incoming signals their
addition at the receiver results in a weak or a strong signal, thus giving the sensation of the message
fading back and forth. If x(¢t) is the message sent from the transmitter, and the channel has N
different paths with attenuation factors {&;} and corresponding delays {t;}, i =0,..., N, use the
eigenfunction property to find the system function of the channel causing the multipath effect.

%

v

Delay t, >

» Delay t »>

FIGURE 3.2

Block diagram of a wireless x(1) < ) y(t)
communication channel causing a
multipath effect on the sent message
x(t). The message x(t) is delayed
and attenuated when sent over oy
N + 1 paths. The effect is similar to » Delay ty
that of an echo in acoustic signals.

Solution

The output of the channel or multipath system in Figure 3.2 can be written as

y(®) = agx(t — to) + a1x(t —ty) + - - + anx(t — tn) (3.4)

Considering s = o + jQ as the variable, the response of the multipath system to x(t) = ¢* is y(t) =
x(t)H(s), so that when replacing them in Equation (3.4), we get

x(OH(s) = x(1) [aoe™0 + - -+ + ane™ N ]

2Typically, there are three effects each path can have on the sent signal: The distance the signal needs to travel (in each path this is due
to reflection or refraction on buildings, structures, cars, etc.) determines how much it is attenuated and delayed (the longer the path,
the more attenuated and delayed with respect to the time it was sent) and the third effect is a frequency shift—or Doppler effect—that
is caused by the relative velocity between the transmitter and the receiver.
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giving as the system function for the channel,
H(s) = cge™ 0 + .- + ane N
Notice that the time shifts in the input-output equation became exponentials in the Laplace

domain, a property we will see later. |

Let us consider the different types of functions (either continuous-time signals or the impulse
responses of continuous-time systems) we might be interested in calculating Laplace transforms of.

= Finite support functions: the function f(¢) in this case is
f)=0 for t ¢ finite segment t; <t <t

for any finite, positive or negative t; and t, and so that t; < t,. We will see that the Laplace trans-
form of these finite support signals is of particular interest in the computation of the coefficients
of the Fourier series of periodic signals.

= Infinite support functions: In this case, f(t) is defined over an infinite support (e.g., t; < t < t, where
either t1 or t; are infinite, or both are infinite as long as t; < t3).

A finite, or infinite, support function f(¢) is called (see examples in Figure 3.3):

Casualif ft) =0 t <O,
Anti-causal if f(t) =0 t >0,
Non causal if a combination of the above.

In each of these cases we need to consider the region in the s-plane where the transform exists or its
region of convergence (ROC). This is obtained by looking at the convergence of the transform.

X1 (1) Xo(1)

>t >t
(a) (b)
X3(t) X4(8)
FIGURE 3.3
Examples of different types of signals:
(a) noncausal finite support signal x1 (¢), (b) causal /\
finite support signal x, (t), (c) noncausal infinite <& ‘ N4 >t

support signal x3(t), and (d) causal infinite
support signal x4 (t). (c) (d)
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For the Laplace transform of f(t) to exist we need that

f f(he St

o0
/ f(e te 1 qr
—0o0

o0
< / | fDe | di < oo
—00

or that f(t)e~?* be absolutely integrable. This may be possible by choosing an appropriate o even in the case
when f(t) is not absolutely integrable. The value chosen for o determines the ROC of F(s); the frequency €
does not affect the ROC.

3.2.2 Poles and Zeros and Region of Convergence

The region of convergence (ROC) can be obtained from the conditions for the integral in the Laplace
transform to exist. The ROC is related to the poles of the transform, which is in general a complex
rational function.

For a rational function F(s) = L[ f(t)] = N(s)/D(s), its zeros are the values of s that make the function F(s) = 0,
and its poles are the values of s that make the function F(s) — oo. Although only finite zeros and poles are
considered, infinite zeros and poles are also possible.

Typically, F(s) is rational, a ratio of two polynomials N(s) and D(s), or F(s) = N(s)/D(s), and as such
its zeros are the values of s that make the numerator polynomial N(s) = 0, while the poles are the
values of s that make the denominator polynomial D(s) = 0. For instance, for

F(s) — 252 +1) 265+ )G—)) 2(s+)(s — )
242545 (H+H1244 (s+H14+2)6+1-2))

we have the zeros are at s = %j, roots of N(s) = 0, since F(%j) = 0, and a pair of complex conjugate
poles —1 £+ 2j, the roots of the equation D(s) = 0 and such that F(—1 % 2j) — co. Geometrically,
zeros can be visualized as those values that make the function go to zero, and poles as those val-
ues that make the function approach infinity (looking like the main “pole” of a circus tent). See
Figure 3.4.

Not all rational functions have poles or a finite number of zeros. Consider the Laplace transform

1
P(s) = N (¢ —e)

P(s) seems to have a pole at s = 0. Its zeros are obtained by letting ¢' — e~ = 0, which when
multiplied by ¢° gives

e2s 1= ejznk
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100

50

0

—1 0

Dampi -2 —
amping -3 2 Frequency

FIGURE 3.4

Three-dimensional plot of the logarithm of the magnitude of F(s) = 2(s2 + 1)/(s2 + 2s + 5) as a function of
damping o and frequency Q. The poles shoot up, while the zeros shoot down. In the logarithmic scale both
poles and zeros will have infinite value: When F(s) = 0 (zero) its logarithm is —oo, while when F(s) — oo (pole)
the logarithm is co.

for an integer k = 0, +1,+£2,.... Thus, the zeros are s, = jrk, k = 0,+1,£2,.... Now, when k= 0,
the zero at 0 cancels the pole at zero; therefore, P(s) has only zeros, an infinite number of them,
{jmhk, k=+1,+£2,...}.

Poles and ROC
The ROC consists of the values of o such that

o0

o0 o0
/ x(H)e *dt| < / Ix()| e~ @V dr = / [x(t)]e ~°tdt < oo (3.5)
— 0 —00

—00

This is equivalent to choosing values of o for which x(t)e~°! is absolutely integrable.
Two general comments that apply to all types of signals when finding ROCs are:

s No poles are included in the ROC, which means that for the ROC to be that region where the
Laplace transform is defined, the transform cannot become infinite at any point in it. So poles
should not be present in the ROC.

m  The ROC is a plane parallel to the j2 axis, which means that it is the damping o that defines the
ROC, not frequency Q2. This is because when we compute the absolute value of the integrand in
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the Laplace transform to test for convergence, we let s = o 4 j2 and the term |¢/?| = 1. Thus, all
regions of convergence will contain —oo < < oo.

If {o;} are the real parts of the poles of F(s) = L[f(t)], the region of convergence corresponding to
different types of signals or impulse responses is determined from its poles as follows:

m For a causal f(t), f(t) = 0 for t < 0, the region of convergence of its Laplace transform F(s) is a
plane to the right of the poles,

Re = {(0,Q) : 0 > max{oij}, —00 < Q2 < oo}

m For an anti-causal f(¢), f(t) = 0 for t > 0, the region of convergence of its Laplace transform F(s)
is a plane to the left of the poles,

Rac = {(0,2) : 0 < min{o;}, —o0 < Q < 00}

m For a noncausal f(¢) (i.e., f(t) defined for —oo < t < 00), the region of convergence of its Laplace
transform F(s) is the intersection of the regions of convergence corresponding to the causal
component, R, and R, corresponding to the anti-causal component:

Re[ ) Rac

See Figure 3.5 for an example illustrating how the ROCs connect with the poles and the type of signal.

Special case: The Laplace transform of a function f(¢) of finite support t; <t < tp, has the whole s-plane as

ROC.
jQ jQ
A y
X
—O——%—6—Pp O o
X
FIGURE 3.5 @ (b)
ROC for (a) causal signal with poles with jo jo
omax = 0; (b) causal signal with poles with yy y
omax < 0; (c) anti-causal signal with poles with o X
Omin > 0; (d) noncausal signal where ROC is
bounded by poles (poles on the left-hand o > o > o
s-plane give causal component and poles on
the right-hand s-plane give the anti-causal o «
component of the signal). The ROCs do not

contain poles, but they can contain zeros. (c) (d)
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Indeed, the integral defining the Laplace transform is bounded for any value of o #0. If A=
max(|f(1)]), then

[5)

B ot ot
A e 2
IF(s)| < / F(O)]le|dt sAfe—‘”dt A "% T  6#0
o
5] 31

The Laplace transform of a
= Finite support function (i.e, f(t) = 0fort < ¢y and ¢t > tp, fort; < tp)is

LIf®O] = L[f@O[u(t—1t1) —ult —t2)]] whole s-plane
m  Causal function (i.e, f(t) = 0fort < 0) is
LIfOu®]  Re={(0,Q2):0 > max{o;}, —00 < Q < o0}
= Anti-causal function (i.e, f(t) = 0 for t > 0) is
LIf@Ou(=0]  Rac={(0, Q) : 0 < min{oj}, —00 < Q© < o0}
= Noncausal function (i.e., f(t) = fac(t) + fc(t) = f@®)u(—1t) + f(Ou(t)) is

LIF 0] = Llfac(—0u®)] —y + LUc@u®]  Re[ | Rac

Although redundant, a causal function f(¢) (i.e., f(t) = 0 for t < 0) is denoted as f (t)u(t). Its Laplace
transform is thus

L[fu(t)] = ff(t)u(t)ef“dt:[f(t)e*“dt
—00 0

which is called the one-sided Laplace transform. Likewise, if f(t) is anti-causal (i.e., f(t) = 0 for ¢t > 0),
we will denote it as f(f)u(—t) and its Laplace transform is given by

0 00
LIf(Ou(-)] = f fOu(—ne"dt = / f(=thuye dt’
—00 0

or the one-sided Laplace transform of the causal signal f(—t)u(t), with s changed into —s.

A noncausal signal f(t) is defined for all values of t (i.e., for —co < t < 00). Such a signal has a causal
component f.(t), which is obtained by multiplying f (¢) by the unit-step function, f.(t) = f(t)u(t), and
an anti-causal component f,.(t), which is obtained by multiplying f(t) by u(—t), so that

f(t) =fac(t) +fc(t)
= f(Ou(=t) +f(Ou(t) (3.6)
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At t = 0 we assume that u(0) = 0.5 to get f(0) from the sum f.(0) + f,.(0). The Laplace transform of
the two-sided signal f(¢) can then be computed as

F(s) = /f(—t)u(t)e“dt+/f(t)u(t)e_“dt
0 0

= L[ fac(=0Du®)](—s) + L[ fe@u®)] (3.7)

with an ROC the intersection of the ROCs of the causal and the anti-causal Laplace transforms.

3.3 THE ONE-SIDED LAPLACE TRANSFORM

The one-sided Laplace transform is defined as
o
FO) = Llf o] = [ foutear (3.8)
0_

where f(¢) is either a causal function or made into a causal function by the multiplication by u(t). The one-
sided Laplace transform is of significance given that most of the applications deal with causal systems and
signals, and that any signal or system can be decomposed into causal and anti-causal components requiring
only the computation of one-sided Laplace transforms.

Remarks

m  If f(¢) is causal the multiplication by u(t) is redundant but harmless, but if f(t) is not causal the multi-
plication by u(t) makes f(t)u(t) causal. Notice that when f(t) is causal, the two-sided and the one-sided
Laplace transforms of f(t) coincide.

m  The lower limit of the integral in the one-sided Laplace transform is set to 0— = 0 — &, which corresponds
to a value on the left side of O for an infinitesimal value ¢. The reason for this is to make sure that an
impulse function §(t), only defined at t = 0, is included when we are computing its Laplace transform.
For any other signal this limit can be taken as 0 with no effect on the transform.

m  As we will see, the advantage of the one-sided Laplace transform is that it can be used in the solution
of differential equations with initial conditions. In fact, the two-sided Laplace transform by starting at
t = —oo (lower bound of the integral) ignores initial conditions at t = 0, and thus it is not useful in
solving differential equations unless the initial conditions are zero.

m Example 3.2

Find the Laplace transforms of §(t), u(t), and a pulse p(t) = u(t) — u(t — 1). Use MATLAB to verify
the transforms.
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Solution

Even though 4(¢) is not a regular signal, its Laplace transform can be easily obtained:

o0 oo o0

L[] = / S(e Stdt = / 8()e dt = / s(Hdt =1
—00 —00 —00
Since there are no conditions for the integral to exist, we say that £[3(t)] = 1 exists for all values
of s, or that its ROC is the whole s-plane. This is also indicated by the fact that £[§(t)] = 1 has no
poles.

The Laplace transform of u(t) can be found as

oo oo oo

ucs) = Llu@®)] = f u(t)e Stdt = /e‘“dt: fe_“te_jgtdt

—00 0 0

where we replaced the variable s = o + jQ. Using Euler’s equation, the above equation becomes

u(s) = /e_‘”[cos(Qt) — jsin(Q)]dt
0

and since the sine and the cosine are bound, then we need to find a value for o so that the expo-
nential e~°! does not grow as t increases. If o < 0, the exponential ¢~°" for ¢ > 0 will grow and
the integral will not converge. On the other hand, if o > 0, the integral will converge as ¢~ °! for
t > 0 decays, and it is not clear what happens when o = 0. Thus, the integral exists in the region
defined by o > 0 and all frequencies —oco < © < oo (the frequency values do not interfere in the
convergence). Such a region is the open right-hand s-plane, and is called the ROC of U(s).

In the region of convergence, the integral is found to be

et 1
ues)=—I2,=-
(s) S |t_0 S
where the limit for t = oo is zero since o > 0. So the Laplace transform U(s) = 1/s converges in
the region defined by {(c, ) : 0 > 0, —00 < Q < o0}, or the open (i.e., the j&2 axis is not included)
right-hand s-plane. This ROC can also be obtained by considering that the pole of U(s) is at s = 0
and that u(¢) is casual.

We can find the Laplace transform of signals using symbolic computations in MATLAB. For the
unit-step and the delta functions, once the symbolic parameters are defined, the MATLAB function
laplace computes their Laplace transforms as indicated by the following script.

% % % % % % % % % % % % % % % % %
% Example 3.2

%% % % % % % % % % % % % % % % %
symsts

% Unit-step function
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u =sym(’Heaviside(t)’)
U=laplace(u)

% Delta function
d=sym('Dirac(t)’)

D =laplace(d)

giving
u =Heaviside(t)

U=1/s

d=Dirac()si
D=1

where U and D stand for the Laplace transforms of u and d. The naming of u(t) and §(¢) as Heaviside
and Dirac functions is used in MATLAB.3

The pulse p(t) = u(t) — u(t — 1) is a finite support signal and so its ROC is the whole s-plane. Its
Laplace transform is

1
P(s)=Llut+1) —ut—1)] = /e_“dt _

-1

—e 3t 1 e
=l —el=Sn-e]

N N

which as shown before has an infinite number of zeros, and the one at the origin cancels the pole,
so that

o0

P(s) = H (s — jmk)
ke=—00,k#0 [ |

m Example 3.3
Let us find and use the Laplace transform of &/20'*®y(t) to obtain the Laplace transform of x(t) =
cos(Qot + 0)u(t). Consider the special cases for & = 0 and § = —n /2. Determine the ROCs. Use
MATLAB to plot the signals and the corresponding poles/zeros when ¢ = 2 and 8 = 0 and = /4.
Solution

The Laplace transform of the complex causal signal &2+ (t) is found to be

oo o0
L[ @0+ (1)] = f Q00 =t gy = o f ¢TIy
0 0

30liver Heaviside (1850-1925) was an English electrical engineer who adapted the Laplace transform to the solution of differential
equations (the so-called operational calculus), while Paul Dirac (1902-1984) was also an English electrical engineer, better known for
his work in physics.
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. e’
oI Q0)t 1%0= . ROC: ¢ >0
s—jQ

_ o

= 5 — S0
According to Euler’s identity

&/ Qot+0) | p—j(Qot+0)

cos(Qot +6) = 7

by the linearity of the integral and using the above result, we get that

L[cos(Qot + O)u(t)] = 0.5L[ D FDy(1)] + 0.5L[e Ty (1))
s &’ (s + jQ0) + 77 (s — jQ0)

=0.

24+ Q3
_ scos(9) — Qg sin(9)
B 2+ Q3

and a region of convergence {(¢, Q) : 0 > 0, —00 < Q < 00}.

Now if we let & = 0, —7/2 in the above equation we have the following Laplace transforms:

s
Llcos(Qotu(t)| = ———
[ (0)()] 52—|—Q%
Qo
2 + Q2

L[sin(QoHu(t)] =

as cos(Qot — 7/2) = sin(Rpt). The ROC of the above Laplace transforms is {(o, ) : 0 > 0, —00 <
Q < 00}, or the open right-hand s-plane (i.e., not including the jQ axis). See Figure 3.6 for the
pole-zero plots and the corresponding signals for 6 = 0, § = /4, and Qp = 2. |

m Example 3.4

Use MATLAB symbolic computation to find the Laplace transform of a real exponential, x(t) =
e~ "u(r), and of x(t) modulated by a cosine or y(t) = e~ " cos(10t)u(t). Plot the signals and the poles
and zeros of their Laplace transforms.

Solution

The following script is used. The MATLAB function laplace is used for the computation of the
Laplace transform and the function ezplot allows us to do the plotting. For the plotting of the poles
and zeros we use our function splane. When you run the script you obtain the Laplace transforms

X(S) = 5—}—_1

s+1

Ye)= —
©) 2+ 25+ 101
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0.5
FIGURE 3.6 =
Location of the poles and zeros of :5' 0
cos(2t + 0)u(t) for (a) & = 0 and for (b) -0.5
0 = m/4. Note that the zero is moved -

to the right to 2 because the zero of
the Laplace transform is
s = Qptan(f) = 2tan(w/4) = 2.

%% % % % % % % % % % % % % % % %
% Example 3.4

9% % % % % % % % % % % % % % % %
syms t

x=exp (-t);

y=x*cos(10*1);

X =laplace(x)

Y =laplace(y)

% plotting of signals and poles/zeros
figure(1)

subplot(221)

ezplot(x,[0,5]);grid

axis([0 5 0 1.1]);title(’x(t) = exp(-t)u(t)’)
numx = [0 1];denx=[1 1];
subplot(222)

splane(numx,denx)

subplot(223)

ezplot(y,[-1,5]);grid

axis([0 5 -1.1 1.1]);title('y(t) = cos(10t)exp(-t)u(t)’)

numy=[0 1 1];deny=[1 2 101];
subplot(224)
splane(numy,deny)

The results are shown in Figure 3.7.

5 10

jQ

(@)

jQ
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x(t)=exp(-t) u(t)

1
]
0.5
0.5 S o
\ -0.5
0 -1
0 2 4 2 0 2
o
(a)
y(t)=cos(10t) exp(-t) u(t)
1 10
0.5 [\ 5
N.A S
OZ \ / /v & 2 _z
-2V
-1 -10
0 2 4 2 0 2
t o

(b)
FIGURE 3.7

Poles and zeros of the Laplace transform of (a) causal signal x(t) = e~ ‘u(t) and of (b) causal decaying signal
y(6) = et cos(10)u(r).

m Example 3.5

In statistical signal processing, the autocorrelation function ¢(r) of a random signal describes the
correlation that exists between the random signal x(t) and shifted versions of it, x(t + 7) and x(t —
7) for shifts —oco < t < 00. Clearly, ¢(7) is two-sided (i.e., nonzero for both positive and negative
values of t) and symmetric. Its two-sided Laplace transform is related to the power spectrum of
the signal x(t). Let c(t) = e~ wherea > 0 (we replaced the t variable for t for convenience). Find
its Laplace transform. Determine if it would be possible to compute |C(£2)|2, which is called the
power spectrum of the random signal x(t).

Solution
The autocorrelation can be expressed as
c(t) = c(u(t) + c(t)u(—t)
= cc(t) + cac(t)

where c.(t) is the causal component and ¢, (t) the anti-causal component of ¢(t). The Laplace
transform of ¢(t) is then given by

C(s) = Llcc(Ou@®)] + Llcac(—t)u®)] (s



m CHAPTER 3: The Laplace Transform

The Laplace transform for c;(t) = e~ *u(t), as seen before, is

C =
< s+a

with a region of convergence {(o, Q) : 0 > —a, —00 < Q < o0o}. The Laplace transform of the anti-
causal part is

Llcac(—t)u®)] (s =

—s+a
and since it is anti-causal and has a pole at s = 4, its region of convergence is {(c, Q) : 0 < 4, —00 <
Q < oo}.
We thus have that
1 1
C(@s) = +
s+a —s+a
_ 2a
T R2_s2

with a region of convergence the intersection of 0 > —awitho <aor{(o,Q):—a <o <a,—o0 <
Q < oo}. This region contains the jQ axis, which permits us to compute the distribution of the
power over frequencies or the power spectrum of the random signals |C(2)|? (see in Figure 3.8).

m Example 3.6

Consider a noncausal LTI system with impulse response
h(t) = e 'u(t) + e*'u(—t)
= he(8) + hac(t)
Let us compute the system function H(s) for this system, and find out whether we could compute
H(j2) from its Laplace transform.
Solution

As from before, the Laplace transform of the causal component, h.(t), is

1
0=

provided that ¢ > —1. For the anti-causal component

‘C[hal:(t)] = ﬁ[hac(—t)u(t)](,s) = R

which converges when o — 2 < 0 or o < 2, or its region of convergence is {(o, Q) : 0 < 2, —00 <
Q < oo}.
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FIGURE 3.8 / \
Poles (top right) of the Laplace 06

transform of the autocorrelation
c(t) = e~ 21 (top left), which is
noncausal. The ROC of C(s) is the 0.4 / \

IC(@)P

region in between the poles, which

includes the jQ axis. The spectrum 0.2

|C(£2)|2 corresponding to ¢(t) is / \\

shown in the bottom plot—this is the obe— i m—————
magnitude square of the Fourier -20 -10 0 10 20
transform of ¢(t). Q(rad/sec)

Thus, the system function is

1 N 1 -3
s+1 —s4+2 (+DGs-2)

H(s) =

with a region of convergence the intersection of the regions of convergence of its components, or
the intersection of {(0, Q2) : 0 > —1,—00 < Q < oo} and {(o, Q) : 0 < 2,—00 < Q < 00}, or

{(0,2): -1 <0 <2,—00 < Q < 00}

which is a sector of the s-plane that includes the jQ axis. Thus, H(j2) can be computed from its
Laplace transform. |
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m Example 3.7

Compute the Laplace transform of the ramp function r(t) = tu(t) and use it to find the Laplace of
a triangular pulse A(t) = r(t+ 1) — 2r(¢) +r(t — 1).

Solution

Notice that although the ramp is an ever-increasing function of t, we still can obtain its Laplace
transform

o]

—st e 00 1
R(S) = tetdt = S—z(—St — 1) |t=0 = 5—2
0

where we let o > 0 for the integral to exist. Thus, R(s) = 1/s* with region of convergence {(c, Q) :
o >0,—00 < Q < oo}. The above integration can be avoided by noticing that if we find the
derivative with respect to s of the Laplace transform of u(t), or

o0
dui) [ de

ds ds dt
0
oo
= / (—He tdt
0
— —R(s)

where we assumed the derivative and the integral can be interchanged. We then have

d U(s) 1

ds s2
The Laplace transform of A(t) can then be shown to be (try it!)

R(s) = —

1 S —$
A(s):s—z[e —24e]

The zeros of A(s) are the values of s that make ¢’ — 2 4+ ¢~° = 0, or multiplying by ¢,

1—2e " +e¥=1-¢%2=0

S

which is equivalent to e = 1 = 2%, for integer k, or double zeros at

s, =j2mk k=0,+1,+£2,...

In particular, when k = 0 there are two zeros at 0, which cancel the two poles at 0 resulting from
the denominator s2. Thus, A(s) has an infinite number of zeros but no poles given this pole-zero
cancellation (see Figure 3.9). Therefore, A(s) has the whole s-plane as its region of convergence,
and can be calculated at s = jQ. ]
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W(t) A A /Q
1 s-plane
jar

jer

—j2r

—j4r

FIGURE 3.9
The Laplace transform of triangular signal A(t) has as ROC the whole s-plane, since it has no poles but an
infinite number of double zeros at £j2nk, fork = £1,42,....

We will consider next the basic properties of the one-sided Laplace transform—many of these prop-
erties will be encountered in the Fourier analysis, presented in a slightly different form, given the
connection between the Laplace and the Fourier transforms. Something to observe is the duality that
exists between the time and the frequency domains. The time and the frequency domain represen-
tations of continuous-time signals and systems are complementary—that is, certain characteristics of
the signal or the system can be seen better in one domain than in the other. In the following, we
consider the properties of the Laplace transform of signals but they equally apply to the impulse
response of a system.

3.3.1 Linearity

For signals f(t) and g(t), with Laplace transforms F(s) and G(s), and constants a and b, we have the Laplace
transform is linear:

Llaf ®u(t) + bg(tu(t)] = aF(s) + bG(s)

The linearity of the Laplace transform is easily verified using integration properties:

Llaf (Hu(t) + bg(ut)] = / [af (t) + bg(t) Ju(t)e™"dt
0

=a / f@Oue'dt +b / gutyedt
0 0

= allf(Ou®] + bL[gO )]

We will use the linearity property to illustrate the significance of the location of the poles of the
Laplace transform of causal signals. As seen before, the Laplace transform of an exponential signal
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f(t) = Ae~%u(t) where a in general can be a complex number is
A
F(s) = — ROC: 0 > —a
s+a

The location of the pole s = —a closely relates to the signal. For instance, if a = 5, f(t) = Ae~>'u(t) is
a decaying exponential and the pole of F(s) is at s = —5 (in left-hand s-plane); if a = —5, we have an
increasing exponential and the pole is at s = 5 (in right-hand s-plane). The larger the value of |a| the
faster the exponential decays (for a > 0) or increases (for a < 0); thus, Ae~'%u(t) decays a lot faster
that Ae~>u(t), and Ae'®u(t) grows a lot faster than Ae>'u(t).

The Laplace transform F(s) = 1/(s + a) of f(t) = e~ ®u(t), for any real value of 4, has a pole on the real
axis o of the s-plane, and we have the following three cases:

m  Fora = 0, the pole at the origin s = 0 corresponds to the signal f(t) = u(t), which is constant for
t > 0 (i.e, it does not decay).

m  For a > 0, the signal is f(t) = e"*u(t), a decaying exponential, and the pole s = —a of F(s) is in
the real axis o of the left-hand s-plane. As the pole is moved away from the origin toward the left,
the faster the exponential decays, and as it moves toward the origin, the slower the exponential
decays.

m For a < 0, the pole s = —a is on the real axis o of the right-hand s-plane, and corresponds to
a growing exponential. As the pole moves to the right the exponential grows faster, and as it is
moved toward the origin it grows at a slower rate—clearly this signal is not useful, as it grows
continuously.

The conclusion is that the o axis of the Laplace plane corresponds to damping. A single pole on this axis
and in the left-hand s-plane corresponds to a decaying exponential, and a single pole on this axis and in the
right-hand s-plane corresponds to a growing exponential.

Suppose then we consider

jS20t —jQ0t
2(t) = A cos(Qotu(t) = AL S U + A=

u(t)
and let a = jQ to express g(t) as
g(t) = 0.5[Ae™u(t) + Ae " u(t)]

Then, by the linearity of the Laplace transform and the previous result we obtain

co AL AL As
S) = — — =
25—jQ 25+ $2+Q3

(3.9)

with a zero at s = 0, and the poles are values for which

52+Q(2)=0 ﬁszz—Q% or 51 = =%jQ
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which are located on the j2 axis. The farther away from the origin of the jQ2 axis the poles are, the
higher the frequency 2y, and the closer the poles are to the origin, the lower the frequency. Thus,
the jQ axis corresponds to the frequency axis. Furthermore, notice that to generate the real-valued
signal g(t) we need two complex conjugate poles, one at +jQp and the other at —jQ¢. Although
frequency, as measured by frequency meters, is a positive value, “negative” frequencies are needed to
represent “real” signals (if the poles are not complex conjugate pairs, the inverse Laplace transform is
complex—rather than real valued).

The conclusion is that the Laplace transform of a sinusoid has a pair of poles on the jQ axis. For these poles
to correspond to a real-valued signal they should be complex conjugate pairs, requiring negative as well as
positive values of the frequency. Furthermore, when these poles are moved away from the origin of the j&2
axis, the frequency increases, and the frequency decreases whenever the poles are moved toward the origin.

Finally, consider the case of a signal d(t) = Ae™% cos(Qot)u(t) or a causal sinusoid multiplied (or
modulated) by e, According to Euler’s identity,

e(—atjQ0)t e(—a—j0)t
dit)y=A Tu(t) + Tu(t)

and as such we can again use linearity to get

A(s+ a)

PO= T ra2

(3.10)
Notice the connection between Equations (3.9) and (3.10). Given G(s), then D(s) = G(s + «), with
G(s) corresponding to g(t) = A cos(Qot) and D(s) to d(t) = g(t)e~ . Multiplying a function g(t) by an
exponential e~*!, with « real or imaginary, shifts the transform to G(s + o)—that is, it is a complex
frequency-shift property. The poles of D(s) have as the real part the damping factor —« and as the
imaginary part the frequencies +2¢. The real part of the pole indicates decay (if « > 0) or growth
(if @ < 0) in the signal, while the imaginary part indicates the frequency of the cosine in the signal.
Again, the poles will be complex conjugate pairs since the signal d(t) is real valued.

The conclusion is that the location of the poles (and to some degree the zeros), as indicated in the previous two
cases, determines the characteristics of the signal. Signals are characterized by their damping and frequency
and as such can be described by the poles of its Laplace transform.

If we were to add the different signals considered above, then the Laplace transform of the resulting
signal would be the sum of the Laplace transform of each of the signals and the poles would be
the aggregation of the poles from each. This observation will be important when finding the inverse
Laplace transform, then we would like to do the opposite: To isolate poles or pairs of poles (when
they are complex conjugate) and associate with each a general form of the signal with parameters that
are found by using the zeros and the other poles of the transform. Figure 3.10 provides an example
illustrating the importance of the location of the poles, and the significance of the o and j€2 axes.
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FIGURE 3.10

For poles shown in the middle, possible signals are displayed around them anti—clockwise from bottom right.
The pole s = 0 corresponds to a unit-step signal; the complex conjugate poles on the jQ axis correspond to a
sinusoid; the pair of complex conjugate poles with a negative real part provides a sinusoid multiplied by an
exponential; and the pole in the negative real axis gives a decaying exponential. The actual amplitudes and
phases are determined by the other poles and by the zeros.

3.3.2 Differentiation

For a signal f(¢) with Laplace transform F(s) its one-sided Laplace transform of its first-and second-order
derivatives are

c [df(t)

o u(t)] = sF(s) — f(0—) (3.11)
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2 d
[{ d]: ;t)u(t)i| — 2F(s) — sf(0—) — J;(tt) li—o— (3.12)

In general, if f (N) (1) denotes an Nth-order derivative of a function f(@® that has a Laplace transform F(s), we
have

N-1
LI N u®] = sNFs) - > f® 0Nk (3.13)
k=0

where f(™ () = d™f(t)/d™ is the mth-order derivative, m > 0, and f© (r) £ f(1).

The Laplace transform of the derivative of a causal signal is

o0

df(t) . @ —st
EI:TM(I)] —f i e tdt

This integral is evaluated by parts. Let w = ¢, then dw = —se*'dt, and let v = f(¢) so that dv =

[df (t)/dt]dt, and
/wdv:wv—/vdw

/Me_“dt =e'f( |3 — /f(t)(—se_“)dt
0—

We would then have

dt
0—

=5 /f(t)e*“dt —f(0-)
0_

= sF(s) — f(0—)
where e 5if (t) |;—o— = f(0—) and e™5f (t)|;— 0o = O since the region of convergence guarantees that
lim f()e "' =0
t—00

For a second-order derivative we have that

2 (1)
E[dﬂomﬂ]zﬁ[ﬂ'(omo}

dr? dt

=sLf V0] - fP0-)
df (©)
dt

where we used the notation f(t) = df(t)/dt. This approach can be extended to any higher order to
obtain the general result shown above.

= s2F(s) — 5f(0—) —

l=0—
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Remarks

m  The derivative property for a signal x(t) defined for all t is
[
L
f %e‘”dt = sX(s)
—00

This can be seen by computing the derivative of the inverse Laplace transform with respect to t, assuming
that the integral and the derivative can be interchanged. Using Equation (3.3):

dx(0) T e
x(t 1
N X(s)——
i 27 5 %
o —joo
o+joo
1
= / (sX(s))e"ds
2mj
o —joo

or that sX(s) is the Laplace transform of the derivative of x(t). Thus, the two-sided transform does not
include initial conditions. The above result can be generalized to any order of the derivative as

L[dNx(t)/dN] = sNX(s)

m  Application of the linearity and the derivative properties of the Laplace transform makes solving differential
equations an algebraic problem.

m Example 3.8

Find the impulse response of an RL circuit in series with a voltage source vs(t) (see Figure 3.11).
The current i(t) is the output and the input is the voltage source vs(t).

Solution

To find the impulse response of the RL circuit we let v5(t) = §(t) and set the initial current in the
inductor to zero. According to Kirchhoff's voltage law,

di(t) ‘ ‘
vs(t) = LT + Ri(¢) i(0—)=0
R
i(t)
i(1)
+
vs(t

FIGURE 3.11 0 0O 3t

Impulse response i(t) of an RL circuit with input .t
Vs(t). i’
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which is a first-order linear differential equation with constant coefficients, zero initial condition,
and a causal input so that it is a linear time-invariant system, as discussed before.

Letting vs(t) = §(t) and computing the Laplace transform of the above equation (using the linearity
and the derivative properties of the transform and remembering the initial condition is zero), we
obtain the following equation in the s-domain:

zwan:c[ﬁ%?+Rmﬂ

1 = sLI(s) 4+ RI(s)
where I(s) is the Laplace transform of i(t). Solving for I(s) we have that

o UL
©=TRiL

which as we have seen is the Laplace transform of
1
«o:zf“mmm

Notice that i((0—) = 0 and that the response has the form of a decaying exponential trying to follow
the input signal, a delta function. [ |

m Example 3.9

In this example we consider the duality between the time and the Laplace domains. The differentia-
tion property indicates that computing the derivative of a function in the time domain corresponds
to multiplying by s the Laplace transform of the function (assuming initial conditions are zero).
We will illustrate in this example the dual of this—that is, when we differentiate a function in the
s-domain its effect in the time domain is to multiply by —t. Consider the connection between §(t),
u(t), and r(t) (i.e., the unit impulse, the unit step, and the ramp, respectively), and relate it to the
indicated duality. Explain how this property connects with the existence of multiple poles, real and
complex, in general.

Solution

The relation between the signals §(t), u(t), and r(¢) is seen from

1
Llr(H)] = 2

_dr(n] l_l
L[u(t)_ dt :|_552_s

_du(®)] l_
E[S(t)_ o }_55_1

which also shows that a double pole at the origin, 1/s2, corresponds to a ramp function r(t) = tu(t).
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The above results can be explained by looking for a dual of the derivative property. Multiplying by
—t the signal x(t) corresponds to differentiating X(s) with respect to s. Indeed for an integer N > 1,

dVX(s) _ fx(t) dNe—st N
0
o0

dsN dsN

= / x(t)(—)Ne tdt
0

Thus, if x(t) = u(t), X(s) = 1/s, then —tx(t) has Laplace transform dX(s)/ds = —1/s2, or tu(t) and
1/s% are Laplace transform pairs. In general, the Laplace transform of tN~1u(t), for N > 1, has N
poles at the origin.

What about multiple real (different from zero) and multiple complex poles? What are the
corresponding inverse Laplace transforms? The inverse Laplace transform of

2Q0s/(s* + 25)?
having double complex poles at £j<y, is
tsin(Qot)u(t)
Likewise,
te~"u(t)

has as Laplace transform 1/(s + a)2. So multiple poles correspond to multiplication by ¢ in the
time domain. [ |

m Example 3.10

Obtain from the Laplace transform of x(t) = cos(Qot)u(t) the Laplace transform of sin(t)u(t) using
the derivative property.

Solution
The causal sinusoid

x(t) = cos(Qot)u(t)

has a Laplace transform

X)) = ——=
© 2+ Q3

Then,

dx(t) d cos(Qpt) du(t)
7 = u(t)T + COS(QOt)T
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= —Qo sin(Qot)u(t) + cos(RLpt)s(t)
= —Q sin(Qot)u(t) + 8(t)
so that the Laplace transform of dx(t)/dt is given by
sX(s) — x(0—) = —QoL[sin(Qot)u()] + L[8(1)]
Thus, the Laplace transform of the sine is

_sX(s) —x(0—)—1

L[sin(Qot)u(t)] =
Qo
1 — sX(s)
= o
= m
since x(0—) = 0 and X(s) = £L[cos(2,T)] given above. [ |

Notice that whenever the signal is discontinuous at t = 0, as in the case of x(t) = cos(Qpt)u(t), its
derivative will include a §(t) signal due to the discontinuity. On the other hand, whenever the signal
is continuous at t = 0, for instance y(t) = sin(Qot)u(t), its derivative does not contain §(t) signals. In
fact,

)

T Qo cos(Rot)u(t) + sin(pt)s(t)

= Qo cos(Rot)u(t)

since the sine is zero at t = 0.

3.3.3 Integration

The Laplace transform of the integral of a causal signal y(t) is given by

t
L |:/ y(v)dr u(t)i| = @ (3.14)

0

This property can be shown by using the derivative property. Call the integral

t
f®= /Y(T)dw(t)
0

Using the fundamental theorem of calculus, we then have that

d
% = y(u()
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and so

a7
L [7] = sF(s) — f(0)

=Y(s)

since f(0) = O (the integral over a point), then

t
Fis)=L |:/ y(r)dti| = %S)

0

m Example 3.11
Suppose that

t

/ y(@)dr = 3u(t) — 2y(t)

0

Find the Laplace transform of y(t), a causal signal.
Solution
Applying the integration property gives

Y(s) 3

=2 _2Y(s)
s s
so that solving for Y(s) we obtain
Y(s) = —
"~ 2(s+0.5)
corresponding to y(t) = 1.5 051y (p). [ |

3.3.4 Time Shifting

If the Laplace transform of f(t)u(t) is F(s), the Laplace transform of the time-shifted signal f(t — t)u(t — 1) is

LIf(t =Dt — 1)] = e TF(s) (3.15)

This indicates that when we delay (advance) the signal to get f(t — t)u(t — 7) (f(t + Du(t + 7)) its
corresponding Laplace transform is F(s) multiplied by e~** (e*). This property is easily shown by a
change of variable when computing the Laplace transform of the shifted signals.
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m Example 3.12

Suppose we wish to find the Laplace transform of the causal sequence of pulses x(t) shown in
Figure 3.12. Let x; (t) denote the first pulse (i.e., for 0 <t < 1).

x3(1) x(1)

o 1 lo 1 2 3

FIGURE 3.12
Generic causal pulse signal.

Solution

We have fort > 0,
x)=x1®)+x1¢t—D4+x1(t—2)+---
and O for t < 0. According to the shifting and linearity properties, we have

X(s) =X1(5) [1 LS4 +]

= X1(s) |:1 —e—5:|

Notice that 1 + e~ +e 2 4 ... = 1/(1 — e~*), which is verified by cross-mutiplying:

[l+e+e X+ JQ-e)=0+e +e X+ )—(e +e ¥ +.-)=1

The poles of X(s) are the poles of X; (s) and the roots of 1 — ¢™* = 0 (the s values such thate™ = 1,
or s, = £j2mk for any integer k > 0). Thus, there is an infinite number of poles for X(s), and the
partial fraction expansion method that uses poles to invert Laplace transforms, presented later,
will not be useful. The reason this example is presented here, ahead of the inverse Laplace, is to
illustrate that when we are finding the inverse of this type of Laplace function we need to con-
sider the time-shift property, otherwise we would need to consider an infinite partial fraction
expansion. [ |

m Example 3.13

Consider the causal full-wave rectified signal shown in Figure 3.13. Find its Laplace transform.
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06
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0.2
0
-0.2
FIGURE 3.13 -1 0 1 2 3 4 5 6 7
Full-wave rectified causal signal. t

Solution
The first period of the full-wave rectified signal can be expressed as

x1(t) = sin(2mt)u(t) + sin(2z (t — 0.5))u(t — 0.5)
and its Laplace transform is

27 (1 + e 95%)

X1(8) = 21 2n)?

And the train of these sinusoidal pulses

x(H) =Y _xi(t— 0.5k)

k=0

will then have the following Laplace transform:

B ~ 1 27 (1 +e?)
— 5/2 S cee | = =
X@)=X1®)[1+e"+e7 +-- [ =X1(9) 1—e52  (1—e%2)(s2 +4n2) |

3.3.5 Convolution Integral

Because this is the most important property of the Laplace transform we provide a more extensive
coverage later, after considering the inverse Laplace transform.

The Laplace transform of the convolution integral of a causal signal x(t), with Laplace transforms X(s), and a
causal impulse response h(t), with Laplace transform H(s), is given by

L[(x+h)(®)] = X()H(s) (3.16)
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If the input of an LTI system is the causal signal x(t) and the impulse response of the system is h(t),
then the output y(t) can be written as

Y@ = /x(r)h(t —7dr  t>0
0

and zero otherwise. Its Laplace transform is

Y(s)=L /x(r)h(t— T)dt | = / /x(r)h(t —1)dr | e dt
0 o Lo
= /x(t) /h(t — 1) e dr | e dr = X(s)H(s)
0 0

where the internal integral is shown to be H(s) = L[h(t)] (change variable to v =t — t) using the
causality of h(t). The remaining integral is the Laplace transform of x(t).

The system function or transfer function H(s) = £[h(t)], the Laplace transform of the impulse response h(t) of
an LTI system, can be expressed as the ratio

_ Lly®] _ L[output ]

~ L[x®]  L[input] (3.17)

H(s)

This function is called transfer function because it transfers the Laplace transform of the input to the output.
Just as with the Laplace transform of signals, H(s) characterizes an LTI system by means of its poles and
zeros. Thus, it becomes a very important tool in the analysis and synthesis of systems.

3.4 INVERSE LAPLACE TRANSFORM

Inverting the Laplace transform consists in finding a function (either a signal or an impulse response
of a system) that has the given transform with the given region of convergence. We will consider three
cases:

m Inverse of one-sided Laplace transforms giving causal functions.
= Inverse of Laplace transforms with exponentials.
= Inverse of two-sided Laplace transforms giving anti-causal or noncausal functions.

The given function X(s) we wish to invert can be the Laplace transform of a signal or a transfer
function—that is, the Laplace transform of an impulse response.

3.4.1 Inverse of One-Sided Laplace Transforms
When we consider a causal function x(t), the region of convergence of X(s) is of the form

{(6,2) :0 > omax, —0 < Q < 00}
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where opax is the maximum of the real parts of the poles of X(s). Since in this section we only
consider causal signals, the region of convergence will be assumed and will not be shown with the
Laplace transform.

The most common inverse Laplace method is the so-called partial fraction expansion, which consists in
expanding the given function in s into a sum of components of which the inverse Laplace transforms
can be found in a table of Laplace transform pairs. Assume the signal we wish to find has a rational
Laplace transform—that is,

X(s) = [1\% (3.18)

where N(s) and D(s) are polynomials in s with real-valued coefficients. In order for the partial fraction
expansion to be possible, it is required that X(s) be proper rational, which means that the degree of
the numerator polynomial N(s) is less than that of the denominator polynomial D(s). If X(s) is not
proper, then we need to do long division until we obtain a proper rational function—that is,

X(s)=go+gis+---+ m+& 3.19
9 =g+ gst A gns” + 5O (3.19)

where the degree of B(s) is now less than that of D(s)—so that we can perform partial expansion for
B(s)/D(s). The inverse of X(s) is then given by

x(t) =806 () + &1 (3.20)

ds(t) dms(t) _1[B®)
. Yo Pt
a8 D(s)
The presence of §(¢) and its derivatives (called doublets, triplets, etc.) are very rare in actual signals,
and as such the typical rational function has a numerator polynomial that is of lower degree than the
denominator polynomial.

Remarks

m  Things to remember before performing the inversion are:
The poles of X(s) provide the basic characteristics of the signal x(t).
If N(s) and D(s) are polynomials in s with real coefficients, then the zeros and poles of X(s) are real
and/or complex conjugate pairs, and can be simple or multiple.
In the inverse, u(t) should be included since the result of the inverse is causal—the function u(t) is an
integral part of the inverse.
m  The basic idea of the partial expansion is to decompose proper rational functions into a sum of rational
components of which the inverse transform can be found directly in tables. Table 3.1 displays common
one-sided Laplace transform pairs, while Table 3.2 provides properties of the one-sided Laplace transform.

We will consider now how to obtain a partial fraction expansion when the poles are real, simple and
multiple, and in complex conjugate pairs, simple and multiple.
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Table 3.1 One-Sided Laplace Transforms
Function of Time Function of s, ROC

1. 8(t) 1, whole s-plane

2. u(t) 3 Rels] >0

3. 7(t) siz, Rels] > 0

4, e "u(t), a> 0 Hia, Re[s] > —a

5. cos(Qot)u(t) ﬁ, Rels] > 0

6. sin(Qo0u(t) Szi—g% Rels] > 0

7. e~ cos(Qot)u(t), a> 0 M;jf‘:_gg, Re[s] > —a

8. e~ " sin(Qotu(t), a > 0 (Ha?foﬂzé, Re[s] > —a

9.  2Ae *cos(Qot+ Ou(t), a>0 S+‘fo§20 + Sﬁaﬁ_}go, Re[s] > —a
10. e () + Naninteger, Re[s] > 0
11, ﬁ N=Te=aty(r) W N an integer, Re[s] > —a
12. ﬁ tN=le=at cos(Qot + 0)u(t) (Hjjgow + (sﬁlij;g))b” Re[s] > —a

Table 3.2 Basic Properties of One-Sided Laplace Transforms
Causal functions and constants  «f (1), Bg(t) aF(s), BG(s)
Linearity af (©) + Bg() oF(s) + BG(s)
Time shifting ft—a) e~ *F(s)
Frequency shifting e*'f () F(s —a)
Multiplication by ¢ tf@©) ~ o
Derivative % sE(s) — f(0—)
Second derivative il S2F(s) — 5f(0—) — FD(0)
Integral /(;_ f()dt @
Expansion/contraction flat) o #0 \TllF (2)
Initial value f(0+) = lim,_ o0 SF(s)
Final value lim¢_, o0 f(t) = lims_ o SF(s)
Simple Real Poles
If X(s) is a proper rational function
N(s) N(s)
X)) = o= 3.21
D@s)  [IpGs—pr) ( )
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where the {p,,} are simple real poles of X(s), its partial fraction expansion and its inverse are given by

X© =Y sfikpk & x() =) Apeu(n (3.22)
k k

where the expansion coefficients are computed as

Ay = X6 = Pp) |s=py

According to Laplace transform tables the time function corresponding to Ay/(s — py) is ApePu(t),
thus the form of the inverse x(t). To find the coefficients of the expansion, say Aj, we multiply both
sides of the Equation (3.22) by the corresponding denominator (s — pj) so that

Ar(s —pp)
X© —p) = A+ 3 H
kA k
If we let s = pj, or s — pj = 0, in the above expression, all the terms in the sum will be zero and we
find that
Aj = X($)(s = Pj) |s=p;
m Example 3.14
Consider the proper rational function
3s+5 3s+5

X(s) =

243542 G+DGs+2)

Find its causal inverse.

Solution

The partial fraction expansion is

Xy = A1 A2
Ts+1 s+2

Given that the two poles are real, the expected signal x(t) will be a superposition of two decaying
exponentials, with damping factors —1 and —2, or

x(t) = [Are™" + Aze u(r)

where as indicated above,

3s+5
s+2

A =X+ D=1 =

|s=71 =2
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and

35+ 5

Ay =X(S)(S + 2)ls=—2 = ls=—2=1

s+1

Therefore,
X(s) = +
© s+1  s+2

and as such

x(t) = [2e7" + e 2 u(t)

To check that the solution is correct one could use the initial or the final value theorems shown in
Table 3.2. According to the initial value theorem, x(0) = 3 should coincide with

352 + 5s 3 +5/s
= 11 —_— =
s>00 14 3/s+2/s?

lim [sX(s) = >———
s—1>00|: © s24+3s+2

as it does. The final value theorem indicates that lim;_, o, x(t) = 0 should coincide with

352 + 55
lim | sX(s) = IS A =
5—0 243542
as it does. Both of these validations seem to indicate that the result is correct. [ |

Remarks The coefficients A1 and A, can be found using other methods. For instance,
m We can compute

A A
1 n 2
s+1  s+2

X(s) = (3.23)

for two different values of s (as long as we do not divide by zero), such ass = 0 ands = 1,

5 1
s=0 X(O): A1+EA2

2
8
=1 X(1)=—
s (1) S

— a1 1A
Tt T3

which gives a set of two linear equations with two unknows, and applying Cramer’s rule we find that
A1 =2 andAz =1.
m  We cross-multiply the partial expansion given by Equation (3.23) to get

3s+5 _ S(A1 +Ay) + QA1 +Ay)

X(s) = =
© s24+35+2 24+ 35+2

Comparing the numerators, we have that A1 + Ay = 3 and 2A; + Ay = 5, two equations with two
unknowns, which can be shown to have as unique solutions Ay = 2 and Ay = 1, as before.
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Simple Complex Conjugate Poles

The partial fraction expansion of a proper rational function

N(s) N(s)
X(s) = = , , (3.24)
+a)?2+QF (+a—jQ)s+a+jQ0)

with complex conjugate poles {s1,, = —a £jQp} is given by

A*
— + -
s+a—jQ s+a+jQ

X(s) =

where
A =X+ —jQ0)ls=—a+tja, = Ale”
5o that the inverse is the function

x(t) = 2|Ale” % cos(Qot + )u(t) (3.25)

Because the numerator and the denominator polynomials of X(s) have real coefficients, the zeros
and poles whenever complex appear as complex conjugate pairs. One could thus think of the case
of a pair of complex conjugate poles as similar to the case of two simple real poles presented above.
Notice that the numerator N(s) must be a first-order polynomial for X(s) to be proper rational. The
poles of X(s), s12 = —a % jQo, indicate that the signal x(t) will have an exponential e~%!, given that
the real part of the poles is —«, multiplied by a sinusoid of frequency Q, given that the imaginary
parts of the poles are +(. We have the expansion

A*
— + -
s+a—jQ s+a+jQ

X(s) =

where the expansion coefficients are complex conjugate of each other. From the pole information,
the general form of the inverse is

x(t) = Ke " cos(Qot + P)u(t)
for some constants K and ®. As before, we can find A as
A=XE) +a = jQ0)|s=—a+ja, = [Ale”
and that X(s)(s + o + jR20)|s=—«—jo, = A* can be easily verified. Then the inverse transform is given by
x(1) = [Ae™@TIRN . grem ety

= |Ale™®! (/D) 4 oI R0ty (p)

= 2|Ale”*" cos(Qot + O)u(t).
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Remarks

m  An equivalent partial fraction expansion consists in expressing the numerator N(s) of X(s), for some
constants a and b, as N(s) = a + b(s + «), a first-order polynomial, so that

a+b(s+a) a Qo sta
X = o o s o2 T 2. 02
+a)?+Qf Qo G+a)?+Q5 +a)?+Qf

so that the inverse is a sum of a sine and a cosine multiplied by a decaying exponential. The inverse
Laplace transform is

|4 —ar —at
x(t)_|:Q—Oe sin(Qot) + be cos(Qot)]u(t)

which can be simplified, using the sum of phasors corresponding to sine and cosine, to

x(t) = ﬁ%—bz e~ cos( Qot — tan~! | = u(t)
Ty Q2 0 Qob

m  When o = 0 the above indicates that the inverse Laplace transform of

a+ bs
2+ Q3

0= |2 iy <Qt—t —1<i>> (0)
X = Q% COS 0 an Qob u

which is transform of a cosine with a phase shift not commonly found in tables.
m  When the frequency Qo = 0, we get that the inverse Laplace transform of

X(s) =

a+bs+a) a N b
G+a)? = 4+a)? s+a

X(s) =

(corresponds to a double pole at —«) is

x(t) = lim [ie_‘” sin(Qot) + be " cos(SZot)]u(t)
Qo—0| Qo

= [ate™*" + be™*"u(t)

where the first limit is found by L'Hopital’s rule. Notice that when computing the partial fraction expansion
of the double pole s = —a the expansion is composed of two terms, one with denominator (s + «)? and
the other with denominator s + « of which the sum gives a first-order numerator and a second-order
denominator to satisfy the proper rational condition.
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m Example 3.15

Consider the Laplace function

25+ 3 _ 25+ 3
s24+2s+4  (s+1)2+3

X(s) =
Find the corresponding causal signal x(t), then use MATLAB to validate your answer.

Solution

The poles are at —1 = j/3, so that we expect that x(t) is a decaying exponential with a damping
factor of —1 (the real part of the poles) multiplied by a causal cosine of frequency +/3. The partial
fraction expansion is of the form

25+ 3 a+bis+1)

X(s) = =
©) 24+2s+4  (s+1)2+3

sothat3+2s=(a+b)+bs,orb=2anda+b=3ora=1.Thus,

V3 s+ 1

XO=ABerr+3 T er 213

which corresponds to
1
NE]

The value x(0) = 2 and according to the initial value theorem the following limit should equal it:

x(t) = [ sin(+/31) + 2 COS(\/gt)] e tu(r)

lim |:SX () =

§—> 00

252 + 3s _ 2+3/s
2— :llm—2:
s“+2s+4 s>o0142/s4+4/s

which is the case, indicating the result is probably correct (satisfying the initial value theorem is
not enough to indicate the result is correct, but if it does not the result is wrong).

We use the MATLAB function ilaplace to compute symbolically the inverse Laplace transform and
plot the response using ezplot, as shown in the following script.

9% % % % % % % % % % % % % % % % %

% Example 3.15

%% % % % % % % % % % % % % % % %

clear all; clf

symsstw

num=[0 2 3]; den=[1 2 4]; % coefficients of numerator and denominator
subplot(121)

splane(num,den) % plotting poles and zeros

disp('>>>>> Inverse Laplace <<<<<’)

x =ilaplace((2 *s + 3)/(s"2 +2* s + 4)); % inverse Laplace transform
subplot(122)
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3.4 Inverse Laplace Transform a

Inverse Laplace transform of X(s) = (2s + 3)/(s? + 2s + 4): (a) poles and zeros and (b) inverse x(z).

ezplot(x,[0,12]);

title(x(t)’)

axis([0 12 -0.5 2.5]); grid

The results are shown in Figure 3.14. |
Double Real Poles
If a proper rational function has double real poles
N(s) a+b(s+a) b
© (s +a)? (s +a)? s+a)? s+a (3.26)
then its inverse is
x(t) = [ate™*" + be™* u(t) (3.27)

where a can be computed as

a=X6)(s+) |s=—a
After replacing it, b is found by computing X(so) for a value sg # «.
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When we have double real poles we need to express the numerator N(s) as a first-order polynomial,
just as in the case of a pair of complex conjugate poles. The values of a and b can be computed in
different ways, as we illustrate in the following examples.

m Example 3.16

Typically, the Laplace transforms appear as combinations of the different terms we have consid-
ered, for instance a combination of first- and second-order poles gives

XO=r22

which has a pole at s = 0 and a double pole at s = —2. Find the causal signal x(t). Use MATLAB to
plot the poles and zeros of X(s) and to find the inverse Laplace transform x(t).

Solution

The partial fraction expansion is

A a+bis+2)
XO=5+—"327

The value of A = X(s)s|s—o = 1, and so
1 4—(+2? —(s+4)

X0 == 6x22 " Gr22
a+bs+2)
= Ter2?
Comparing the numerators of X(s) — 1/s and the one in the partial fraction expansion gives b = —1
and a 4+ 2b = —4 or a = —2. We then have
1 —2—(+2)
X(s) = N + (S—I-—Q_)z

so that
x(t) = [1 — 2te " — e 2 u(t)
Another way to do this type of problem is to express X(s) as
X(s) = 4 + B + ¢
T s 5422 s+2
We find the A as before, and then find B by multiplying both sides by (s + 2)? and letting s = —2,
which gives

AGs +2)2
S

X()(s 4+ 2)% = = [ +B+C(s + 2)]

s=—2
so that

B =X()(s + 2)2|s=_
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x(1)
1 f f :
0.8 --- L CERRRRPaT A }
e I |
L e e |
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0.4 - R ET TR PRSP A }
N .
FIGURE 3.15
Inverse Laplace 08 --- S N po }
transform of } } 3 } ‘
X(s) = 4/(s(s + 2)2): R 0 2 0 5 10
(@) poles and zeros and o t
(b) x(1). (a) (b)

To find C we compute the partial fraction expansion for a value of s for which no division by zero
is possible. For instance, if we let s = 1 we can find the value of C, after which we can find the
inverse.

The initial value x(0) = 0 coincides with

‘ . D VA
lim [sX(S) = m} = lim (1+2/s)2

To find the inverse Laplace transform with MATLAB we use a similar script to the one used before;
only the numerator and denominator description needs to be changed. The plots are shown in
Figure 3.15. |

m Example 3.17

Find the inverse Laplace transform of the function

4

0= Gr 23

which has a simple real pole s = 0, and complex conjugate poles s = —1 = j/3.
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Solution
The partial fraction expansion is

A A*
5+1—]\/§+s+1+]‘«/§+;

X(s) =

We then have

B =sX(©)ls=0 =1

. j 1 o
A=XE)s+1 =V 5= 0.5(—1 + ﬁ) = 54150
so that
x(t) = %e[cos(\/gt—i— 150°)u(t) + u(r)
= —[cos(\/gt) 4+ 0.577 sin(«/gt)]e*tu(t) + u(t) m
Remarks

s Following the above development, when the poles are complex conjugate and double the procedure for the
double poles is repeated. Thus, the partial expansion is given as
N(s)
(s +a —jQ0)%(s + & + j0)?
_a+tbls+a—jQ)  a*+b"(s+a+jQo)
(s +a —jQ0)? (s + o + jS0)?

X(s) =

(3.28)

so that finding a and b we obtain the inverse.
m  The partial fraction expansion for second- and higher-order poles should be done with MATLAB.

m Example 3.18

In this example we use MATLAB to find the inverse Laplace transform of more complicated func-
tions than the ones considered before. In particular, we want to illustrate some of the additional
information that our function pfeLaplace gives. Consider the Laplace transform

352 4+25—5
$34+6s24+11s+6

X(s) =

Find poles and zeros of X(s), and obtain the coefficients of its partial fraction expansion (also
called the residues). Use ilaplace to find its inverse and plot it using ezplot.

Solution

The following is the function pfelaplace.
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function pfeLaplace(num,den)

%

disp(>>>>> Zeros <<<<<’)
z=roots(num)
[r,p,K]=residue(num,den);
disp('>>>>> Poles <<<<<’)

p

disp(>>>>> Residues <<<<<’)
r

splane(num,den)

The function pfeLaplace uses the MATLAB function roots to find the zeros of X(s) defined by the coef-
ficients of its numerator and denominator given in descending order of s. For the partial fraction
expansion, pfeLaplace uses the MATLAB function residue, which finds coefficients of the expansion
as well as the poles of X(s). (The residue r(i) in the vector r corresponds to the expansion term for
the pole p(i); for instance, the residue 7(1) = 8 corresponds to the expansion term corresponding
to the pole p(1) = —3.) The symbolic function ilaplace is then used to find the inverse x(t); as input
to ilaplace the function X(s) is described in a symbolic way. The MATLAB function ezplot is used for
the plotting of the symbolic computations.

The analytic results are shown in the following, and the plot of x(t) is given in Figure 3.16.

>>>>> /eros <<<<<

z=-1.6667
1.0000
>>>>> Poles <<<<<
p=-3.0000
-2.0000
-1.0000
>>>>> Residues <<<<<
r=_8.0000
-3.0000
-2.0000
>>>>> Inverse Laplace <<<<<
x=8%"exp(-3*1)-3*exp(-2 *1)-2 * exp(-t) [}

3.4.2 Inverse of Functions Containing ¢ *° Terms

When X(s) has exponentials e~ #S in the numerator or denominator, ignore these terms and perform partial
fraction expansion on the rest, and at the end consider the exponentials to get the correct time shifting.
In particular, when

N(s) _ NG | Nee ™  N(se2*
D(s)(1 —e=%) — D(s) D(s) D(s)

X(s) =
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x(f)
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the corresponding o t
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if f(¢) is the inverse of N(s)/D(s), then
x(®) =fO) +ft—a) +f(t—20) +---
Another possibility is when the function is given as

N(s) _ NG  NEe ™  Ne?*
DE)(14+e7%) D) D(s) D(s)

X(s) =
If f(¢) is the inverse of N(s)/D(s), we then have

x(O) =fO) —ft—o) +f(t —20) — -+~

The time-shifting property of Laplace makes it possible for the numerator N(s) or the denominator
D(s) to have ¢~ terms. The procedure for inverting such functions is to initially ignore these terms
and do the partial fraction expansion on the rest and at the end consider them to do the necessary
time shifting. For instance, the inverse of

N e—S —S

o
XO=—=7"7

es e
s
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is obtained by first considering the term 1/s, which has u(t) as inverse, and then using the information
in the numerator to get the final response,

xt)=ut+ 1) —ut—1)

The two sums
o

1
—ask __
Z € T 1= eus

k=0

o0
S (e = 1
k=0 Tem

can be easily verified by cross-multiplying. So when the function is

[e.0]

L ONO NO K e
M= Do —e=) Do) ,;e

_ N(s) | N(©)e ™  N(s)e?*
" D(s)  D(s) D(s)

and if f(¢) is the inverse of N(s)/D(s), we then have
x1(0) =fO +ft—a)+f(t—20)+---

Likewise, when

CN®  NOD,
0O =500 1e™ ~ Do g( e

_ N  NEe* N(s)e™2s
D)  D(s) D(s)
if f(¢) is the inverse of N(s)/D(s), we then have
x(t) = f(t) — f(t — o) +f(t —2a) —- -~

m Example 3.19
We wish to find the causal inverse of
1—¢°

XO=Grna—e»

Solution

We let

X(s) =F(s) Y (e

k=0
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where

1-—
F(s) =
(s) ST

The inverse of F(s) is
fO) =e tut) —e " Du —1)
and the inverse of X(s) is thus given by

xO=fO+fC=)+ft—4+-- -

3.4.3 Inverse of Two-Sided Laplace Transforms

When finding the inverse of a two-sided Laplace transform we need to pay close attention to the
region of convergence and to the location of the poles with respect to the jQ axis. Three regions of
convergence are possible:

A plane to the right of all the poles, which corresponds to a causal signal.

A plane to the left of all poles, which corresponds to an anti-causal signal.

A region that is in between poles on the right and poles on the left (no poles included in it),
which corresponds to a two-sided signal.

If the jQ axis is included in the region of convergence, bounded-input bounded-output (BIBO) sta-
bility of the system, or absolute integrability of the impulse response of the system, is guaranteed.
Furthermore, the system with that region of convergence would have a frequency response, and the
signal a Fourier transform. The inverses of the causal and the anti-causal components are obtained
using the one-sided Laplace transform.

m Example 3.20

Find the inverse Laplace transform of

1

Solution

The ROC —2 < Re(s) <2 is equivalent to {(o,Q): -2 <0 <2,—00 < Q < oo}. The partial
fraction expansion is

1 —-0.25 0.25
X(s) = = + —2 < Re(s) <2
S+2)(s—2) s+ 2 s—2
where the first term with the pole at s = —2 corresponds to a causal signal with a region of con-

vergence Re(s) > —2, and the second term corresponds to an anti-causal signal with a region of
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convergence Re(s) < 2. That this is so is confirmed by the intersection of these two regions of
convergence that gives

[Re(s) > —2] N [Re(s) < 2] =—2 < Re(s) <2
As such, we have

x(t) = —0.25¢ 2 u(t) — 0.25¢* u(—t) =

m Example 3.21

Consider the transfer function

s 2/3  1/3
H(S) = = =+
+2)s—-1) s+2 s—1
with a zero at s = 0, and poles at s = —2 and s = 1. Find out how many impulse responses can be

connected with H(s) by considering different possible regions of convergence and by determining
in which cases the system with H(s) as its transfer function is BIBO stable.

Solution
The following are the different possible impulse responses:

s IfROC: Re(s) > 1, the impulse response
hi (D) = (2/3)e”*u(0) + (1/3)e'u(r)

corresponding to H(s) with this region of convergence is causal. The corresponding system is
unstable—due to the pole in the right-hand s-plane, which will make the impulse response
grow as t increases.

s If ROC: —2 < Re(s) < 1, the impulse response corresponding to H(s) with this region of
convergence is noncausal, but the system is stable. The impulse response would be

ho () = (2/3)e*'u(t) — (1/3)e‘u(—t)

Notice that the region of convergence includes the j& axis, and this guarantees the stability
(verify that hy(t) is absolutely integrable), and as we will see later, also the existence of the
Fourier transform of h; (¢).

s  IfROC: Re(s) < —2, the impulse response in this case would be anti-causal, and the system is
unstable (please verify it), as the impulse response is

ha(t) = —(2/3)e 2 'u(—t) — (1/3)e'u(—t) o

Two very important generalizations of the results in this example are:

= AnLTTwith a transfer function H(s) and region of convergence R is BIBO stable if the j2 axis is contained
in the region of convergence.
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= If the system is BIBO stable and causal, then the region of convergence includes the jQ axis so that the
frequency response H(jS2) exists, and all the poles of H(s) are in the open left-hand s-plane (the j axis is
not included).

3.5 ANALYSIS OF LTI SYSTEMS

Dynamic linear time-invariant systems are typically represented by differential equations. Using the
derivative property of the one-sided Laplace transform (allowing the inclusion of initial conditions)
and the inverse transformation, differential equations are changed into easier-to-solve algebraic equa-
tions. The convolution integral is not only a valid alternate representation for systems represented by
differential equations, but for other systems. The Laplace transform provides a very efficient com-
putational method for the convolution integral. More important, the convolution property of the
Laplace transform introduces the concept of transfer function, a very efficient representation of LTI
systems whether they are represented by differential equations or not. In Chapter 6, we will present
applications of the material in this section to classic control theory.

3.5.1 LTI Systems Represented by Ordinary Differential Equations

Two ways to characterize the response of a causal and stable LTI system are:

m  Zero-state and zero-input responses, which have to do with the effect of the input and the initial
conditions of the system.

m  Transient and steady-state responses, which have to do with close and faraway behavior of the
response.

The complete response y(t) of a system represented by an Nth-order linear differential equation with constant

coefficients,
N-1 M
yNO+ Y ay®o=>"bxO0 N>M (3.29)
k=0 £=0

where x(¢) is the input and y(t) is the output of the system, and initial conditions

PP, 0<k<N-1 (3.30)
is obtained by inverting the Laplace transform
B(s) 1
Yi) = ——X —I 3.31
®) =~ ® ©+ 7 ® ® (3.31)

where Y(s) = L[y(®)], X(s) = L]x(t)], and

N
A(s) = Zaksk an =1
k=0

M
B(s) = Z bgsl
=0
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N k—1
I(s) = Z ar Z sk—m—ly(WI) 0)
k=1 m=0

That is, I(s) depends on the initial conditions.

The notation y® (1) and x© () indicates the kth and the £th derivatives of y(t) and of x(t), respectively
(it is to be understood that YO (1) = y(t) and likewise x© (t) = x(t) in this notation). The assump-
tion N > M avoids the presence of §(¢) and its derivatives in the solution, which are realistically not
possible. To obtain the complete response y(t) we compute the Laplace transform of Equation (3.29):

N M N k—1
|:Z akski| Y(s) = |:Z be52i| X(s) + Z a, Z S(k—l)—my(m) (0)
k=0 =0 k=1 m=0

A(s) _1;(/5)_ ] 1(s)
which can be written as
A)Y(s) = BE)X(ES) + 1(s) (3.32)
by defining A(s), B(s), and I(s) as indicated above. Solving for Y(s) in Equation (3.32), we have
Y(s) = @X(s) + L
A(s) A(s)

and finding its inverse we obtain the complete response y(t).

Letting

B 1

the complete response y(t) = £~ 1[Y(s)] of the system is obtained by the inverse Laplace transform of
Y(s) = H(s)X(s) + Hq (5)I(s) (3.33)
which gives
Y@ = Yas(6) + ¥z (1) (3.34)
where
zero-state response:  ygs(t) = £t [H($)X(5)]
Zero-input response:  y,i(t) = ! [H1($)I(s)]

In terms of convolution integrals,

L L

y(t) = /x(t)h(t —1)dt + / i(t)hy(t — t)dt (3.35)
0 0




m CHAPTER 3: The Laplace Transform

where h(t) = £71[H(s)] and hy () = L™1[H1(5)], and

N k—1
imzﬁ*mm:§:%(ihwmmWW*mO

k=1 m=0

where {6(™) (1)} are mth derivatives of the impulse signal §(¢) (as indicated before, §(@ (t) = §(1)).

Zero-State and Zero-Input Responses

Despite the fact that linear differential equations, with constant coefficients, do not represent linear
systems unless the initial conditions are zero and the input is causal, linear system theory is based on
these representations with initial conditions. Typically, the input is causal so it is the initial conditions
not always being zero that causes problems. This can be remedied by a different way of thinking
about the initial conditions. In fact, one can think of the input x(t) and the initial conditions as two
different inputs to the system, and apply superposition to find the responses to these two different
inputs. This defines two responses. One is due completely to the input, with zero initial conditions,
called the zero-state solution. The other component of the complete response is due exclusively to the
initial conditions, assuming that the input is zero, and is called the zero-input solution.

Remarks

m [t is important to recognize that to compute the transfer function of the system

Y0

"= 36

according to Equation (3.33) requires that the initial conditions be zero, or I(s) = 0.
m If there is no pole-zero cancellation, both H(s) and Hi(s) have the same poles, as both have A(s) as
denominator, and as such h(t) and hy(t) might be similar.

Transient and Steady-State Responses

Whenever the input of a causal and stable system has poles in the closed left-hand s-plane, poles in
the jQ2-axis being simple, the complete response will be bounded. Moreover, whether the response
exists as t — oo can then be determined without using the inverse Laplace transform.

The complete response y(t) of an LTI system is made up of transient and steady-state components.
The transient response can be thought of as the system'’s reaction to the initial inertia after applying
the input, while the steady-state response is how the system reacts to the input away from the initial
time when the input starts.

If the poles (simple or multiple, real or complex) of the Laplace transform of the output, Y(s), of an LTI system
are in the open left-hand s-plane (i.e., no poles on the j<2 axis), the steady-state response is

yss(t) = lim y(t) =0
t— o0
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In fact, for any real pole s = —«, @ > 0, of multiplicity m > 1, we have that
1| N® ] R
L ——— | = Apt* eyt
[ Gt am }; k ©

where N(s) is a polynomial of degree less or equal to m — 1. Clearly, for any value of « > 0 and any
order m > 1, the above inverse will tend to zero as t increases. The rate at which these terms go to zero
depends on how close the pole(s) is (are) to the j2 axis: The farther away, the faster the term goes to
zero. Likewise, complex conjugate pairs of poles with a negative real part also give terms that go to
zero as t — oo, independent of their order. For complex conjugate pairs of poles 51, = —a £ jQ2o of
order m > 1, we have

_ N(s) n L
! = 3 20AL It e cos(Qot + (A
|:((S+ot)2+Q%)m:| 2, Ao cos(Sat + LA

where again N(s) is a polynomial of degree less or equal to 2m — 1. Due to the decaying exponentials
this type of term will go to zero as t goes to infinity.

Simple complex conjugate poles and a simple real pole at the origin of the s-plane cause a steady-state
response. Indeed, if the pole of Y(s) is s = 0 we know that its inverse transform is of the form Au(t),
and if the poles are complex conjugates +j2¢ the corresponding inverse transform is a sinusoid—
neither of which is transient. However, multiple poles on the jQ2-axis, or any poles in the right-hand s-plane
will give inverses that grow as t — oo. This statement is clear for the poles in the right-hand s-plane. For
double- or higher-order poles in the jQ axis their inverse transform is of the form

_ N(s) - -
-1 [—m} = > 2/Alt" ! cos(Qo + Z(AR)u(t)
(s2 + Q3 P

which will continuously grow as t increases.

In summary, when solving differential equations—with or without initial conditions—we have

m The steady-state component of the complete solution is given by the inverse Laplace transforms of the
partial fraction expansion terms of Y(s) that have simple poles (real or complex conjugate pairs) in the
jS2-axis.

m The transient response is given by the inverse transform of the partial fraction expansion terms with poles
in the left-hand s-plane, independent of whether the poles are simple or multiple, real or complex.

= Multiple poles in the jQ2 axis and poles in the right-hand s-plane give terms that will increase as ¢ increases.

m Example 3.22

Consider a second-order (N = 2) differential equation,

&2 d
dytit) n 3% +2y() = x(0)
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Assume the above equation represents a system with input x(t) and output y(t). Find the impulse
response h(t) and the unit-step response s(t) of the system.
Solution

If the initial conditions are zero, computing the two- or one-sided Laplace transform of the two
sides of this equation, after letting Y(s) = L[y(t)] and X(s) = L[x(¢)], and using the derivative
property of Laplace, we get

Y()[s* + 35+ 2] = X(5)

To find the impulse response of this system (i.e., the system response y(t) = h(t)), we let x(t) = §(t)
and the initial condition be zero. Since X(s) = 1, then Y(s) = H(s) = L[h(1)] is

1 1 A B
H(s) = = = +
s2+3s+2 +1D(s+2) s+1 s+2
We obtain values A = 1 and B = —1, and the inverse Laplace transform is then

ht) = [e™" — e Ju

which is completely transient.

In a similar form we obtain the unit-step response s(t), by letting x(t) = u(t) and the initial
conditions be zero. Calling Y (s) = S(s) = L[s(t)], since X(s) = 1/s, we obtain
H(s) 1 A B C
= ==+ +
s s(s24+35s+2) s s+1 s+2

S(s) =

It is found that A = 1/2, B= —1, and C = 1/2, so that

s(f) = 0.5u(t) — e ‘u(t) + 0.5¢~2'u(r)

The steady state of 5() is 0.5 as the two exponentials go to zero. Interestingly, the relation sS(s) =
H(s) indicates that by computing the derivative of s(t) we obtain h(t). Indeed,

% = 0.58(t) + e~ 'u(t) — e '8(t) — e~ u(t) + 0.5¢ 28 (1)
=[0.5—1+0.5]8(t) + [e™" — e 2" Ju(t)
= [e7" =7 Ju = h(t) -
Remarks
m  Because the existence of the steady-state response depends on the poles of Y (s) it is possible for an unstable

causal system (recall that for such a system BIBO stability requires all the poles of the system transfer
function be in the open, left-hand s-plane) to have a steady-state response. It all depends on the input.
Consider, for instance, an unstable system with H(s) = 1/(s(s + 1)), being unstable due to the pole at
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s = 0; if the system input is x1(t) = u(t) so that X1(s) = 1/s, then Y1(s) = 1/(s*>(s + 1)). There will be
no steady state because of the double pole s = 0. On the other hand, X, (s) = s/(s + 2)? will give
S 1

1
RO =HOXO = 7 522 = 61 D61 22

which will give a zero steady state, even though the system is unstable. This is possible because of the
pole-zero cancellation.

m  The steady-state response is the response of the system away from t = 0, and it can be found by letting
t — oo (even though the steady state can be reached at finite times, depending on how fast the transient
goes to zero). In Example 3.22, the steady-state response of h(t) = (e~' — e 2")u(t) is zero, while for
s(t) = 0.5u(t) — e~'u(t) + 0.5e2tu(t) it is 0.5. The transient responses are then h(t) — 0 = h(t) and
s(t) — 0.5u(t) = —e~'u(t) + 0.5e2u(t). These transients eventually disappear.

m  The relation found between the impulse response h(t) and the unit-step response s(t) can be extended to
more cases by the definition of the transfer function—that is, H(s) = Y(s)/X(s) so that the response Y (s)
is connected with H(s) by Y(s) = H(s)X(s), giving the relation between y(t) and h(t). For instance, if
x(t) = 8(t), then Y(s) = H(s) x 1, with inverse the impulse response. If x(t) = u(t), then Y(s) = H(s)/s
is S(s), the Laplace transform of the unit-step response, and so s(t) = dh(t)/dt. And if x(t) = r(t), then
Y (s) = H(s)/s? is p(s), the Laplace transform of the ramp response, and so p(t) = d*h(t)/dt*> = ds(t)/dL.

m Example 3.23
Consider again the second-order differential equation in the previous example,
Py L dy©

a2 + 37 + 2y(t) = x(t)

but now with initial conditions y(0) = 1 and dy(t)/dt|;=0 = 0, and x(t) = u(t). Find the complete
response y(t). Could we find the impulse response h(t) from this response? How could we do it?
Solution

The Laplace transform of the differential equation gives

dy(t)
dt

Y($s)(s? +35+2) — (s + 3) = X(s)

[s2Y(s) — sp(0) —

li=o] 4 3[sY(s) — y(0)] + 2Y(s) = X(s)

so we have that

X0 s+3

S+ DG+ +HDE+2)
1435452 B, By B3

TS6E D642 s s+l st2

Y(s)
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after replacing X(s) = 1/s. We find that B; = 1/2, B, = 1, and B3 = —1/2, so that the complete
response is

y() =[0.5+ et —0.5¢ 2 u(t) (3.36)

Again, we can check that this solution satisfies the initial condition y(0) and dy(0)/dt (this
is particularly interesting to see, try it!). The steady-state response is 0.5 and the transient
[e7t — 0.5 2 u(t).

According to Equation (3.36), the complete solution y(¢) is composed of the zero-state response,
due to the input only, and the response due to the initial conditions only or the zero-input
response. Thus, the system considers two different inputs: One that is x(t) = u(t) and the other
the initial conditions.

If we are able to find the transfer function H(s) = Y(s)/X(s) its inverse Laplace transform would be
h(t). However that is not possible when the initial conditions are nonzero. As shown above, in the
case of nonzero initial conditions, we get that the Laplace transform is

X 1o

YO =736 T a0

where in this case A(s) = (s+ 1)(s+2) and I(s) =s+ 3, and thus we cannot find the ratio
Y (s)/X(s). If we make the second term zero (i.e., I(s) = 0), we then have that Y(s)/X(s) = H(s) =
1/A(s) and h(t) = e u(t) — e~ 2'u(t). [ ]

m Example 3.24

Consider an analog averager represented by

t

/ x(t)dt (3.37)

t—=T

S|

y@® =

where x(t) is the input and y(t) is the output. The derivative of y(t) gives the first-order differential
equation

dy(t) 1
- ?[x(t) —x(t—T)]

with a finite difference for the input. Let us find the impulse response of this analog averager.

Solution

The impulse response of the averager is found by letting x(t) = §(¢) and the initial condition be
zero. Computing the Laplace transform of the two sides of the differential equation, we obtain

sY(s) = %[1 — e 11X (s)
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and substituting X(s) = 1, then
1
HG) =Y() = —[1—eT
©=Y©®=[1—e"]
The impulse response is then

1
h(t) = 2 —u(t = )], -

3.5.2 Computation of the Convolution Integral

From the point of view of signal processing, the convolution property is the most important
application of the Laplace transform to systems. The computation of the convolution integral is
difficult even for simple signals. In Chapter 2 we showed how to obtain the convolution integral
analytically as well as graphically. As we will see in this section, it is not only that the convolution
property of the Laplace transform gives an efficient solution to the computation of the convolution
integral, but that it introduces an important representation of LTI systems, namely the transfer func-
tion of the system. A system, like signals, is thus represented by the poles and zeros of the transfer
function. But it is not only the pole-zero characterization of the system that can be obtained from the
transfer function. The system’s impulse response is uniquely obtained from the poles and zeros of
the transfer function and the corresponding region of convergence. The way the system responds to
different frequencies will be also given by the transfer function. Stability and causality of the system
can be equally related to the transfer function. Design of filters depends on the transfer function.

The Laplace transform of the convolution y(t) = [x * h](t) is given by the product
Y(s) = X(s)H(s) (3.38)

where X(s) = L[x(t)] and H(s) = L[h(t)]. The transter function of the system H(s) is defined as

Y(s)
H(s) = L[h(t)] = — 3.39
©) = LhO] = © (3.39)
H(s) transfers the Laplace transform X(s) of the input into the Laplace transform of the output Y(s). Once Y (s)
is found, y(¢) is computed by means of the inverse Laplace transform.

m Example 3.25
Use the Laplace transform to find the convolution y(t) = [x * h](t) when

(1) the input is x(t) = u(t) and the impulse response is a pulse h(t) = u(t) — u(t — 1), and
(2) the input and the impulse response of the system are x(t) = h(t) = u(t) — u(t — 1).

Solution

m The Laplace transforms are X(s) = L[u(t)] = 1/s and H(s) = L[h(t)] = (1 — e™*)/s, so that

—S

Y(s) = H(s)X(s) =

52
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Its inverse is

y@® =1 —rt—1)

where r(t) is the ramp signal. This result coincides with the one obtained graphically in
Example 2.12 in Chapter 2.
= In the second case, X(s) = H(s) = L[u(t) — u(t — 1)] = (1 — ™) /s, so that

(1—e2 1-2" e ™

Y(s) = H(s)X(s) = 2 2

which corresponds to
y@&) =r@) —2rt— 1) +1r(t—2)

or a triangular pulse as we obtained graphically in Example 2.13 in Chapter 2. ]

m Example 3.26

To illustrate the significance of the Laplace approach in computing the output of an LTI system by
means of the convolution integral, consider an RLC circuit in series with input a voltage source
x(t) and as output the voltage y(t) across the capacitor (see Figure 3.17). Find its impulse response
h(t) and its unit-step response s(t). Let LC = 1 and R/L = 2.

Solution

The RLC circuit is represented by a second-order differential equation given that the inductor and
the capacitor are capable of storing energy and their initial conditions are not dependent on each
other. To obtain the differential equation we apply Kirchhoff’s voltage law (KVL)

v = ki) + L 4y

where i(t) is the current through the resistor, inductor and capacitor and where the voltage across
the capacitor is given by

t

—1 i(0)d 0
y(t)—5/1<o> o + y(0)

0
R L
\/\N\/\, IRRAR!

+ +
FIGURE 3.17 x() CD c~y()
RLC circuit with input a voltage source \ -
x(t) and output the voltage across the
capacitor y(t).
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with y(0) the initial voltage in the capacitor and i(t) the current through the resistor, inductor, and
capacitor. The above two equations are called integro-differential given that they are composed of
an integral equation and a differential equation. To obtain a differential equation in terms of the
input x(t) and the output y(t), we find the first and second derivative of y(t), which gives

dy(ty 1. L dy(@)
Frale C1(t) = i(t)=C it
dyt)y  1di@) di(t) a%y(t)
2 —ca o la e

which when replaced in the KVL equation gives

dy(t) d?y(t)
— RCZ 4
x(t) C i + LC a2

which, as expected, is a second-order differential equation with two initial conditions: y(0), the
initial voltage in the capacitor, and i(0) = Cdy(t)/dt|;—o, the initial current in the inductor. To find
the impulse response of this circuit, we let x(t) = §(t) and the initial conditions be zero. The Laplace
transform of Equation (3.40) gives

+y(®) (3.40)

X(s) = [LCs®> + RCs + 1]Y(s)
The impulse response of the system is the inverse Laplace transform of the transfer function
Y(s) 1/LC
X(s) s2+(R/L)s+1/LC
If LC =1 and R/L = 2, then the transfer function is

H(s) =

1

HO =512

which corresponds to the impulse response
h(t) = te"tu(r)

Now that we have the impulse response of the system, suppose then the input is a unit-step signal,
x(t) = u(t). To find its response we consider the convolution integral

@]

y@® = / x(0)h(t — v)dt

—00

[e¢]

= / u(t)(t — v)e” u(t — t)dr

—00

¢
= /(t —1)e
0

=[1—-e'(1+D]u)
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which satisfies the initial conditions and attempts to follow the input signal. This is the unit-step
response.

In the Laplace domain, the above can be easily computed as follows. From the transfer function,
we have that

Y(s) = H($)X(s)
11
T+ 12 s
where we replaced the transfer function and the Laplace transform of x(t) = u(t). The partial
fraction expansion of Y(s) is then
B N C
s+1  (s+1)2

A
Y()=—+
s
and after obtaining that A =1, C = —1, and B = —1, we get
y(0) = s(t) = u(t) — e~ ‘u(t) — te""u(t)

which coincides with the solution of the convolution integral. It has been obtained, however, in a
much easier way. ]

m Example 3.27

Consider the positive feedback system created by a microphone close to a set of speakers that are
putting out an amplified acoustic signal (see Figure 3.18), which we considered in Example 2.18
in Chapter 2. Find the impulse response of the system using the Laplace transform, and use it to
express the output in terms of a convolution. Determine the transfer function and show that the
system is not BIBO stable. For simplicity, let 8 = 1, T = 1, and x(¢t) = u(t). Connect the location of
the poles of the transfer function with the unstable behavior of the system.

Solution

As we indicated in Example 2.18 in Chapter 2, the impulse response of a feedback system cannot
be explicitly obtained in the time domain, but it can be done using the Laplace transform. The
input-output equation for the positive feedback is

y() = x(t) + By(t — 1)

Delay
FIGURE 3.18 By(t-1)
Positive feedback created by closeness

of a microphone to a set of speakers. B
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If we let x(t) = §(t), the output is y(t) = h(t) or
h(t) = 8(t) + Bh(t — 1)
and if H(s) = L[h(t)], then the Laplace transform of the above equation is H(s) = 1 + BH(s)e™*" or
solving for H(s):
1 1

H(s) = =
) 1—Be*™ 1—e*

00
:Zefsk:1+e75_’_e72s+673s_’_'”
k=0

after replacing the given values for 8 and 7. The impulse response h(t) is the inverse Laplace
transform of H(s) or

h(D) =8 + 81— 1)+t —2) 4= 8(t—h
k=0

If x(¢) is the input, the output is given by the convolution integral

Yo = / x(t—Dh(r)dr = | Y8t —kx(t — )dr
00 6o k=0
=> / §(r —x(t — 1)dr = Y _x(t — k)
k=0_" k=0

and replacing x(t) = u(t), we get

[e¢]

y(&) =Y u(t—k)

k=0

which tends to infinity as t increases.

For this system to be BIBO stable, the impulse response h(t) must be absolutely integrable, which
is not the case for this system. Indeed,

/|h(t)|dt= / ZB(t—k)dt

e k=0
o o0 o0

=y / §(t—kydt = 1 — oo
k:O_OO k=0

The poles of H(s) are the roots of 1 — 5 = 0, which are the values of s such that e~ = 1 = &/27% or
sp = £j2mk. That is, there is an infinite number of poles on the j<2 axis, indicating that the system
is not BIBO stable. L



m CHAPTER 3: The Laplace Transform

3.6 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO FROM
HERE?

In this chapter you have learned the significance of the Laplace transform in the representation of
signals as well as of systems. The Laplace transform provides a complementary representation to the
time representation of a signal, so that damping and frequency, poles and zeros, together with regions
of convergence, conform a new domain for signals. But it is more than that—you will see that these
concepts will apply for the rest of this part of the book. When discussing the Fourier analysis of signals
and systems we will come back to the Laplace domain for computational tools and for interpretation.
The solution of differential equations and the different types of responses are obtained algebraically
with the Laplace transform. Likewise, the Laplace transform provides a simple and yet very significant
solution to the convolution integral. It also provides the concept of transfer function, which will be
fundamental in analysis and synthesis of linear time-invariant systems.

The common thread of the Laplace and the Fourier transforms is the eigenfunction property of LTI
systems. You will see that understanding this property will provide you with the needed insight into
the Fourier analysis, which we will cover in the next two chapters.

PROBLEMS

3.1. Generic signal representation and the Laplace transform
The generic representation of a signal x(t) in terms of impulses is

]

x(t) = / x(7)8(t — v)dt

—0o0

Considering the integral an infinite sum of terms x(7)8(t — =) (think of x(tr) as a constant, as it is not a
function of time t), find the Laplace transform of each of these terms and use the linearity property to find
X(s) = L[x(t)]. Are you surprised at this result?

3.2. Impulses and the Laplace transform
Given

x(t) =2[8(t+ 1)+ 6t — 1]

(a) Find the Laplace transform X(s) of x(t) and determine its region of convergence.

(b) Plot x(1).

(c) The function X(s) is complex. Let s = o + j2 and carefully obtain the magnitude |X(o + j€2)| and the
phase ZX(o + j<Q).

3.3. Sinusoids and the Laplace transform

Consider the following cases involving sinusoids:

(a) Find the Laplace transform of y(t) = sin(2wt)u(r) — sin(2z (t — 1))u(t — 1)) and its region of conver-
gence. Carefully plot y(t). Determine the region of convergence of Y(s).

(b) A very smooth pulse, called the raised cosine, x(t) is obtained as

x(t) =1 — cos(2xt) 0<t<l1



3.4.

3.5.

3.6.

3.7.

3.8.

Problems

and zero elsewhere. The raised cosine is used in communications to transmit signals with minimal
interference. Find its Laplace transform and its corresponding region of convergence.

(c) Indicate three possible approaches to finding the Laplace transform of cos? (t)u(t). Use two of these
approaches to find the Laplace transform.

Unit-step signals and the Laplace transform

Find the Laplace transform of the reflection of the unit-step signal (i.e., u(—t)) and its region of conver-
gence. Then use the result together with the Laplace transform of u(t) to see if you can obtain the Laplace
transform of a constant or u(t) + u(—t) (assume u(0) = 0.5 so there is no discontinuity at t = 0).

Laplace transform of noncausal signal
Consider the noncausal signal

x(t) = e Mty + 1)

Carefully plot it, and find its Laplace transform X(s) by separating x(t) into a causal signal and an anti-
causal signal, x:(t) and x4 (t), respectively, and plot them separately. Find the ROC of X(s), Xc(s), and
Xac(s).

Transfer function and differential equation

The transfer function of a causal LTT system is

1
H(s) = ——
© 244

(a) Find the differential equation that relates the input x(¢) and the output y(t) of the system.
(b) Suppose we would like the output y(t) to be identically zero for t greater or equal to zero. If we let
x(t) = 8(t), what would the initial conditions be equal t0?

Transfer function
The input to an LTI system is

x(t) = u(t) = 2u(t — 1) +u(t — 2)
If the Laplace transform of the output is given by

s+ -e?)

e 2(s+ 1)2

determine the transfer function of the system.

Inverse Laplace transform—MATLAB
Consider the following inverse Laplace transform problems for a causal signal x(t):
(a) Given the Laplace transform

42541

X6) = 54———-——
© 34452 45542

which is not proper, determine the amplitude of the §(t) and dé (t) /dt terms in the inverse signal x(t).

(b) Find the inverse Laplace transform of

s2-3

X =— "
©= T D6+2)

Can you use the initial-value theorem to check your result? Explain.
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3.9.

3.10.

(c) The inverse Laplace transform of

3s—4

XO= G e+

should give a response of the form
x(t) = [Ae™t + B+ Ce 2 u(1)

Find the values of A, B, and C. Use the MATLAB function ilaplace to get the inverse.

Steady state and transient
Consider the following cases where we want to determine either the steady state, transient, or both.
(a) Without computing the inverse of the Laplace transform

1

X = 5(s2 + 25+ 10)

corresponding to a causal signal x(t), determine its steady-state solution. What is the value of x(0)?
Show how to obtain this value without computing the inverse Laplace transform.
(b) The Laplace transform of the output of an LTI system is

1
YO= 17+

What would be the steady-state response yss(t)?
(c) The Laplace transform of the output of an LTI system is

e—S

YO= G

How would you determine if there is a steady state or not? Explain.
(d) The Laplace transform of the output of an LTI system is

s+ 1

O

Determine the steady-state and the transient responses corresponding to Y (s).

Inverse Laplace transformation—MATLAB
Consider the following inverse Laplace problems using MATLAB for causal signal x(t):
(a) Use MATLAB to compute the inverse Laplace transform of

_ 52 +2s+1
"~ s(s+ 1)(s2 + 10s + 50)

X(s)

and determine the value of x(t) in the steady state. How would you be able to obtain this value without
computing the inverse? Explain
(b) Find the poles and zeros of

Find the inverse Laplace transform x(t) (use MATLAB to verify your result).



Problems a

3.11. Convolution integral

Consider the following problems related to the convolution integral:

(a) The impulse response of an LTI system is h(t) = e~2!u(t) and the system input is a pulse x(t) = u(t) —
u(t — 3). Find the output of the system y(t) by means of the convolution integral graphically and by
means of the Laplace transform.

(b) It is known that the impulse response of an analog averager is h(t) = u(t) — u(t — 1). Consider the
input to the averager x(t) = u(t) — u(t — 1), and determine graphically as well as by means of the
Laplace transform the corresponding output of the averager y(t) = [h * x| (t). Is y(t) smoother than
the input signal x(t)? Provide an argument for your answer.

(c) Suppose we cascade three analog averagers each with the same impulse response h(t) = u(t) — u(t —
1). Determine the transfer function of this system. If the duration of the support of the input to the first
averager is M sec, what would be the duration of the support of the output of the third averager?

3.12. Deconvolution
In convolution problems the impulse response h(t) of the system and the input x(t) are given and one
is interested in finding the output of the system y(t). The so-called "deconvolution” problem consists in
giving two of x(t), h(t), and y(t) to find the other. For instance, given the output y(t) and the impulse
response h(t) of the system, one wants to find the input. Consider the following cases:
(a) Suppose the impulse response of the system is h(t) = e~! cos(t)u(t) and the output has a Laplace
transform

4

YO= Gr 2D

What is the input x(t)?
(b) The output of an LTI system is y(t) = r(t) — 2r(t — 1) + r(t — 2), where r(t) is the ramp signal.
Determine the impulse response of the system if it is known that the input is x(t) = u(t) — u(t — 1).
3.13. Application of superposition
One of the advantages of LTI systems is the superposition property. Suppose that the transfer function of
a LTI system is

Ho=arom

Find the unit-step response s(t) of the system, and then use it to find the response due to the following
inputs:

x1(®) =u() —u—1)

xp() = 8(t) — 8(t— 1)

x3(0) =1(0)

x4 =1@) —2r¢t—1)+rt—2)
Express the responses y;(t) due to x;(t) fori = 1, ..., 4 in terms of the unit-step response s(t).

3.14. Properties of the Laplace transform
Consider computing the Laplace transform of a pulse

1 0<t=<1

t) =
P 0 otherwise
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3.15.

3.16.

3.17.

3.18.

(a) Use the integral formula to find P(s), the Laplace transform of p(t). Determine the region of
convergence of P(s).

(b) Represent p(t) in terms of the unit-step function and use its Laplace transform and the time-shift
property to find P(s). Find the poles and zeros of P(s) to verify the region of convergence obtained
above.

Frequency-shift property

Duality occurs between time and frequency shifts. As shown, if L£[x(t)] = X(s), then L[x(t —tg)] =

X(s)e~0S_ The dual of this would be L[x(t)e~*!] = X(s + «), which we call the frequency-shift property.

(a) Use the integral formula for the Laplace transform to show the frequency-shift property.

(b) Use the above frequency-shift property to find X(s) = L[x(t) = cos(Qot)u(t)] (represent the cosine
using Euler’s identity). Find and plot the poles and zeros of X(s).

(c) Recall the definition of the hyperbolic cosine, cosh(Q2qt) = 0.5(e520! + ¢~0t), and find the Laplace
transform Y (s) of y(t) = cosh(Qo)u(t). Find and plot the poles and zeros of Y(s). Explain the relation
of the poles of X(s) and Y (s) by connecting x(t) with y(t).

Poles and zeros

Consider the pulse x(t) = u(t) — u(t — 1).

(a) Find the zeros and poles of X(s) and plot them.

(b) Suppose x(¢) is the input of an LTI system with a transfer function H(s) = 1/(s2 + 47 2). Find and plot
the poles and zeros of Y(s) = L[y(t)] = H(s)X(s) where y(t) is the output of the system.

(c) If the transfer function of the LTT system is

26 1
©=%0 = kl:[l 2+ 2kn)2

and the input is the above signal x(t), compute the output z(t).

Poles and zeros—MATLAB
The poles corresponding to the Laplace transform X(s) of a signal x(t) are

p1o=-3=%jr/2
p3 =0

(a) Within some constants, give a general form of the signal x(t).
(b) Let

1
T G+3-j1/2)G+ 3 —jr/2)s

X(s)

From the location of the poles, obtain a general form for x(t). Use MATLAB to find x(¢) and plot it. How
well did you guess the answer?

Solving differential equations—MATLAB
One of the uses of the Laplace transform is the solution of differential equations.
(a) Suppose you are given the differential equation that represents an LTI system,

Y20 405y @) +0.15p(0) =x(t)  t>0
where y(¢) is the output and x(t) is the input of the system, and y(!) (1) and y?)(t) are first- and second-

order derivatives with respect to t. The input is causal, (i.e.,, x(t) = 0 t < 0). What should the initial
conditions be for the system to be LTI? Find Y (s) for those initial conditions.
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(b) If y(l)(O) =1 and y(0) = 1 are the initial conditions for the above differential equation, find Y(s). If
the input to the system is doubled—that is, the input is 2x(t) with Laplace transform 2X(s)—is Y(s)
doubled so that its inverse Laplace transform y(t) is doubled? Is the system linear?

(c) Use MATLAB to find the poles and zeros and the solutions of the differential equation when the
input is u(t) and 2u(t) with the initial conditions given above. Compare the solutions and verify your
response in (b).

3.19. Differential equation, initial conditions, and impulse response—MATLAB
The following function Y(s) = L[y(t)] is obtained applying the Laplace transform to a differential equation
representing a system with nonzero initial conditions and input x(t), with Laplace transform X(s):

X(s) s+ 1

Y(s) =
© 24+25+3 242543

(a) Find the differential equation in y(t) and x(t) representing the system.

(b) Find the initial conditions y’(0) and y(0).

(c) Use MATLAB to determine the impulse response h(t) of this system. Find the poles of the transfer
function H(s) and determine if the system is BIBO stable.

3.20. Different responses—MATLAB
Let Y(s) = L[y(t)] be the Laplace transform of the solution of a second-order differential equation
representing a system with input x(t) and some initial conditions,

X(s) s+1

Y(s) =
© 24+25+1 242541

(a) Find the zero-state response (response due to the input only with zero initial conditions) for x(t) = u(t).
(b) Find the zero-input response (response due to the initial conditions and zero input).

(c) Find the complete response when x(t) = u(t).

(d) Find the transient and the steady-state response when x(t) = u(t).

(e) Use MATLAB to verify the above responses.

3.21. Poles and stability
The transfer function of a BIBO-stable system has poles only on the open left-hand s-plane (excluding the
j2 axis).
(a) Let the transfer function of a system be
Yo _ 1
XG6)  G+DG—2)
and let X(s) be the Laplace transform of signals that are bounded (i.e., the poles of X(s) are on the
left-hand s-plane). Find lim;—  y(). Determine if the system is BIBO stable. If not, determine what

makes the system unstable.
(b) Let the transfer function be

Hy(s) =

Y(s) 1

LO=50 = 6106+2

and X(s) be as indicated above. Find
lim y(t)
— o0

Can you use this limit to determine if the system is BIBO stable? If not, what would you do to check
its stability?
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3.22.

3.23.

3.24.

3.25.

Poles, stability, and steady-state response
The steady-state solution of stable systems is due to simple poles in the j& axis of the s-plane coming from
the input. Suppose the transfer function of the system is

Y(s) 1

O =Xo " cr12+a

(a) Find the poles and zeros of H(s) and plot them in the s-plane. Find then the corresponding impulse
response h(t). Determine if the impulse response of this system is absolutely integrable so that the
system is BIBO stable.

(b) Let the input x(t) = u(t). Find y(t) and from it determine the steady-state solution.

(c) Let the input x(t) = tu(t). Find y(t) and from it determine the steady-state response. What is the
difference between this case and the previous one?

(d) To explain the behavior in the case above consider the following: Is the input x(t) = tu(t) bounded?
That is, is there some finite value M such that |x(t)| < M for all times? So what would you expect the
output to be knowing that the system is stable?

Responses from an analog averager
The input-output equation for an analog averager is given by

t

y(t) =% / x(t)dt

t—T

where x(t) is the input and y(¢) is the output. This equation corresponds to the convolution integral.

(a) Change the above equation so that you can determine from it the impulse response h(t).

(b) Graphically determine the output y(t) corresponding to a pulse input x(t) = u(t) — u(t — 2) using the
convolution integral (let T = 1) relating the input and the output. Carefully plot the input and the
output. (The output can also be obtained intuitively from a good understanding of the averager.)

(c) Using the impulse response h(t) found above, use now the Laplace transform to find the output
corresponding to x(t) = u(t) — u(t — 2). Let again T = 1 in the averager.

Transients for second-order systems—MATLAB
The type of transient you get in a second-order system depends on the location of the poles of the system.
The transfer function of the second-order system is

Y(s) 1

H)=—""=—
© X(s)  s2+bys+ by

and let the input be x(t) = u(t).

(a) Let the coefficients of the denominator of H(s) be by =5 and by = 6. Find the response y(t). Use
MATLAB to verify the response and to plot it.

(b) Suppose then that the denominator coefficients of H(s) are changed to b; = 2 and by = 6. Find the
response y(t). Use MATLAB to verify the response and to plot it.

(c) Explain your results above by relating your responses to the location of the poles of H(s).

Effect of zeros on the sinusoidal steady state
To see the effect of the zeros on the complete response of a system, suppose you have a system with a
transfer function

Hes) = &s) _ 244
TX() s(+D2+1)
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(a) Find and plot the poles and zeros of H(s). Is this BIBO stable?

(b) Find the frequency ¢ of the input x(t) = 2 cos(2ot)u(t) such that the output of the given system is
zero in the steady state. Why do you think this happens?

(c) If the input is a sine instead of a cosine, would you get the same result as above? Explain why or why
not.

3.26. Zero steady-state response of analog averager—MATLAB
The analog averager can be represented by the differential equation

dy(y 1
- f[x(t) —x(t—T)]

where y(t) is the output and x(t) is the input.
(a) If the input—output equation of the averager is

T
¢

t
y() = ! /x(r)dr
—-T

show how to obtain the above differential equation and that y(¢) is the solution of the differential
equation.

(b) If x(r) = cos(mt)u(t), choose the value of T in the averager so that the output is y(t) = 0 in the steady
state. Graphically show how this is possible for your choice of T. Is there a unique value for T that
makes this possible? How does it relate to the frequency Qg = 7 of the sinusoid?

(c) Use the impulse response h(t) of the averager found before, to show using Laplace that the steady
state is zero when x(t) = cos(zt)u(t) and T is the above chosen value. Use MATLAB to solve the
differential equation and to plot the response for the value of T you chose. (Hint: Consider x(t)/T the
input and use superposition and time invariance to find y(t) due to (x(t) — x(t — T))/T.)

3.27. Partial fraction expansion—MATLAB
Consider the following functions Y;(s) = L[y;(t)], i = 1, 2 and 3:

s+1
e = 5(s2 4+ 25+ 4)
1
Ya(s) = 122
o0 i

T 2(G+1)2+9)

where {y;(t), i = 1, 2, 3} are the complete responses of differential equations with zero initial conditions.

(a) For each of these functions, determine the corresponding differential equation, if all of them have as
input x(t) = u(t).

(b) Find the general form of the complete response {y;(t), i = 1, 2, 3} for each of the {Y;j(s) i = 1, 2, 3}. Use
MATLAB to plot the poles and zeros for each of the {Y;(s)}, to find their partial fraction expansions,
and the complete responses.

3.28. Iterative convolution integral—MATLAB

Consider the convolution of a pulse x(t) = u(t + 0.5) — u(t — 0.5) with itself many times. Use MATLAB for

the calculations and the plotting.

(a) Consider the result for N = 2 of these convolutions—that is,

y2(8) = (e x) (1)
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3.29.

3.30.

3.31.

3.32.

Find Y, (s) = L]y2(t)] using the convolution property of the Laplace transform and find y; (t).
(b) Consider then the result for N = 3 of these convolutions—that is,

3(1) = (X% x % x)(0)

Find Y3 (s) = L[ys3 ()] using the convolution property of the Laplace transform and find y3 (t).

(c) The signal x(t) can be considered the impulse response of an averager that "smooths” out a signal.
Letting y1 (t) = x(t), plot the three functions y;(¢) for i = 1, 2, and 3. Compare these signals on their
smoothness and indicate their supports in time. (For y, (¢) and y3(t), how do their supports relate to
the supports of the signals convolved?)

Positive and negative feedback

There are two types of feedback, negative and positive. In this problem we explore their difference.

(a) Consider negative feedback. Suppose you have a system with transfer function H(s) = Y(s)/E(s)
where E(s) = C(s) — Y(s), and C(s) and Y(s) are the transforms of the feedback system'’s reference
¢(t) and output y(¢). Find the transfer function of the overall system G(s) = Y (s)/C(s).

(b) In positive feedback, the only equation that changes is E(s) = C(s) + Y(s); the other equations remain
the same. Find the overall feedback system transfer function G(s) = Y(s)/C(s).

(c) Suppose that C(s) = 1/s, H(s) = 1/(s + 1). Determine G(s) for both negative and positive feedback.
Find y(t) = £! [Y(s)] for both types of feedback and comment on the difference in these signals.

Feedback stabilization
An unstable system can be stabilized by using negative feedback with a gain K in the feedback loop. For
instance, consider an unstable system with transfer function
He) = —
§) = ——
s—1

which has a pole in the right-hand s-plane, making the impulse response of the system h(t) grow as t
increases. Use negative feedback with a gain K > 0 in the feedback loop, and put H(s) in the forward
loop. Draw a block diagram of the system. Obtain the transfer function G(s) of the feedback system and
determine the value of K that makes the overall system BIBO stable (i.e., its poles in the open left-hand
s-plane).
All-pass stabilization
Another stabilization method consists in cascading an all-pass system with the unstable system to cancel
the poles in the right-hand s-plane. Consider a system with a transfer function

s+1
s—1D(@E2+25+1)

H(s) =

which has a pole in the right-hand s-plane, s = 1, so it is unstable.

(a) The poles and zeros of an all-pass filter are such that if p1p = —o +jQ¢ are complex conjugate poles
of the filter, then z15, = o £+ jQ¢ are the corresponding zeros, and for real poles p = —o there is a
corresponding z = o. The orders of the numerator and the denominator of the all-pass filter are equal.
Write the general transfer function of an all-pass filter Hgy(s) = KN(s)/D(s).

(b) Find an all-pass filter Hap(s) so that when cascaded with H(s) the overall transfer function G(s) =
H(s)Hgp(s) has all its poles in the left-hand s-plane.

(c) Find K of the all-pass filter so that when s = 0 the all-pass filter has a gain of unity. What is the relation
between the magnitude of the overall system |G(s)| and that of the unstable filter |H(s)|.

Half-wave rectifier—MATLAB
In the generation of DC from AC voltage, the "half-wave” rectified signal is an important part. Suppose the
AC voltage is x(t) = sin(2wt)u(t).
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(a) Carefully plot the half-wave rectified signal y(t) from x(t).
(b) Let y1(¢) be the period of y(t) between 0 < ¢ < 1. Show that y; (t) can be written as

y1(t) = sin(2rt)u(t) + sin(2z (t — 0.5))u(t — 0.5)
or
y1(t) = sin(2wt)[u(t) — u(t — 0.5)]

Use MATLAB to verify this. Find the Laplace transform X; (s) of x1 (¢).
(c) Express y(t) in terms of y; (¢) and find the Laplace transform Y(s) of y(z).

3.33. Polynomial multiplication—MATLAB
When the numerator or denominator is given in a factorized form, we need to multiply polynomials.
Although this can be done by hand, MATLAB provides the function conv that computes the coefficients
of the polynomial resulting from the product of two polynomials.
(a) Use help in MATLAB to find how conv can be used, and then consider two polynomials

P(s) =s2+s+1 and Q(s) =283 +32+5+1

Do the multiplication of these polynomials by hand to find Z(s) = P(s)Q(s) and use conv to verify your
results.
(b) The output of a system has a Laplace transform
N(s) (s+2)

YO = e T 26 DG DD T9)

Use conv to find the denominator polynomial and then find the inverse Laplace transform using
ilaplace.

3.34. Feedback error—MATLAB

Consider a negative feedback system used to control a plant G(s) = 1/(s(s + 1)(s + 2)). The output y(t) of

the feedback system is connected via a sensor with transfer function H(s) = 1 to a differentiator where

the reference signal x(t) is also connected. The output of the differentiator is the feedback error e(t) =

x(t) — v(t) where v(t) is the output of the feedback sensor.

(a) Carefully draw the feedback system, and find an expression for E(s), the Laplace transform of the
feedback error e(t).

(b) Two possible reference test signals for the given plant are x(t) = u(t) and x(t) = r(t). Choose the one
that would give a zero steady-state feedback error.

(c) Use MATLAB to do the partial fraction expansions for the two error functions Ej (s), corresponding
to when x(t) = u(t) and E; (s) when x(t) = r(t). Use these partial fraction expansions to find e (t) and
e7 (1), and thus verify your results obtained before.



This page intentionally left blank



CHAPTER 4

Frequency Analysis: The Fourier
Series

A Mathematician is a device for
turning coffee into theorems.
Paul Erdos (1913-1996)
mathematician

4.1 INTRODUCTION

In this chapter and the next we consider the frequency analysis of continuous-time signals and
systems—the Fourier series for periodic signals in this chapter, and the Fourier transform for both
periodic and aperiodic signals as well as for systems in Chapter 5. In these chapters we consider:

= Spectral representation—The frequency representation of periodic and aperiodic signals indicates
how their power or energy is allocated to different frequencies. Such a distribution over frequency
is called the spectrum of the signal. For a periodic signal the spectrum is discrete, as its power
is concentrated at frequencies multiples of a so-called fundamental frequency, directly related to
the period of the signal. On the other hand, the spectrum of an aperiodic signal is a contin-
uous function of frequency. The concept of spectrum is similar to the one used in optics for
light, or in material science for metals, each indicating the distribution of power or energy over
frequency. The Fourier representation is also useful in finding the frequency response of linear
time-invariant systems, which is related to the transfer function obtained with the Laplace trans-
form. The frequency response of a system indicates how an LTI system responds to sinusoids of
different frequencies. Such a response characterizes the system and permits easy computation of
its steady-state response, and will be equally important in the synthesis of systems.

m Eigenfunctions and Fourier analysis—It is important to understand the driving force behind the
representation of signals in terms of basic signals when applied to LTI systems. For instance, the
convolution integral that gives the output of an LTI system resulted from the representation of its
input signal in terms of shifted impulses. Along with this result came the concept of the impulse
response of an LTI system. Likewise, the Laplace transform can be seen as the representation of
signals in terms of general eigenfunctions. In this chapter and the next we will see that complex

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00007-7
(© 2011, Elsevier Inc. All rights reserved. 237
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exponentials or sinusoids are used in the Fourier representation of periodic as well as aperiodic
signals by taking advantage of the eigenfunction property of LTI systems. The results of the Fourier
series in this chapter will be extended to the Fourier transform in Chapter 5.

m  Steady-state analysis—Fourier analysis is in the steady state, while Laplace analysis considers both
transient and steady state. Thus, if one is interested in transients, as in control theory, Laplace is
a meaningful transformation. On the other hand, if one is interested in the frequency analysis,
or steady state, as in communications theory, the Fourier transform is the one to use. There will
be cases, however, where in control and communications both Laplace and Fourier analysis are
considered.

m  Application of Fourier analysis—The frequency representation of signals and systems is extremely
important in signal processing and in communications. It explains filtering, modulation of mes-
sages in a communication system, the meaning of bandwidth, and how to design filters. Likewise,
the frequency representation turns out to be essential in the sampling of analog signals—the
bridge between analog and digital signal processing.

4.2 EIGENFUNCTIONS REVISITED

As indicated in Chapter 3, the most important property of stable LTI systems is that when the input
is a complex exponential (or a combination of a cosine and a sine) of a certain frequency, the output
of the system is the input times a complex constant connected with how the system responds to the
frequency at the input. The complex exponential is called an eigenfunction of stable LTI systems.

If x(t) = J0t, —00 < ¢ < 00, is the input to a causal and a stable system with impulse response h(t), the
output in the steady state is given by

y(t) = FPH(jS0) (4.1)
where
o0
H(jS0) = / h(r)e 10T g7 (4.2)
0

is the frequency response of the system at g. The signal x(t) = &/ is said to be an eigenfunction of the LTI
system as it appears at both input and output.

This can be seen by finding the output corresponding to x(t) = €' by means of the convolution
integral,

Y@ = /h(t)x(t— 7)dt = ejQOF/h(t)e—jﬂordT
0 0

= N H(jQ0)
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where we let H(j2p) equal the integral in the second equation. The input signal appears in the output
modified by the frequency response of the system H(j2) at the frequency €y of the input. Notice
that the convolution integral limits indicate that the input started at —oo and that we are considering
the output at finite time t—this means that we are in steady state. The steady-state response of a
stable LTI system is attained by either considering that the initial time when the input is applied to
the system is —oo and we reach a finite time ¢, or by starting at time 0 and going to co.

The above result for one frequency can be easily extended to the case of several frequencies present
at the input. If the input signal x(¢) is a linear combination of complex exponentials, with different
amplitudes, frequencies, and phases, or

x(t) =) X
k

where X;, are complex values, since the output corresponding to X,&*%! is X,e/*'H(jS;) by
superposition the response to x(t) is

y(&) =) X H(jS)
k
— ZXk|H(]’Qk)|ej(§2}zf+4H(ij)) (4.3)
k

The above is valid for any signal that is a combination of exponentials of arbitrary frequencies. As we
will see in this chapter, when x(¢) is periodic it can be represented by the Fourier series, which is a
combination of complex exponentials harmonically related (i.e., the frequencies of the exponentials
are multiples of the fundamental frequency of the periodic signal). Thus, when a periodic signal is
applied to a causal and stable LTT system its output is computed as in Equation (4.3).

The significance of the eigenfunction property is also seen when the input signal is an integral
(a sum, after all) of complex exponentials, with continuously varying frequency, as the integrand.
That is, if

x(f) = % / X(Q)e¥aQ

—00

then using superposition and the eigenfunction property of a stable LTI system, with frequency
response H(jS2), the output is

Yo = — / X(QIUH(jQ)dR
2

—00

o0
1 s )
= / X(Q)|H(jQ)|eUHHHGD) 46y (4.4)
T

—00
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The above representation of x(t) corresponds to the Fourier representation of aperiodic signals, which
will be covered in Chapter 5. Again here, the eigenfunction property of LTI systems provides an effi-
cient way to compute the output. Furthermore, we also find that by letting Y(2) = X(Q)H(j<2) the
above equation gives an expression to compute y(t) from Y(£2). The product Y(2) = X(Q)H(jS2) cor-
responds to the Fourier transform of the convolution integral y(t) = x(t) * h(t), and is connected with
the convolution property of the Laplace transform. It is important to start noticing these connections,
to understand the link between Laplace and Fourier analysis.

Remarks

Notice the difference of notation for the frequency representation of signals and systems used above. If x(t)
is a periodic signal its frequency representation is given by {X,}, and if aperiodic by X(2), while for a
system with impulse response h(t) its frequency response is given by H(j<2).
When considering the eigenfunction property, the stability of the LTI system is necessary to ensure that
H(j2) exists for all frequencies.
The eigenfunction property applied to a linear circuit gives the same result as the one obtained from phasors
in the sinusoidal steady state. That is, if
jo —jo
x(t) = A cos(Qt + 0) = %ejw + ‘ﬂe—fﬂof (4.5)

is the input of a circuit represented by the transfer function

_ Y _ Ly®]

"9 =X = 2]

then the corresponding steady-state output is given by

Ae 10
2
= A|H(j20)| cos(Qot + 0 + ZH(j20)) (4.6)

e T H (—jQ0)

Aeje . .
Yss(t) = Te]QOtH(]QO) +

where, very importantly, the frequency of the output coincides with that of the input, and the amplitude
and phase of the input are changed by the magnitude and phase of the frequency response of the system
for the frequency Q. The frequency response is H(jQ0) = H(s)|s=jq,, and as we will see its magnitude
is an even function of frequency, or |H(j2)| = |H(—j2)|, and its phase is an odd function of frequency,
or ZH(jQ0) = —ZH(—jS0). Using these two conditions we obtain Equation (4.6).

The phasor corresponding to the input

x(t) = A cos(Qot + 9)
is defined as a vector,
X=A/0

rotating in the polar plane at the frequency of Q2o. The phasor has a magnitude A and an angle 6 with
respect to the positive real axis. The projection of the phasor onto the real axis, as it rotates at the given
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frequency, with time generates a cosine of the indicated frequency, amplitude, and phase. The transfer
function is computed at s = jQo or

. Y
H(s)|s=jo, = H(j0) = X

(ratio of the phasors corresponding to the output Y and the input X). The phasor for the output
is thus

Y = H(jQ0)X = |Y|&“Y
Such a phasor is then converted into the sinusoid (which equals Eq. 4.6):
Vss(£) = Re[ Y] = |Y] cos(Qt + LY)

m A very important application of LTI systems is filtering, where one is interested in preserving desired
frequency components of a signal and getting rid of less-desirable components. That an LTI system can be
used for filtering is seen in Equations (4.3) and (4.4). In the case of a periodic signal, the magnitude
|H(jS2,)| can be set ideally to one for those components we wish to keep and to zero for those we wish
to get rid of. Likewise, for an aperiodic signal, the magnitude |H(j2)| could be set ideally to one for
those components we wish to keep and zero for those components we wish to get rid of. Depending on
the filtering application, an LTI system with the appropriate characteristics can be designed, obtaining the
desired transfer function H(s).

For a stable LTI with transfer function H(s) if the input is
x(1) = Re[Ad 0+ | = A cos(Qot + 6)
the steady-state output is given by

y(1) = Re[AH(jQq)el 20t
= A|H(jQ0)| cos(Qqt + 6 + LH(jQ0)) ()

where

H(jQ0) = H()ls=jgq

m Example 4.1

Consider the RC circuit shown in Figure 4.1. Let the voltage source be vs(t) = 4 cos(t + 7/4) volts.
the resistor be R = 12, and the capacitor C = 1F. Find the steady-state voltage across the capacitor.

Solution
This problem can be approached in two ways.

m  Phasor approach. From the phasor circuit in Figure 4.1, by voltage division we have the follow-
ing phasor ratio, where V; is the phasor corresponding to the source vs(t) and V, the phasor
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+
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FIGURE 4.1 TF7 v S Ve
RC circuit and corresponding phasor
circuit.

corresponding to v.(t):

Ve S _ -0+ _ V2

Vi 1—j 2 2

/—m/4

Since V; = 4/ /4, then
V. = 2+/220
so that in the steady state,
ve(t) = 272 cos(t)

= Eigenfunction approach. Considering the output is the voltage across the capacitor and the input
is the voltage source, the transfer function is obtained using voltage division as

V:(s) _ 1/s 1

H(s) = Vo =
() 1+1/s s+1

so that the system frequency response at the input frequency ¢ = 1 is

¥

2
According to the eigenfunction property the steady-state response of the capacitor is
ve(t) = 4|H(j1)| cos(t + w /4 + LZH(j1))
= 2/2 cos(t)

which coincides with the solution found using phasors. |

m Example 4.2

An ideal communication system provides as output the input signal with only a possible delay in
the transmission. Such an ideal system does not cause any distortion to the input signal beyond
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the delay. Find the frequency response of the ideal communication system, and use it to determine
the steady-state response when the delay caused by the system is t = 3 sec, and the input is x(t) =
2 cos(4t — m/4).

Solution

The impulse response of the ideal system is h(t) = §(t — 7) where 7 is the delay of the transmission.
In fact, the output according to the convolution integral gives

y@® = /5(p — ) x(t—p)dp =x(t — 1)
———
0 h(p)

as expected. Let us then find the frequency response of the ideal communication system. According
to the eigenvalue property, if the input is x(t) = &% then the output is

y() = I H(jQ0)
but also
YO = x(t — 1) = JHED
so that comparing these equations we have that
H(j0) = e/
For a generic frequency 0 < Q < oo, we would get
H(jQ) = e 7™

which is a complex function of €, with a unity magnitude |H(j2)| =1, and a linear phase
ZH(j2) = —1Q. This system is called an all-pass system, since it allows all frequency components
of the input to go through with a phase change only.

Consider theA case when t = 3, and that we input into this system x(t) = 2 cos(4t — 7 /4), then
H(j) = 1e773%, so that the output in the steady state is

y(t) = 2|H(j4)| cos(4t — w /4 + LH(j4))
=2cos(4(t—3) —m/4)
=x(t—3)

where we used H(j4) = 1¢77'2 (i.e, |H(j4)| = 1 and ZH(j4) = 12). [ |

m Example 4.3

Although there are better methods to compute the frequency response of a system represented by
a differential equation, the eigenfunction property can be easily used for that. Consider the RC
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circuit shown in Figure 4.1 where the input is
vs(t) = 1 4 cos(10,000¢)

with components of low frequency, Q = 0, and of large frequency, 2 = 10,000 rad/sec. The output
v:(t) is the voltage across the capacitor in steady state. We wish to find the frequency response of
this circuit to verify that it is a low-pass filter (it allows low-frequency components to go through,
but filters out high-frequency components).

Solution

Using Kirchhoff's voltage law, this circuit is represented by a first-order differential equation,
Ave(1)
dt

Now, if the input is v5(t) = &**, for a generic frequency €, then the output is v.(t) = **H(jR).
Replacing these in the differential equation, we have

vs(t) = v (1) +

de**' H(jQ)
dt

_ ity s (O JRLT(

= J*H(jQ) +jQETH(jQ)

so that

H(EY = 1+jQ

or the frequency response of the filter for any frequency Q. The magnitude of H(j<2) is

H(jQ)| = —=
J 14+ Q2

which is close to one for small values of the frequency, and tends to zero when the frequency
values are large—the characteristics of a low-pass filter.

For the input
vs(t) = 1 4 cos(10,000t) = cos(0t) + cos(10,000¢t)

(i.e., it has a zero frequency component and a 10,000-rad/sec frequency component) using Euler’s
identity, we have that

v(t)=1+05 (eJ‘lO/OOOt " e—le,ooor)

and the steady-state output of the circuit is

ve(t) = 1H(jO) 4 0.5H(j10,000)e/1%:9%0 4 0.5H(—j10,000)e 710000t

~1+ cos(10,000t — /2) =~ 1

10,000



4.3 Complex Exponential Fourier Series a

since

H(jo) =1

. p
H(j10,000) ~ —— = —J
7107 ~ 10,000

| :
H(—10,000) ~ —— = —J
~j10% ~ 10,000

Thus, this circuit acts like a low-pass filter by keeping the DC component (with the low frequency
@ = 0) and essentially getting rid of the high-frequency (£ = 10,000) component of the signal.

Notice that the frequency response can also be obtained by considering the phasor ratio for a
generic frequency 2, which by voltage division is

Ve 1

Ve 14+1/jQ  14jQ

which for € = 0is 1 and for 2 = 10,000 is approximately —;j/10,000 (i.e., corresponding to H(j0)
and H(j10,000) = H*(j10,000)). o

Fourier and Laplace

French mathematician Jean-Baptiste-Joseph Fourier (1768-1830) was a contemporary of Laplace with whom he shared
many scientific and political experiences (2, 7]. Like Laplace, Fourier was from very humble origins but he was not as
politically astute. Laplace and Fourier were affected by the political turmoil of the French Revolution and both came in close
contact with Napoleon Bonaparte, French general and emperor. Named chair of the mathematics department of the Ecole
Normale, Fourier led the most brilliant period of mathematics and science education in France. His main work was “The
Mathematical Theory of Heat Conduction” where he proposed the harmonic analysis of periodic signals. In 1807 he received
the grand prize from the French Academy of Sciences for this work. This was despite the objections of Laplace, Lagrange,
and Legendre, who were the referees and who indicated that the mathematical treatment lacked rigor. Following Galton's
advice of “Never resent criticism, and never answer it,” Fourier disregarded these criticisms and made no change to his
1822 treatise in heat conduction. Although Fourier was an enthusiast for the Revolution and followed Napoleon on some
of his campaigns, in the Second Restoration he had to pawn his belongings to survive. Thanks to his friends, he became
secretary of the French Academy, the final position he held.

4.3 COMPLEX EXPONENTIAL FOURIER SERIES

The Fourier series is a representation of a periodic signal x(¢) in terms of complex exponentials or
sinusoids of frequency multiples of the fundamental frequency of x(t). The advantage of using the
Fourier series to represent periodic signals is not only the spectral characterization obtained, but in
finding the response for these signals when applied to LTI systems by means of the eigenfunction
property.

Mathematically, the Fourier series is an expansion of periodic signals in terms of normalized orthog-
onal complex exponentials. The concept of orthogonality of functions is similar to the concept of
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perpendicularity of vectors: Perpendicular vectors cannot be represented in terms of each other, as
orthogonal functions provide mutually exclusive information. The perpendicularity of two vectors
can be established using the dot or scalar product of the vectors, and the orthogonality of functions is
established by the inner product, or the integration of the product of the function and its conjugate.
Consider a set of complex functions {y,(f)} defined in an interval [a, b], and such that for any pair of
these functions, let’s say ¥ (t) and ¥, (t), £ # m, their inner product is

b
% O £#m
/W(t)l/fm(t)dt = { 1 tem (4.8)
a
Such a set of functions is called orthonormal (i.e., orthogonal and normalized).
A finite-energy signal x(t) defined in [a, b] can be approximated by a series
20 =) a0 (4.9)

k

according to some error criterion. For instance, we could minimize the energy of the error function

e(t) = x(t) — x(t) or
b b
f le(t)|2dt = /

The expansion can be finite or infinite, and may not approximate the signal point by point.

2
dt (4.10)

x(0) = Y ar(t)
k

Fourier proposed sinusoids as the functions {y(t)} to represent periodic signals, and solved the
quadratic minimization posed in Equation (4.10) to obtain the coefficients of the representation.
For most signals, the resulting Fourier series has an infinite number of terms and coincides with the
signal pointwise. We will start with a more general expansion that uses complex exponentials and
from it obtain the sinusoidal form. In Chapter 5 we extend the Fourier series to represent aperiodic
signals—leading to the Fourier transform that is in turn connected with the Laplace transform.

Recall that a periodic signal x(t) is such that

m [tis defined for —oo < t < oo (i.e, it has an infinite support).
m For any integer k, x(t + kTy) = x(t), where Ty is the fundamental period of the signal or the
smallest positive real number that makes this possible.

The Fourier series representation of a periodic signal x(t), of period Ty, is given by an infinite sum of weighted
complex exponentials (cosines and sines) with frequencies multiples of the signal's fundamental frequency
Qo = 27 /Ty rad/sec, or

o0
; 2
=Y Xt Q= T (4.11)

k=—00
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where the Fourier coefficients X, are found according to
to+To
Xp= — f x(H)e TRt gy (4.12)

to

for k=0,%1,4£2,..., and any tg. The form of Equation (4.12) indicates that the information needed for the
Fourier series can be obtained from any period of x(t).

Remarks

= The Fourier series uses the Fourier basis {¢*0, L integer} to represent the periodic signal x(t) of period
To. The Fourier basis functions are also periodic of period Ty (i.e., for an integer m,

eijo(t-‘:—mTo) — ejkﬂotejkaﬂ — ejkﬂot

as &M — 1),
m  The Fourier basis functions are orthonormal over a period—that is,

to+To
1 / 0101y — 1 k=t (4.13)
To 0 k¢

to

That is, &%t and /%" are said to be orthogonal when for k # € the above integral is zero, and they
are normal (or normalized) when for k = £ the above integral is unity. The functions 0! and &/*S!
are orthogonal since

to+To to+To
L[ gorgitoonyr g — 1 [ ooy,
To To
to to
) to+To
257‘/ [cos((k — £)R01) +jsin((k — O)K0)] dt
0

to

=0 k#¢

The above integrals are zero given that the integrands are sinusoids and the limits of the integrals cover
one or more periods of the integrands. The normality of the Fourier functions is easily shown when for
k = £ the above integral is

to+To

1 .
— Ot = 1
To

to
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m  The Fourier coefficients {X},} are easily obtained using the orthonormality of the Fourier functions: First,
we multiply the expression for x(t) in Equation (4.11) by e 7%t and then integrate over a period to get

fx(t)e—jﬂﬁotdt — ZXk / ej(k—i)Qoldt

To e To

= Zka(k —0)
k
= X;To

given that when k = ¢, then [}, *=Y!dt = Ty; otherwise it is zero according to the orthogonality of the
Fourier exponentials. This then gives us the expression for the Fourier coefficients {X,} in Equation (4.12).
You need to recognize that the k and € are dummy variables in the Fourier series, and as such the expression
for the coefficients is the same regardless of whether we use £ or k.

m [t is important to realize from the given Fourier series equations that for a periodic signal x(t), of period
To, any period

x(t), to <t=<to+To

provides all the necessary information in the time-domain characterizing x(t). In an equivalent way the
coefficients and their corresponding frequencies {Xy, k20} provide all the necessary information about x(t)
in the frequency domain.

4.4 LINE SPECTRA

The Fourier series provides a way to determine the frequency components of a periodic signal and the
significance of these frequency components. Such information is provided by the power spectrum of
the signal. For periodic signals, the power spectrum provides information as to how the power of the
signal is distributed over the different frequencies present in the signal. We thus learn not only what
frequency components are present in the signal but also the strength of these frequency components.
In practice, the power spectrum can be computed and displayed using a spectrum analyzer, which
will be described in Chapter 5.

4.4.1 Parseval's Theorem—Power Distribution over Frequency

Although periodic signals are infinite-energy signals, they have finite power. The Fourier series
provides a way to find how much of the signal power is in a certain band of frequencies.

The power Py of a periodic signal x(t), of period Ty, can be equivalently calculated in either the time or the
frequency domain:

1
Pe= f @ 2de = 3 132 (4.14)
To k
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The power of a periodic signal x(t) of period Ty is given by

1
Py = — [ |x(t)|%dt
o= [ ol
To
Replacing the Fourier series of x(t) in the power equation we have that

1 1 ‘ ‘
— / |x(t)|2dt = _/ E E XkX;;e]QOkteﬂQO""dt
TO TO e

To To

Z Z X, X 1 / o0kt~ Q0mt 3,

k TO
2
=Y Xl
k

after we apply the orthonormality of the Fourier exponentials. Even though x(t) is real, we let |x(t)|?> =
x(t)x*(t) in the above equations, permitting us to express them in terms of X; and its conjugate. The
above indicates that the power of x(t) can be computed in either the time or the frequency domain
giving exactly the same result.

Moreover, considering the signal to be a sum of harmonically related components or
x(0) =) X = "0
k k

the power of each of these components is given by

1 9 1 "o 1

— O12dt = — | |Xpe O”dtz—/detzxz

TOT/IXk()I TO/|k | To | Xl | Xl
0

To To

and the power of x(t) is the sum of the powers of the Fourier series components. This indicates that
the power of the signal is distributed over the harmonic frequencies {kS2p}. A plot of |X}|? versus
the harmonic frequencies k2o, k = 0, =1, 2, .. ., displays how the power of the signal is distributed
over the harmonic frequencies. Given the discrete nature of the harmonic frequencies {k2y} this plot
consists of a line at each frequency and as such it is called the power line spectrum (that is, a periodic
signal has no power in nonharmonic frequencies). Since {X},} are complex, we define two additional
spectra, one that displays the magnitude |X,| versus k2, called the magnitude line spectrum, and the
phase line spectrum or /X, versus k2y showing the phase of the coefficients {X},} for k2. The power
line spectrum is simply the magnitude spectrum squared.

A periodic signal x(t), of period Ty, is represented in the frequency by its
Magnitude line spectrum : |X3| vs k20 (4.15)

Phase line spectrum : X}, vs k2 (4.16)
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The power line spectrum |Xk|2 versus kg of x(t) displays the distribution of the power of the signal over
frequency.

4.4.2 Symmetry of Line Spectra

For a real-valued periodic signal x(t), of period Ty, represented in the frequency domain by the Fourier
coefficients {X;, = |Xk|e14Xk} at harmonic frequencies {kQ2g = 27k/Ty}, we have that

X = X", (4.17)
or equivalently that

1. |Xp| = |X_y| (i.e., magnitude |X}| is even function of kS2g)
2. ZXj =—-ZX_y (e, phase ZXj, is odd function of kQg) (4.18)
Thus, for real-valued signals we only need to display for k > 0 the

Magnitude Iine spectrum: Plot of |Xj,| versus k2g
Phase line spectrum: Plot of £X;, versus k2o

For a real signal x(t), the Fourier series of its complex conjugate x*(t) is

X5 (1) = [ngeimof}
4

Y e Y
14 k
Since x(t) = x*(t), the above equation is equal to

x(t) =Y Xy P!
k

Comparing the Fourier series coefficients in the expressions, we have that X*, = X}, which means
that if X}, = |X;|¢<**, then

Xl = 1X_r]
X, ==Xy,

or that the magnitude is an even function of k, while the phase is an odd function of k. Thus, the line
spectra corresponding to real-valued signals is given for only positive harmonic frequencies, with the
understanding that for negative values of the harmonic frequencies the magnitude line spectrum is
even and the phase line spectrum is odd.
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4.5 TRIGONOMETRIC FOURIER SERIES

The trigonometric Fourier series of a real-valued, periodic signal x(t), of period Ty, is an equivalent
representation that uses sinusoids rather than complex exponentials as the basis functions. It is given by

o
x(t) =Xo +2 Y |Xy| cos(kQot + 6),)
k=1
i 2w
=co+2 Z[ck cos(kQot) + dj, sin(kQot)] Qo = Ty (4.19)
k=1

where Xg = ¢ is called the DC component, and {2|X},| cos(kQot + 6;)} are the kth harmonics fork=1,2....
The frequencies {kQp} are said to be harmonically related. The coefficients {c;, dj} are obtained from x(t) as
follows:

. to+To
= — / x(t) cos(kQot) dt k=0,1,...
To
to
1 to+To
dy = T / x(t) sin(kQ20t) dt k=1,2,... (4.20)
0

to

The coefficients X;, = |X;,|¢/% are connected with the coefficients ¢, and dj, by

IXpl = /et +d2

O = —tan™! [d—k:|
Cr

The functions {cos(kQ2pt), sin(k2pt)} are orthonormal.

Using the relation X}, = X*,, obtained in the previous section, we express the exponential Fourier
series of a real-valued periodic signal x(t) as

o
x(t) =Xo+ Y _[Xpe 0t + X_je 0]
k=1

o
=Xo + Z [|Xk|e]'(k90t+9k) + |Xk|e—]'(k90t+6’k)]
k=1

o
=Xo+2)_ [Xpl cos(kQot + O)
k=1

which is the top equation in Equation (4.19).
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Let us then show how the coefficients ¢;, and d;, can be obtained directly from the signal. Using the
relation Xj, = X*, and the fact that for a complex number z = a + jb, then z +z* = (a +jb) + (a —
jb) = 2a = 2Re(z), we have that

00
x(t) = Xo + Z[Xkejkgot +X7ke—jk520t]
k=1

o0
=Xo + Z[Xkejkﬂot +X;:€7jk90t]
k=1

=Xo + i 2Re[ X%t
k=1
Since Xj, is complex (verify this!),
2Re[ X! = 2Re[X;] cos(kQ0t) — 2Zm[X;] sin(kQ0t)
Now, if we let

to+To
¢ = Re[Xy] = Tio / x(t) cos(k2ot) dt k=1,2,...
to
to+To
dp = —Im[X;] = Tio / x(t) sin(kQot) dt k=1,2,...

we then have

x(t) = Xo + Y _ (2Re[Xy] cos(kQot) — 2Zm|Xp] sin(k01))
k=1
=Xo+2)_ (e cos(kQot) + dj sin(kQot))
k=1

and since the average Xo = ¢op we obtain the second form of the trigonometric Fourier series shown
in Equation (4.19). Notice that dy = 0 and so it is not necessary to define it.

The coefficients Xj, = |X;|¢ are connected with the coefficients c;, and d, by

Xil = /i + d?

d
O, = —tan~! [—k]
Ck

This can be shown by adding the phasors corresponding to ¢, cos(k2ot) and dj, sin(kQ2ot) and finding
the magnitude and phase of the resulting phasor.
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Finally, since the exponential basis ("0t} = {cos(kS201) + jsin(k20t)}, the sinusoidal bases cos(kS2¢t)
and sin(kQ2pt) just like the exponential basis are periodic, of period Ty, and orthonormal.

m Example 4.4

Find the Fourier series of a raised-cosine signal (B > A),
x(t) = B+ Acos(Qpt + 60)

which is periodic of period Ty and fundamental frequency Q¢ = 27 /Ty. Call y(t) = B + cos(Q2ot —
7 /2). Find its Fourier series coefficients and compare them to those for x(t). Use symbolic MATLAB
to compute the Fourier series of y(t) = 1 + sin(100¢). Find and plot its magnitude and phase line
spectra.

Solution

In this case we do not need to compute the Fourier coefficients since x(t) is already in the trigono-
metric form. From Equation (4.19) its dc value is B, and A is the coefficient of the first harmonic in
the trigonometric Fourier series, so that Xo = B, |X1| = A/2, and /X; = 6. Likewise, using Euler’s
identity we obtain that

x(t) =B+ é I:ej(QOI+9) + e_j(QOt+0)]
2

jo =i .
IALe]QOt + Ae_e_]got

which gives

Xo=B
Ael?
1=
X1=X]

If we let & = —m /2 in x(t), we get
y(t) = B 4 Asin(Q20t)

Its Fourier series coefficients are Yo =B and Y; = Ae7"/2/2 so that |Y;| =|Y_1| =A/2 and
£LYy = —/Y_1 = —n/2. The magnitude and phase line spectra of the raised cosine (6§ = 0) and
of the raised sine (0 = —m/2) are shown in Figure 4.2. For both x(t) and y(¢) there are only two
frequencies—the dc frequency and Qp—and as such the power of the signal is concentrated at
those two frequencies as shown in Figure 4.2. The difference between the line spectra of x(t) and
y(¢) is in the phase.
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[ Xl [Yil
A A
B B
A A A A
2 2 2 2
» KkQ » kQ
-Q Q ° -Q Qp °
A A
FIGURE 4.2 T
(a) Magnitude (top left) and 0 T 2
phase (bottom left) line spectra > kQ, 0 > kQ
of raised cosine and (b) L Qo i L Qo
magnitude (top right) and )
phase (bottom right) line
spectra of raised sine. (a) (b)

Using symbolic MATLAB integration we can easily find the Fourier series coefficients, and the
corresponding magnitude and phase are then plotted using stem to obtain the line spectra. Using
our MATLAB function fourierseries the magnitude and phase of the line spectrum corresponding to
the periodic raised sine y(f) = 1 + sin(100¢) is shown in Figure 4.3.

function [X, w] = fourierseries(x, TO, N)
%% %% %
% symbolic Fourier Series computation
% x: periodic signal
% TO: period
% N: number of harmonics
% X,w: Fourier series coefficients at harmonic frequencies
%% %% %
syms t
% computation of N Fourier series coefficients
fork = 1:N,
X1(k) = int(x * exp(—j * 2 % pi * (k - 1) * /T0O), t, 0, TO)/TO;
X(K) = subs(X1(k));
w(k) = (k—1) * 2 * pi/TO; % harmonic frequencies
end
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FIGURE 4.3

Line spectra of Fourier series of y(t) = 1 + sin(100¢) (top figure). Notice the even and the odd symmetries of the
magnitude and the phase spectra. The phase is —m/2 at @ = 100 rad/sec. m

Remarks Just because a signal is a sum of sinusoids, which are always periodic, is not enough for it to have a
Fourier series. The signal should be periodic. The signal x(t) = cos(t) — sin(stt) has components with periods
T, = 27 and T, = 2 so that the ratio T1 /T, = 7 is not a rational number. Thus, x(t) is not periodic and no
Fourier series for it is possible.

4.6 FOURIER COEFFICIENTS FROM LAPLACE

The computation of the Xj coefficients (see Eq. 4.12) requires integration that for some signals
can be rather complicated. The integration can be avoided whenever we know the Laplace trans-
form of a period of the signal as we will show. In general, the Laplace transform of a period of
the signal exists over the whole s-plane, given that it is a finite-support signal. In some cases, the
dc coefficient cannot be computed with the Laplace transform, but the dc term is easy to compute
directly.
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For a periodic signal x(t), of period Ty, if we know or can easily compute the Laplace transform of a period
of x(¢),

x1(0) = x()[u(to) —ut —to — To)]  forany o

Then the Fourier coefficients of x(t) are given by

0

1 2
Xp= 7L [x1 () ]sjeeo Qo = T—n fundamental frequency (4.21)
0

This can be seen by comparing the equation for the X}, coefficients with the Laplace transform of a
period x; (t) = x(t)[u(to) — u(t — to — To)] of x(t). Indeed, we have that

to+To
Xp = — / x(t)e TKhl gy
to
to+To
—st
= — / x(t)e”* dt|3=jk520

Lo

1
= T_OL [%1 (D) ]s=jrc2o

m Example 4.5

Consider the periodic pulse train x(t), of period Ty = 1, shown in Figure 4.4. Find its Fourier series.

Solution

Before finding the Fourier coefficients, we see that this signal has a dc component of 1, and that
x(t) — 1 (zero-average signal) is well represented by cosines, given its even symmetry, and as such

x(t)

A

v
~

-1.25 -0.75 -0.25 0.25 0.75 1.25

FIGURE 4.4
Train of rectangular pulses.

A

S
i
-

v
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the Fourier coefficients will be real. Doing this analysis before the computations is important so
we know what to expect.

The Fourier coefficients are obtained directly using their integral formulas or from the Laplace
transform of a period. Since Ty = 1, the fundamental frequency of x(t) is Q¢ = 27 rad/sec. Using
the integral expression for the Fourier coefficients we have

3/4 1/4
1 i j
X, = o / x(t)e Tk gy = / 2¢7927 gy
0—1/4 —1/4
2 oTRI2 _ p=jmk/2 _sin(rk/2)
~ Tk 2j  (k/2)

which are real as we predicted. The Fourier series is then

() = i SINCT/2) o

G2y

To find the Fourier coefficients with the Laplace transform, let the period be x; (t) = x(t) for —0.5 <
t < 0.5. Delaying it by 0.25 we get x1 (t — 0.25) = 2[u(t) — u(t — 0.5)] with a Laplace transform

2
e—O.ZSSXI (S) — ;(1 _ e—O.SS)
so that X1 (s) = (2/s)[€%2>* — ¢70-25], and therefore
1
X = T—C [x1(D)] |s=jro
0

-2 2jsin(k2p/4)
 jkSQ0To / 0

and for Qo = 27, To = 1, we get

sin(mtk/2)

k)2 k#0

k =
Since the above equation gives zero over zero when k = 0 (i.e, it is undefined), the dc value is
found from the integral formula as

1/4

X = / 2dt =1

-1/4
These Fourier coefficients coincide with the ones found before.

The following script is used to find the Fourier coefficients with our function fourierseries and to
plot the magnitude and phase line spectra.
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% % % % % % % % % % % % % % % % %

% Example 4.5---Fourier series of train of pulses

% % % % % % % % % % % % % % % % %

clear all;clf

syms t

TO = 1; m = heaviside(t) — heaviside(t — TO/4) + heaviside(t — 3 * TO/4);x =2 * m
[X,w] = fourierseries(x,T0,20);

subplot(221); ezplot(x,[0 TQOJ); grid

subplot(223); stem(w,abs(X))

subplot(224); stem(w,angle(X))

Notice that in this case:

1.

The Xj, Fourier coefficients of the train of pulses are given in terms of the sin(x)/x or the sinc
function. This function was presented in Chapter 1. Recall that the sinc is
= Even—that is, sin(x) /x = sin(—x)/(—x).
m The value at x = 0 is found by means of L'Hopital’s rule because the numerator and the
denominator of sinc are zero for x = 0, so
sin(x) . dsin(x)/dx

alcgr(l) X Z}CE}(I) dx/dx

= Itis bounded, indeed

—1 sin(x 1
-1 _sin@ _1
X X X
Since the dc component of x(t) is 1, once it is subtracted it is clear that the rest of the series can
be represented as a sum of cosines:

N\ SIN(TR/2) o
x)=1+ Y =
k=—00,k5£0 (rk/2)

sin(rtk/2)
=142 Z kD) cos(2mkt)

This can also be seen by considering the trigonometric Fourier series of x(t). Since x(t) sin(kQot)
is odd, as x(t) is even and sin(kQot) is odd, then the coefficients corresponding to the sines in
the expansion will be zero. On the other hand, x(t) cos(k2pt) is even and gives nonzero Fourier
coefficients. See Equations (4.20).

In general, the Fourier coefficients are complex and as such need to be represented by their
magnitudes and phases. In this case, the X}, coefficients are real-valued, and in particular zero
when kr/2 = £mm, m an integer, or when k = +2, 44, .. .. Since the Xj, values are real, the
corresponding phase would be zero when X;, > 0, and -7 when X}, < 0. In Figure 4.5 we show
a period of the signal, and the magnitude and phase line spectra displayed only for positive
values of frequency (with the understanding that the magnitude spectrum is even and the
phase is odd functions of the frequency).
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FIGURE 4.5
Period of train of rectangular pulses (top) and its magnitude and phase line spectra (bottom).

4. The X;, coefficients and its squares, related to the power line spectrum, are obtained using the
fourierseries function (see Figure 4.5):

k Xp=X_p X}
0 1 1

1 0.64 0.41
2 0 0

3 —0.21 0.041
4 0 0

5 0.13 0.016
6 0 0

7 —0.09 0.008
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Notice that about 11 of them (including the zero values), or the dc value and 5 harmon-
ics, provide a very good approximation of the pulse train, and would occupy a bandwidth
of approximately 107 rad/sec. The power contribution, as indicated by X;f after k = £6, is
relatively small. [ |

m Example 4.6
Find the Fourier series of the full-wave rectified signal x(t) = | cos(st)| shown in Figure 4.6. This
signal is used in the design of dc sources. The rectification of an ac signal is the first step in this
design.

Solution

The integral to find the Fourier coefficients is

0.5
cos(rt)e T2 gy

X, =
—0.5

which can be computed by using Euler’s identity or any other method. We want to show that this
can be avoided by using the Laplace transform.

A period x1 (t) of x(t) can be expressed as

x1(t — 0.5) = sin(mwt)u(t) + sin(wr (t — 1)u(t — 1)

G/ /
AN AW A AR

ARTERTERYRRTEE

x(t)
S
—
——
\
-
T
—
\

X4(t)
\
/

-0.2
—2 -1 0 1 2 -06 -04 -02 0 02 04 06

FIGURE 4.6
(a) Full-wave rectified signal x(t) and (b) one of its periods x1 (t).
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Period of full-wave rectified signal x(t) and its magnitude and phase line spectra.

and using the Laplace transform we have

so that

Xl (S)e—o.5S —

The Fourier coefficients are then

X—l
k—TO

where Typ = 1 and Q¢ = 27, giving

X

. T
©(j27k)2 + 2
2=

T (1 — 4k?)

T

2472 [14e7]

__ T 0.55 | ,—0.5s
X1 (5) = 32-|——j'[2[e +e ]

X1(s) |S=onk

2 cos(2nk/2)
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since cos(k) = (—1)*. The DC value of the full-wave rectified signal is Xo = 2/m. Notice that the
Fourier coefficients are real given that the signal is even.

The MATLAB script used in the previous example can be used again with the following
modification for the generation of a period of x(¢). The results are shown in Figure 4.7.

% % % % % % % % % % % % % % % % %

% Example 4.6---Fourier series of full-wave rectified signal

% % % % % % % % % % % % % % % %

% period generation

TO=1;

m = heaviside(t) — heaviside(t — TO);x = abs(cos(pi * 1)) * m m

m Example 4.7
Computing the derivative of a signal enhances higher harmonics. To illustrate this consider the
train of triangular pulses y(t) (Figure 4.8) with fundamental period Tp = 2. Let x(t) = dy(t)/dt. Find
its Fourier series and compare |X;,| with |Y}| to determine which of these signals is smoother—that

is, which one has lower frequency components.

Solution

A period of y(t), —1 <t < 1, is given by

1@ =r@t+1)—-2r@)+rt—1)

with a Laplace transform

x(t) =20

y(t) at
A
FIGURE 4.8 1 1
(@) Train of triangular
pulses y(t) and (b) its ...= t >t
derivative x(t). Notice -2 -1 0 1 2 -2 -1 0 1 2
that y(t) is a continuous i

function while x(t) is
discontinuous. ()



4.6 Fourier Coefficients from Laplace a

so that the Fourier coefficients are given by (Typ = 2, Q¢ = 7):

1 1
Y, = T—0Y1 (5)|s=jQDk = 2(jnk)2 [2 cos(mk) — 2]
1 — cos(mtk) 1-— (—l)k
— —72 =~ k+#0

This is also equal to

(4.22)

. 2
Y, = 0.5 [sm(nk/2)]
(mk/2)

using the identity 1 — cos(zk) = 2 sin?(k/2). By observing y(t) we deduce that its DC value is
Yo =0.5.

Let us then consider the periodic signal x(t) = dy(t)/dt (shown in Fig. 4.8(b)) with a dc value
Xo=0.For —1 <t <1, its period is x1 (t) = u(t + 1) — 2u(t) + u(t — 1) and

Xi(s) = % [¢f —2+e7]

which gives the Fourier series coefficients (Tp = 2, Q (the period and the fundamental frequency
are equal to the ones for y(t))

-2
sin“(km/2) .
_ Sin(km/2) (4.23)
km /2
. 1
since Xj = 5X1(5) |s=jnk-

Period Period

1 1
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t
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0.2 -0.5 0.2 0.5
0 T 1 0 { T ?.92.9.9.0.09 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
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(a) (b)
FIGURE 4.9

Magnitude and phase line spectra of (a) triangular signal y(t) (top left) and (b) its derivative x(t) (top right).
Ignoring the dc values, the {|Y},|} decay faster to zero than the {|X}|}, thus y(t) is smoother than x(t).
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For k # 0 we have |Yj,| = |X;|/(7wk), so that as k increases the frequency components of y(t) decrease
in magnitude faster than the corresponding ones of x(t). Thus, y(t) is smoother than x(t). The
magnitude line spectrum |Y}|, ignoring its average, goes faster to zero than the magnitude line
spectrum |Xp|, as seen in Figure 4.9.

Notice that in this case y(t) is even and its Fourier coefficients Y}, are real, while x(t) is odd and
its Fourier coefficients X}, are purely imaginary. If we subtract the average of y(t), the signal y(¢)
can be clearly approximated as a series of cosines, thus the need for real coefficients in its complex
exponential Fourier series. The signal x(t) is zero-average and as such it can be clearly approximated
by a series of sines requiring its Fourier coefficients X}, to be imaginary. ]

m Example 4.8

Integration of a periodic signal, provided it has zero mean, gives a smoother signal. To see this,
find and compare the magnitude line spectra of a sawtooth signal x(t), of period Tp = 2, and its
integral

y(@) = f x(t)dt

shown Figure 4.10.

Solution

Before doing any calculations it is important to realize that the integral would not exist if the dc is
not zero. Using the following script we can compute the Fourier series coefficients of x(t) and y(t).
A period of x(t) is

xi() =tw) +(t—2w(t—1) 0<t<2

where w(t) = u(t) — u(t — 1) is a rectangular window.

(1) y(t) = /x(t)dt
A A
1 0.5
FIGURE 4.10 . »
a) Sawtooth signal x(t — > >
(&) Sawtooth signal x(1) -1 0 1 ST 0 1 2 !
and (b) its integral y(t).
Notice that x(t) is a
discontinuous function -1

while y(t) is continuous. (a) (b)



4.7 Convergence of the Fourier Series a

Period Period
1 0.5
0.5 0.4
< ~ 03
x 0 X 02
-05 0.1
-1 0
0 05 1 15 2 0 05 1 15 2
t
0.4 2 0.4 4
0.3 1 0.3 3
0.2 <Ko S¥0.2 =2
0.1 -1 0.1 1
0 WTWW‘FW 29900 ) 0 TQ 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Q Q Q Q
(a) (b)
FIGURE 4.11

(a) Periods of the sawtooth signal x(t) and (b) its integral y(t) and their magnitude and phase line spectra.

% % % % % % % % % % % % % % % % %

% Example 4.8---Saw-tooth signal and its integral
%% % % % % % % % % % % % % % %

syms t

TO=2;

m = heaviside(t) — heaviside(t — T0/2);

m1 = heaviside(t — T0/2) - heaviside(t — TO);
x=txm+({t—2) *xmi;

y = int(x);

[X, w] = fourierseries(x, TO, 20);

[Y, w] = fourierseries(y, TO, 20);

The signal y(t) is smoother than x(t); y(t) is a continuous function of time, while x(t) is
discontinuous. This is indicated as well by the magnitude line spectra of the two signals. Ignor-
ing the dc components, the {|Y;|} of y(t) decay a lot faster to zero than the {|Xy|} of x(t) (See
Figure 4.11). As we will see in Section 4.10, computing the derivative of a periodic signal is equiva-
lent to multiplying its Fourier series coefficients by j2ok, which emphasizes the higher harmonics.
If the periodic signal is zero-mean so that its integral exists, the Fourier coefficients of the integral
can be found by dividing them by jQ¢k so that now the low harmonics are emphasized. |

4.7 CONVERGENCE OF THE FOURIER SERIES

It can be said, without overstating it, that any periodic signal of practical interest has a Fourier series.
Only very strange signals would not have a converging Fourier series. Establishing convergence is
necessary because the Fourier series has an infinite number of terms. To establish some general
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conditions under which the series converges, we need to classify signals with respect to their
smoothness.

A signal x(¢) is said to be piecewise smooth if it has a finite number of discontinuities, while a smooth
signal has a derivative that changes continuously. Thus, smooth signals can be considered special
cases of piecewise smooth signals.

The Fourier series of a piecewise smooth (continuous or discontinuous) periodic signal x(t) converges for all
values of ¢t. The mathematician Dirichlet showed that for the Fourier series to converge to the periodic signal
x(t), the signal should satisfy the following sufficient (not necessary) conditions over a period:

m  Be absolutely integrable.

m  Have a finite number of maxima, minima, and discontinuities.

The infinite series equals x(t) at every continuity point and equals the average

0.5[x(t + 0+) + x(t + 0—)]

of the right limit x(t + 0+) and the left limit x(t + 0—) at every discontinuity point. If x(t) is continuous
everywhere, then the series converges absolutely and uniformly.

Although the Fourier series converges to the arithmetic average at discontinuities, it can be observed
that there is some ringing before and after the discontinuity points. This is called the Gibb’s phe-
nomenon. To understand this phenomenon it is necessary to explain how the Fourier series can be
seen as an approximation to the actual signal, and how when a signal has discontinuities the conver-
gence is not uniform around them. It will become clear that the smoother the signal x(¢) is, the easier
it is to approximate it with a Fourier series with a finite number of terms.

When the signal is continuous everywhere, the convergence is such that at each point t the series
approximates the actual value x(t) as we increase the number of terms in the approximation. How-
ever, that is not the case when discontinuities occur in the signal. This is despite the fact that a
minimum mean-square approximation seems to indicate that the approximation could give a zero
error. Let

N
() = Y X! (4.24)
k=—N

be the Nth-order approximation of a periodic signal x(t), of fundamental frequency o, that
minimizes the average quadratic error over a period

By = & / () — xn (0) 2t (4.25)
To
To
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with respect to the Fourier coefficients Xj,. To minimize Ex with respect to the coefficients Xj, we set
its derivative with respect to X}, to zero. Let e(t) = x(t) — xn(t), so that

E 1 *
dEN _ L 28(t)d8 (t)
dXj, To X,

To

dt

-1 / 2[x(t) — xn () ]e TPl dr
To
To
=0

which after replacing xx(t) and using the orthogonality of the Fourier exponentials gives

1 .
X, = T f x(t)e Tk gy (4.26)
To

corresponding to the Fourier coefficients of x(t) for —N <k < N. As N — oo the average error
EN — 0.

The only issue left is how xx () converges to x(t). As indicated before, if x(t) is smooth xx(t) approxi-
mates x(t) at every point, but if there are discontinuities the approximation is in an average fashion.
The Gibb’s phenomenon indicates that around discontinuities there will be ringing, regardless of the
order N of the approximation, even though the average quadratic error Ey goes to zero as N increases.
This phenomenon will be explained in Chapter 5 as the effect of using a rectangular window to obtain
a finite-frequency representation of a periodic signal.

m Example 4.9

To illustrate the Gibb’s phenomenon consider the approximation of a train of pulses x(t) with
zero mean and period Tp = 1 (see the dashed signal in Figure 4.12) with a Fourier series xn(t)
with N =1,...,20.

Solution

We compute analytically the Fourier coefficients of x(t) and use them to obtain an approxima-
tion xn(t) of x(t) having a zero DC component and up to 20 harmonics. The dashed-line plot in
Figure 4.12 is x(t) and the solid-line plot is xn(t) when N = 20. The discontinuities of the pulse
train cause the Gibb’s phenomenon. Even if we increase the number of harmonics there is an
overshoot in the approximation around the discontinuities.
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1 A i IJXU!\
BN
0.5 ] :
I |
N . |
. |
FIGURE 4.12 -0.5 | :
Approximate Fourier series xp(t) of the pulse ﬂ JI
train x(r) (discontinuous) using the DC component - 4 A :
and 20 harmonics. The approximate xp(t) v v
displays the Gibb’s phenomenon around the 0 0.2 0.4 0.6 0.8
discontinuities. t(sec)

% % % % % % % % % % % % % % % % %

% Example 4.9---Simulation of Gibb’s phenomenon

%% % % % % % % % % % % % % % %

clf; clear all

w0 = 2 % pi; DC = 0; N = 20; % parameters of periodic signal
% computation of Fourier series coefficients

for k = 1:N,
X(K) = sin(k * pi/2)/(k * pi/2);
end

X =[DC X]; % Fourier series coefficients
% computation of periodic signal
Ts =0.001;t=0:Ts:1 = Ts;
L = length(t); x = [ones(1, L/4) zeros(1, L/2) ones(1, L/4)]; x = x — 0.5;
% computation of approximate
XN = X(1)xones(1,length(t));
for k = 2:N,
XN = xN + 2 x X(k) * cos(2 * pi * (k — 1). * 1); % approximate signal
plot(t, xN); axis([0 max(t) 1.1 * min(xN) 1.1 % max(xN)])
hold on; plot(t, x, ’r’)
ylabel(’x(t), x_N(t)’); xlabel('t (sec)’);grid
hold off
pause(0.1)
end

When you execute the above script, it pauses to display the approximation for an increasing num-
ber of terms in the approximation. At each of these values ringing around the discontinuities the
Gibb’s phenomenon is displayed. |
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m Example 4.10

Consider the mean-square error optimization to obtain an approximation of the periodic sig-
nal x(t) shown in Figure 4.4 from Example 4.5. We wish to obtain an approximate x;(t) =
o + 2B cos(Rt), given that it is clear that x(t) has an average, and that once we subtract it from the
signal the resulting signal is approximated by a cosine function. Minimize the mean-square error

Ey— — / x(0) — x2(0)dt
To
To

with respect to @ and 8 to find these values.

Solution

To minimize E, we set to zero its derivatives with respect to @ and 8 to get

dE; 1 _ 1 _ _
T, / 2[x(t) — o — 28 cos(Qot)]dt = T /2[x(t) aldt=0
To To
dE, 1 _
% = —T—O / 2[x(t) — o — 28 cos(Rot)] cos(Rot)dt = 0
To

which, after getting rid of T% of both sides of the above equations and applying the orthogonality
of the Fourier basis, gives

1
o= — [ x(t)dt
To
To

1

B=— /x(t) cos(Qot)dt

To
To

For the signal in Figure 4.4 we obtain

= Q
I I
E N R

giving as approximation the signal
4
x2(t) = 1 4+ — cos(2nt)
T
which at t =0 gives x2(0) = 2.27 instead of the expected 2; x,(0.25) =1 (because of the

discontinuity at this point, this value is the average of 2 and 0, the values, respectively, before
and after the discontinuity) instead of 2 and x,(0.5) = —0.27 instead of the expected 0. |
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m Example 4.11

Consider the train of pulses in Example 4.5. Determine how many Fourier coefficients are necessary
to get a representation containing 97% of the power of the periodic signal.
Solution
The desired 97% of the power of x(t) is
0.25

1
O.97T—/x2(t)dt: 0.97 f 4dt = 1.94
0
To —0.25

and so we need to find an integer N such that

N

> Xl = i

k=—N k=—N

sin(rtk/2) |?

(h/2) =194

The value of N is found by trial and error, adding consecutive values of the magnitude squared
of Fourier coefficients. Using MATLAB, it is found that for N =5 (dc and 5 harmonics) the
Fourier series approximation has a power of 1.93. Thus, 11 Fourier coefficients give a very good
approximation to the periodic train of pulses, with about 97% of the signal power. [ |

4.8 TIME AND FREQUENCY SHIFTING

Time shifting and frequency shifting are duals of each other.

m  Time-shifting: A periodic signal x(t), of period Ty, remains periodic of the same period when shifted in
time. If Xj, are the Fourier coefficients of x(t), the Fourier coefficients for x(t — to) are

{Xke*]'kﬂoto = |X; |/ (“Xr—RS20t0) } (4.27)
That is, only a change in phase is caused by the time shift. The magnitude spectrum remains the same.

= Frequency-shifting: When a periodic signal x(t), of period T, modulates a complex exponential gt
= The modulated signal x(1)&™**! is periodic of period Ty if 2 = M for an integer M > 1.
m  The Fourier coefficients X, are shifted to frequencies kQqg + Q1.
m  The modulated signal is real-valued by multiplying x(t) by cos(£211).

If we delay or advance in time a periodic signal, the resulting signal is periodic of the same period.
Only a change in the phase of the coefficients occurs to accommodate for the shift. Indeed, if

x(1) =) X ot
k
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we then have that

x(t—ty) = Zxkejkﬂo(t—to) — Z [Xke—jkﬂoto] St

k k
x(t + o) = Zxkejkﬂo(t+t0) — Z I:Xkejkﬂoto] St
k k

so that the Fourier coefficients {X;} corresponding to x(t) are changed to {Xe Tty for
x(t F to). In both cases, they have the same magnitude |X;| but different phases.

In a dual way, if we multiply the above periodic signal x(t) by a complex exponential of frequency
Q1, é1t, we obtain a so-called modulated signal y(t) and its spectrum is shifted in frequency by Q;
with respect to the spectrum of the periodic signal x(t). In fact,

y(0) = x()e!

= 3 Xl okt
[

indicating that the harmonic frequencies are shifted by ;. The signal y(t) is not necessarily periodic.
Since Ty is the period of x(t), then

y(t + To) = x(t + To)d1 +10)
and for it to be equal to y(t), then 1Ty = 27 M, for an integer M # 0 or
Q1 =MQg M>>1

which goes along with the condition that the modulating frequency ©2; is chosen much larger than
Q. The modulated signal is then given by

10 = T 2 3 Bk S g
k k 7

so that the Fourier coefficients are shifted to new frequencies Qg (k + M).
To keep the modulated signal real-valued, one multiplies the periodic signal x(t) by a cosine of
frequency 21 = MQ for M >> 1 to obtain a modulated signal

y1(t) = x(t) cos(£21t)

— Z O.SXk[ej(kQO+Ql)t + ef(kﬂo—ﬂl)t]
k

so that the harmonic components are now centered around +;.
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m Example 4.12
To illustrate the modulation property using MATLAB consider modulating a sinusoid cos(20t)
with a train of square pulses

x1(t) = 0.5[1 + sign(sin(rt)]
and with a sinusoid
X7 (t) = cos(irt)

Use our function fourierseries to find the Fourier series of the modulated signals and plot their
magnitude line spectra.

Solution

The function sign is defined as

sign(x(1)) = {_i igg N 8 (4.28)

That is, it determines the sign of the signal. Thus, 0.5[1 + sign(sin(m)] =u(t) —u(t — 1) equals
1 for 0<t<1, and 0 for 1 <t <2, which corresponds to a period of a train of square

pulses.

The following script allows us to compute the Fourier coefficients of the two modulated signals.

% % % % % % % % % % % % % % % % %
% Example 4.12---Modulation

%% % % % % % % % % % % % % % %
syms t

TO =2;

m = heaviside(t) — heaviside(t — T0/2);
m1 = heaviside(t) — heaviside(t — TO);
X =m x CoS(20 * pi * 1);

x1 =m1 % cos(pi x t) x cos(20 * pi * 1);
[X, w] = fourierseries(x, TO, 60);

X1, w1] = fourierseries(x1, TO, 60);

The modulated signals and their corresponding magnitude line spectra are shown in Figure 4.13.
The Fourier coefficients of the modulated signals are now clustered around the frequency 207.
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4.9 RESPONSE OF LTI SYSTEMS TO PERIODIC SIGNALS

The most important property of LTI systems is the eigenfunction property.

FEigenfunction property: In steady state, the response to a complex exponential (or a sinusoid) of a certain
frequency is the same complex exponential (or sinusoid), but its amplitude and phase are affected by the

frequency response of the system at that frequency.

Suppose that the impulse response of an LTI system is h(t) and that H(s) = L[h(t)] is the
corresponding transfer function. If the input to this system is a periodic signal x(t), of period Ty,
with Fourier series

o

; 2

— ]ont _
X)) = Y Xe Qo T (4.29)

k=—00
then according to the eigenfunction property the output in the steady state is
e .

ys( =Y [XiH(jkQ0)] &% (4.30)

k=—00
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If we call Y, = X;,H(jk20) we have a Fourier series representation of y(t) with Y}, as its Fourier
coefficients.

4.9.1 Sinusoidal Steady State
If the input of a stable and causal LTI system, with impulse response h(t), is x(t) = A the
output is

oo

v = / h(T)x(t — )t = A" / h(t)e 70T dr
0 0

= AJOUH(jQ0) = A|H(jQo)|e/20t < H80) (4.31)

The limits of the first integral indicate that the system is causal (the h(r) = 0 for T < 0) and that
the input x(t — 7) is applied from —oco (when t = o0) to t (when v = 0); thus y(¢) is the steady-state
response of the system. If the input is a sinusoid—for example,

x1(t) = Re[x(t) = Ad*] = A cos(Q01) (4.32)
then the corresponding steady-state response is

y1(D) = Re[A[H(jQ0)|fP0tT4H S0
= A|H(j20)| cos(Qot + ZH(jS0)). (4.33)

As in the eigenfunction property, the frequency of the output coincides with the frequency of the
input, however, the magnitude and the phase of the input signal is changed by the response of the
system at the input frequency.

The following script simulates the convolution of a sinusoid x(t) of frequency € = 207, amplitude
10, and random phase with the impulse response h(f) (a modulated decaying exponential) of an LTI
system. The convolution integral is approximated using the MATLAB function conv.

% % % % % % % % % % % % % % % % %

% Simulation of Convolution

% % % % % % % % % % % % % % % %

cClear all; clf

Ts =0.01; Tend = 2; t = O:Ts:Tend;

x =10 % cos(20 * pi x t + pi x (rand(1, 1) — 0.5)); % input signal
h =20 % exp(—10.1). * cos(40 = pi * t); % impulse response
% approximate convolution integral

y = Ts % conv(x, h);
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M = length(x);
figure(1)
x1 = [zeros(1, 5) x(1:M)];
z=y(1); y1 = [zeros(1, 5) z zeros(1, M — 1)];
t0 = —5 % Ts:Ts:Tend;
fork =0:M — 6,
pause(0.05)
hO = fliplr(h);
h1 =[hOM - k - 5:M) zeros(1, M - k - 1)];
subplot(211)
plot(t0, h1, ’r’)
hold on
plot(to, x1, ’'k’)
title(’Convolution of x(t) and h(t)’)
ylabel('x(z), h(t-t)’); grid; axis([min(t0) max(t0) 1.1*min(x) 1.1*max(x)])
hold off
subplot(212)
plot(to, y1, 'b’)
ylabel('y(t) = (x = h)()’); grid; axis([min(t0) max(t0) 0.1 x min(x) 0.1 * max(x)])
z=[zyk+2);
y1 = [zeros(1, 5) z zeros(1, M - length(2))];
end

Figure 4.14 displays the last step of the convolution integral simulation. Notice that the steady state
is attained in a very short time (around t = 0.5 sec). The transient changes every time that the script
is executed due to the random phase.

T
= WL LU UL LA LR AR B
o (TR RATRRTAARATAVA RN bR
< LW VUVV VUV VV VYUV
(;)
€0_5AAA
£ AR
e AR ARV RIATAA
FIGURE 4.14 = )Y
Convolution simulation: (a) input x(t) (solid line) and 0 0.5 1 1.5 2

h(t — t) (dashed line), and (b) output y(t): transient
and steady-state response. (b)
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If the input x(t) of a causal and stable LTI system, with impulse response h(t), is periodic of period Ty and has
the Fourier series
> 2
x(t) =Xo+2 ) Xyl cos(kQot + £Xp) Q0 = T (4.34)
k=1 0
the steady-state response of the system is
o
y(t) = Xo|H(jO)| cos(LH(j0)) + 2 Z IXp | |H(jkS20)| cos(kQot + £X;, + LH(jk20)) (4.35)
k=1
where
o0
H(jkQ0) = / h(t)e k207 47 (4.36)
0
is the frequency response of the system at k2.

Remarks

m If the input signal x(t) is a combination of sinusoids of frequencies that are not harmonically related, the
signal is not periodic, but the eigenfunction property still holds. For instance, if

x() = ) Ay cos(Qt + 6))
k

and the frequency response of the LTI system is H(jS2), the steady-state response is

y(0) =Y AlH(jS)| cos(ut + 0, + ZH(j<))
4

m It is important to realize that if the LTI system is represented by a differential equation and the input
is a sinusoid, or combination of sinusoids, it is not necessary to use the Laplace transform to obtain the
complete response and then let t — oo to find the sinusoidal steady-state response. The Laplace transform
is only needed to find the transfer function of the system, which can then be used in Equation (4.35) to
find the sinusoidal steady state.

4.9.2 Filtering of Periodic Signals

According to Equation (4.35) if we know the frequency response of the system (Eq. 4.36), at the
harmonic frequencies of the periodic input, H(jk$2(), we have that in the steady state the output of
the system y(¢) is as follows:

m Periodic of the same period as the input.
m Its Fourier coefficients are those of the input X;, multiplied by the frequency response at the
harmonic frequencies, H(jk2p).
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m Example 4.13

To illustrate the filtering of a periodic signal, consider a zero-mean pulse train

i sin(kr/2) jojen

*b) = km /2

k=—00,#£0

as the driving source of an RC circuit that realizes a low-pass filter (i.e., a system that tries to
keep the low-frequency harmonics and get rid of the high-frequency harmonics of the input). The
transfer function of the RC low-pass filter is

1

HE = 17757100

Solution

The following script computes the frequency response of the filter at the harmonic frequencies
H(jkS20) (see Figure 4.15).

9% % % % % % % % % % % % % % % % %

% Example 4.13

9% % % % % % % % % % % % % % % %

% Freq response of H(s)=1/(s/scale+1) -- low-pass filter

w0 =2 *pi; % fundamental frequency of input
M=20;k=0M-1;wl =k. *w0; % harmonic frequencies
H=1./01+j*w1/100); Hm = abs(H); Ha = angle(H); % frequency response
subplot(211)

stem(w1, Hm, filled’); grid; ylabel( —H(jw)—")

axis([0 max(w1) 0 1.3])

subplot(212)

stem(w1, Ha, ‘filled’); grid

axis([0 max(w1) -1 0])

ylabel('iH( w)’); xlabel('w (rad/sec)’)

The response due to the pulse train can be found by finding the response to each of its Fourier
series components and adding them. Approximating x(¢) using N = 20 harmonics by

i sin(km/2) g2t

aN(D) = )

k=—20,%0

Then the output voltage across the capacitor is given in the steady state,

20

ys(® =Y H(j2kr)

k=—20,0

sin(km/2) ket
—— e
kr /2
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Because the magnitude response of the low-pass filter changes very little in the range of frequencies
of the input, the output signal is very much like the input (see Figure 4.15). The following script is
used to find the response.

% low-pass filtering
% FS coefficients of input
X(1) = 0; % mean value

fork=2:M-1,
X(K) = sin((k — 1) x pi/2)/(k — 1) % pi/2);
end

% periodic signal

Ts = 0.001; t1 = 0:Ts:1 - Ts;L = length(t1);

x1 = [ones(1, L /4) zeros(1, L /2) ones(1, L /4)]; x1 = x1 — 0.5; x = [x1 x1];

% output of filter

t=0Ts:2 —Ts;

y = X(1) = ones(1, length(t)) « Ha(1);

plot(t, y); axis([0 max(t) — .6 .6])

fork=2:M-1,
y =y + X(k) * Hm(k) x cos(wO * (k — 1). * t + Ha(k));
plot(t, y); axis([0 max(t) — .6 .6]); hold on
plot(t, x, 'r’); axis([0 max(t) — 0.6 0.6]); grid
ylabel(’x(t), y(t)’); xlabel(’t (sec)’) ; hold off

pause(0.1)
end
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FIGURE 4.15

(@) Magnitude and phase response of the low-pass RC filter H(s) at harmonic frequencies, and (b) response due
to a train of pulses. [
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4.10 OTHER PROPERTIES OF THE FOURIER SERIES

In this section we present additional properties of the Fourier series that will help us with its compu-
tation and with our understanding of the relation between time and frequency. We are in particular
interested in showing that even and odd signals have special representations, and that it is possible
to find the Fourier series of the sum, product, derivative, and integral of periodic signals without the
integration required by the definition of the series.

4.10.1 Reflection and Even and Odd Periodic Signals

If the Fourier series of x(t), periodic with fundamental frequency €y, is

x(t) =Y X!
k

then the one for its reflected version x(—t) is

X(—t) = D Xppe M0 = X0t (4.37)
m k

so that the Fourier coefficients of x(—t) are X_; (remember that m and k are just dummy variables).
This can be used to simplify the computation of Fourier series of even and odd signals.

For an even signal x(t), we have that x(t) = x(—t), and as such X;, = X_j and therefore x(¢) is naturally
represented in terms of cosines and a dc term. Indeed, its Fourier series is

-1 o)
xt)=Xo+ Y X4y Xyt
k=—o00 k=1

oo
— XO + ZXk[eijOt + e*ijgt]
k=1

o
=Xo+2) X cos(kQot) (4.38)
k=1

indicating that X}, are real-valued. This is also seen from
1 —jk20t 1 c o
X = — [ x(De 70t = — | x(t)|cos(kQt) — jsin(k2)]dt
To To
To To

1
= — fx(t) cos(kQot)dt
To
To

because x(t) sin(k2ot) is odd and their integral is zero. It will be similar for an odd function for which
x(t) = —x(—t), or X, = —X_}, in which case the Fourier series has a zero dc value and sine harmonics.
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The X;, are purely imaginary. Indeed, for an odd x(t),

1 , 1

Xp = — / x(t)e Holgy = — / x(t)[cos(kQot) — jsin(kS2)]dt

To To
To To

-J / x(0) sin (k1) dt
To
To

since x(t) cos(k2ot) is odd. The Fourier series of an odd function can thus be written as
o0
x(1) =2 ) (jXp) sin(kQot) (4.39)
k=1
According to the even and odd decomposition, any periodic signal x(t) can be expressed as
x(t) = Xe(t) + xo(1)

where x,(t) is the even and x,(t) is the odd component of x(t). Finding the Fourier coefficients of
%e(t), which will be real, and those of x,(t), which will be purely imaginary, we would then have
Xi, = X + Xop, since

Xe(t) = 0.5[x(t) + x(—t)] = X = 0.5[Xp + X_1]
X(t) = 0.5[x(t) —x(—=t)] = Xop = 0.5[X; — X ] (4.40)

m  Reflection: If the Fourier coefficients of a periodic signal x(t) are {X},} then those of x(—t), the time-reversed
signal with the same period as x(t), are {X_z}.
= Even periodic signal x(t): Its Fourier coefficients X}, are real, and its trigonometric Fourier series is

o0
x(t) =Xo +2 ) X cos(kQo1) (4.41)
k=1
»  Odd periodic signal x(t): Its Fourier coefficients Xj, are imaginary, and its trigonometric Fourier series is
o
x() =2 jXj,sin(kQo1) (4.42)
k=1
For any periodic signal x(t) = x¢(t) + x,(t) where x.(t) and x,(t) are the even and odd component of x(t), then
Xy, = Xop + Xk, (4.43)

where {X,;,} are the Fourier coefficients of x.(f) and {X,,} are the Fourier coefficients of x,(t).

m Example 4.14

Consider the periodic signals x(t) and y(t) shown in Figure 4.16. Determine their Fourier
coefficients by using the symmetry conditions and the even-odd decomposition.
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A
2
>t
-2 -1 0 1 2 3
y()
A
ﬁ /
FIGURE 4.16 >t
Nonsymmetric periodic signals. -2 -1 0 1 2 3
Solution

The given signal x(t) is neither even nor odd, but the advance signal x(t + 0.5) is even with a period
of Top = 2, Qo = 7. Then between —1 and 1 the shifted period is

x1(t+ 0.5) = 2[u(t + 0.5) — u(t — 0.5)]
so that its Laplace transform is
0.5s 2 0.5s —0.5s
Xi1(s)e™ :—[e' —e ]
s
which gives the Fourier coefficients

X, = [ejkn/z _ e—jkn/Z] ok /2

1
2

_ .
W|N

= o5k sin(0.57k)e /2

after replacing s by jkQ2, = jkxr and dividing by the period Ty = 2. These coefficients are complex
as corresponding to a signal that is neither even nor odd. The dc coefficient is Xo = 1.

The given signal y(t) is neither even nor odd, and cannot be made even or odd by shifting. The even
and odd components of a period of y(t) are shown in Figure 4.17. The even and odd components
of a period y; (t) between —1 and 1 are

Y1e®) = [ut+ 1) —ut — )]+ [rt+ 1) —2r() + r(t — 1)]

rectangular pulse triangle
Yo = tlu(t + 1) —u(t — D] = [(t+ Du(t + 1) —ut+ )] = [(t = Dut — 1) +u(t - 1)]
=r@t+1)—rt—1)—ut+1)—ult—1)
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y1o(t)

A

FIGURE 4.17
Even and odd components of the period of y(t),
-1<t<1

Thus, the mean value of y,(t) is the area under y;.(t) divided by 2 or 1.5, and for k # 0,

1 111 1
Yo = T—OYle(S) ls=jty = 3 [;(e‘ —e )+ S—z(es -2+ e_s)}

s=jkm
_sin(kr) 1 —cos(km) 1 —costkr) 1-— (—1)k
- 7k (k)2 (kr)2 (km)?

The mean value of y,(t) is zero, and for k # 0,

. _iy (S)| . _1 es_e,s_es+e,s

ok = TO lo Sz]kQO - 2 52 N S=jk7T
__sin(em) | cos(km) - cos(km) _(=DF
= (k)2 e T e T e

Finally, the Fourier series coefficients of y(t) are

_{Ye0+Yoo=1.5+0=1.5 k=0
7 Yo+ Yor = (1 = (1)) /()2 + j(= D/ (k) k#0

4.10.2 Linearity of Fourier Series—Addition of Periodic Signals

m  Same fundamental frequency: If x(t) and y(t) are periodic signals with the same fundamental frequency
Qo, then the Fourier series coefficients of z(t) = ax(t) + By(t) for constants « and g are

Zy = aXy, + BYy, (4.44)

where X}, and Yy, are the Fourier coefficients of x(t) and y(z).
m Different fundamental frequencies: If x(t) is periodic of period T7, and y(t) is periodic of period T, such
that T,/T7 = N/M, for nondivisible integers N and M, then z(t) = ax(t) + By(t) is periodic of period
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To = MT, = NTq, and its Fourier coefficients are
Zj, = oXp/N + BYi/m for integers k such that k/N, and k/M are integers (4.45)

where Xj, and Y}, are the Fourier coefficients of x(t) and y(t).

If x(t) and y(t) are periodic signals of the same period Ty, the Fourier coefficients of z(t) = ax(t) +
By(t) (also periodic of period Ty) are then Z;, = X}, + BY}, where X}, and Y}, are the Fourier coefficients
of x(t) and y(t), respectively.

In general, if x(t) is periodic of period Ty, and y(t) is periodic of period T, their sum z(t) = ax(t) +
By(t) is periodic if the ratio T,/T; is a rational number (i.e., T,/T; = N/M for some nondivisible
integers N and M). If so, the period of z(t) is To = MT, = NT;. The fundamental frequency of z(t)
would be Q¢ = Q1/N = Q,/M for 2; the fundamental frequency of x(t) and 2, the fundamental
frequency of y(t). The Fourier series of z(t) is then

2(t) = ax(t) + y(0) = @ ) Xy B 4+ By VB
k m
-« ZXijNQQk[ + ﬁ Z YmejMQ()mt
k m
—a Z Xn/Neonnt + ﬁ Z YZ/MejQO&
n=0,+N,+2N,... £=0,£M,22M, ...
Thus, the coefficients are

Zp = aXiyN + BYr/m

for integers k such that k/N and k/M are integers.

m Example 4.15

Consider the sum z(t) of a periodic signal x(f) of period T; = 2, with a periodic signal y(t) with
period T, = 0.2. Find the Fourier coefficients Z;, of z(t) in terms of the Fourier coefficients X;, and
Y, of x(t) and y(1).

Solution

The ratio T,/T; = 1/10 = N/M is rational, so z(t) is periodic of period To = T; = 10T, = 2.
The fundamental frequency of z(t) is Q¢ = 21 = 7, and Q, = 10Qp = 107 is the fundamental
frequency of y(t). Thus, the Fourier coefficients of z(t) are

7, — Xk+Yk/10 when k:O,:th, :|:20,
=X otherwise -
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4.10.3 Multiplication of Periodic Signals

If x(t) and y(¢) are periodic signals of same period Ty, then their product
z(1) = x(0)y () (4.46)

is also periodic of period Ty, and with Fourier coefficients that are the convolution sum of the Fourier
coefficients of x(t) and y(¢):

Zp = XeViy (4.47)
4

If x(t) and y(t) are periodic with the same period Ty, then z(t) = x(t)y(¢) is also periodic of period Ty,
since z(t + kTo) = x(t + kTo)y(t + kTp) = x(t)y(t) = z(t). Furthermore,

NONOEDIP eI (TR WP At
e 4 k¢

= Z |:Z XkYm—k:| Mot — z(t)
m k

where we let m = k + £. The coefficients of the Fourier series of z(t) are then

Zm = ZXkYm—k
k

or the convolution sum of the sequences X;, and Y}, to be formally defined in Chapter 8.

m Example 4.16

Consider the train of rectangular pulses x(t) shown in Figure 4.4. Let z(t) = 0.25x2(t). Use the
Fourier series of z(t) to show that

Xp=aY XnXi—m
m

for some constant «. Determine «.

Solution

The signal 0.5x(t) is a train of pulses of unit amplitude, so that z(t) = (0.5x(t))> = 0.5x(t). Thus,
Zy, = 0.5X}, but also as a product of 0.5x(t) with itself we have that

Zp =" [0.5X][0.5X—p]
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and thus

1
0.5X;, = 0.25 XX X, = — Xin Xy, 4.48
k Xm:mkm=> I 22m:mkm (4.48)
Zy

so thata = 0.5.

The Fourier series of z(t) = 0.5x(t) according to the results in Example 4.5 is

N Sin(TR/2) o
2(t) = 0.5x(t) = Y — J
k=—00
If we define
S(k) = 0.5X} = sm(:ﬂ = X = 2S(k)
T

we have from Equation (4.48) the interesting result

S(k) = Z S(m)S(k — m)

m=—0oo

or the convolution sum of the discrete sinc function S(k) with itself is S(k). [ |

4.10.4 Derivatives and Integrals of Periodic Signals

= Derivative: The derivative dx(t)/dt of a periodic signal x(t), of period Ty, is periodic of the same period Ty.
If {X;,} are the coefficients of the Fourier series of x(t), the Fourier coefficients of dx(t)/dt are

jRS20X, (4.49)
where Qg is the fundamental frequency of x(t).
m Integral: For a zero-mean, periodic signal y(t), of period Ty, the integral

t

z(t) = /y(r)dr

—00

is periodic of the same period as y(t), with Fourier coefficients

Yy,
Zp = —— kE#£0
F= #
1 2w
Zo = — Z Y- Qo= — (4.50)
mZ0 jm&o To

These properties come naturally from the Fourier series representation of the periodic signal. Once
we find the Fourier series of a periodic signal, we can differentiate it or integrate it (only when the dc
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value is zero). The derivative of a periodic signal is obtained by computing the derivative of each of
the terms of its Fourier series—that is, if

x(t) =) Xy P!
k

then

e]kQ t

dx(t) Z A

Z [ jleS20X),] 20!
k

indicating that if the Fourier coefficients of x(t) are Xj, the Fourier coefficients of dx(t)/dt are
k20X

To obtain the integral property we assume y(t) is a zero-mean signal so that its integral z(t) is finite.
If for some integer M, MTy <t < (M + 1)Ty, then

t MTy t
z(t) = /y(t)dt: / y(T)dt + / y(T)dt
—00 —00 MTy
t
=0+ / y(t)dt
MTo

Replacing y(t) by its Fourier series gives

t

z(t) = /}/(T)d‘t— / ZYkeJkQOTdr

MTo MT, k#0
1 .
=Yy, | & =) "y,— [eJkQOt - 1]
3 k/ > Vi
— Z k_ Z k e]ont
k0

where the first term corresponds to the average Zp and Z;, = Y}, /(jk2), k # 0, are the rest of the
Fourier coefficients of z(t).

Remarks It should be now clear why the derivative of a periodic signal x(t) enhances its higher harmonics.
Indeed, the Fourier coefficients of the derivative dx(t)/dt are those of x(t), Xp,, multiplied by jQok, which
increases with k. Likewise, the integration of a zero-mean periodic signal x(t) does the opposite—that is, it
makes the signal smoother, as we multiply X;, by decreasing terms 1/(jkS0) as k increases.
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m Example 4.17

Let g(t) be the derivative of a triangular train of pulses f(t), of period Ty = 1. The period of f(¢),
0<t<l,is

fi®) =2r(t) —4r(t —0.5) + 2r(t — 1)
Use the Fourier series of g(t) to find the Fourier series of f(t).

Solution

According to the derivative property we have that

&
Fp=—— k+#0
% 2 #

are the Fourier coefficients of f(t). The signal g(t) = df (t)/dt has a corresponding period g (t) =
dfi(t)/dt = 2u(t) — 4u(t — 0.5) + 2u(t — 1). The Fourier series coefficients of g(t) are

2e70% s 05
Gr= = ("% =24 ¢7%) [ = 2(-1)

p cos(mh) — 1
jrk

k+#0

which are used to obtain the coefficients F;, for k # 0. The dc component of f(t) is found to be 0.5
from its plot as g(t) does not provide it. |

m Example 4.18

Consider the reverse of Example 4.17. That is, given the periodic signal g(t) of period Tp = 1 and
Fourier coefficients

)k cos(mk) — 1

G, =2(—1
r=2( i

k0

and Go = 0. Find the integral

t

z(t) = /g(r)dr

—0o0

Solution

As shown above, z(t) is also periodic of the same period as g(t) (i.e., To = 1). The Fourier
coefficients of z(t) are

G 1 p4(cos(k) — 1)

_ ( (k1) cos(mk) — 1
jQ0k (j27k)?

w2k2

Zi =(=1) k0
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FIGURE 4.18 0
Two periods of the approximate triangular signal 0 0.5 1 1.5 2
xN (t) using 100 harmonics. t(sec)

and the average term is

_ m cos(mm) — 1
n%s:o m]2m Z( b (rm)?

o0

- _yyn [sinGrm/D)T°
R [(nm/z)}

m=—00,m#0
where we used 1 — cos(rm) = 2 sin?(rm/2). We used the following script to obtain the average,

and to approximate the triangular signal using 100 harmonics (see Figure 4.18). The mean is
obtained as 0.498.

% % % % % % % % % % % % % % % % %

% Example 4.18

%% % % % % % % % % % % % % % %

clf; clear all

w0 =2 * pi; N =100; % parameters of periodic signal
% computation of mean value

DC =0;
form = 1:N,

DC =DC + 2 *(-1)"(m) * (cos(pi * m) -1)/(pi * m)"2;
end

% computation of Fourier series coefficients
Ts =0.001;t=0:Ts:2 - Ts;

for k = 1:N,
X(K) = (-1)(k + 1)*(cos(pi * k) - 1)/((pi * KJ'2);
end

X =[DC X]; % Fourier series coefficients
xa = X(1)*ones(1,length(t));
figure(1)



4,11 What Have We Accomplished? Where Do We Go from Here? a

for k = 2:N,
xa = xa + 2 * abs(X(k)) * cos(wO * (k - 1). * t + angle(X(k))); % approximate signal
end [ |

4.11 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO FROM
HERE?

Periodic signals are not to be found in practice, so where did Fourier get the intuition to come up with
a representation for them? As you will see, the fact that periodic signals are not found in practice does
not mean that they are not useful. The Fourier representation of periodic signals will be fundamental
in finding a representation for nonperiodic signals.

A very important concept you have learned in this chapter is that the inverse relation between time
and frequency provides complementary information for the signal. The frequency domain consti-
tutes the other side of the coin in representing signals. As mentioned before, it is the eigenfunction
property of linear time-invariant systems that holds the theory together. It will provide the funda-
mental principle for filtering. You should have started to experience déja vu in terms of the properties
of the Fourier series; some look like a version of the ones in the Laplace transform. This is due to
the connection existing between these transforms. You should have also noticed the usefulness of the
Laplace transform in finding the Fourier coefficients, avoiding integration whenever possible. Table
4.1 provides the basic properties of the Fourier series for continuous-time periodic signals.

Chapter 5 will extend some of the results obtained in this chapter, thus unifying the treatment of
periodic and nonperiodic signals and the concept of spectrum. Also the frequency representation of

Table 4.1 Basic Properties of Fourier Series

Time Domain Frequency Domain

Signals and constants x(1), y(t) periodic X, Y

with period Ty, «, B
Linearity ax(t) + By(t) aXy, + BYr
Parseval’s power relation Py = Tio I, lx(t)|2dt Py =3 1XI?
Differentiation d’;(:) kQ0X),
Integration [ x(@)dt only if Xo = 0 jl%ok £0,— rg} ]r%o dc
Time shifting x(t — o) e 20 x,
Frequency shifting M0ty (1) Xi_m
Symmetry x(t) real |Xi| = |X_;| even

function of k
£X, = —4£X_j, 0dd
function of k
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systems will be introduced and exemplified by its application in filtering. Modulation is the basic
tool in communications and can be easily explained in the frequency domain.

PROBLEMS

4.1.

4.2.

4.3.

4.4.

Eigenfunctions and LTI systems

The eigenfunction property is only valid for LTT systems. Consider the cases of nonlinear and of time-
varying systems.

(a) A system represented by the following input—output equation is nonlinear:

NOEER0)

Let x(r) = &7/4. Find the corresponding system output y(t). Does the eigenfunction property hold?
Explain.
(b) Consider a time-varying system

y(© = x(Ofu(®) —u(t — 1)]

Let x(t) = #7/4. Find the corresponding system output y(@). Does the eigenfunction property hold?
Explain.

Eigenfunctions and LTI systems
The output of an LTT system is

t
y(t) = / h(t)x(t — t)dt
0

where the input x(¢t) and the impulse response h(t) of the system are assumed to be causal. Let x(t) =
2 cos(2nt)u(t). Compute the output y(t) in the steady state and determine if the eigenfunction property
holds.

Eigenfunctions and frequency response of LTI systems
The input—output equation for an analog averager is

T
t

t
y(t) = ! /x(r)dr
-T

Let x(t) = ¢/t Since the system is LTI, then the output should be

y(1) = &0 H(j$20)
(a) Find y(t) for the given input and then compare it with the above equation to find H(j2g), the response
of the averager at frequency Qg.
(b) Find H(s) and verify the frequency response value H(j2p) obtained above.

Generality of eigenfunctions

The eigenfunction property holds for any input signal, periodic or not, that can be expressed in sinusoidal

form.

(a) Consider the input x(t) = cos(t) + cos(2xt), —o0 < t < oo, into an LTT system. Is x(t) periodic? If so,
indicate its period.



4.5.

4.6.

4.7.

4.8.

Problems m

(b) Suppose that the system is represented by a first-order differential equation,
V(O + 5p(0) = x(0)

where y(¢) is the output of the system and the given x(t) is the input of the system. Find the steady-
state response y(t) due to x(t) using the eigenfunction property.

Steady state of LTI systems
The transfer function of an LTT system is
Y 1
H(s) = ﬂ — L
X()  s2+35+2
If the input to this system is x(t) = 1 + cos(t + 7 /4), —oo < t < oo, what is the output y(¢) in the steady
state?

Eigenfunction property of LTI systems and Laplace
The transfer function of an LTI system is given by
Y(s) 1

H(S)=%_52+3s+2

and its input is
x(t) = 4u(t)

(a) Use the eigenfunction property of LTI systems to find the steady-state response y(t) of this system.
(b) Verify your result in (a) by means of the Laplace transform.

Different ways to compute the Fourier coefficients—MATLAB
We would like to find the Fourier series of a sawtooth periodic signal x(t) of period Tg = 1. The period of
x(t) is

x1(0) =r(®)[u@®) —u —1)]

(a) Carefully plot x(t) and compute the Fourier coefficients Xj, using the integral definition.
An easier way to do this is to use the Laplace transform of x (¢). Find X;, this way.

(c) Use MATLAB to plot the signal x(t) and its magnitude and phase line spectra.

(d) Obtain a trigonometric Fourier series x(t) consisting of the DC term and 40 harmonics to approximate
x(t). Use MATLAB to find the values of x(¢) for t = 0 to 10 in steps of 0.001. How does it compare with
x(1)?

Addition of periodic signals—MATLAB

Consider a sawtooth signal x(t) with period Ty = 2 and period

xl([)z{t 0=<t<1

0 otherwise

(a) Find the Fourier coefficients X;, using the Laplace transform. Consider the cases when k is odd and
even (k # 0). You need to compute X directly from the signal.

(b) Let y(t) = x(—¢t). Find the Fourier coefficients Yj.

(c) The sum z(t) = x(t) + y(¢t) is a triangular function. Find the Fourier coefficients Z;, and compare them
to X, + Y.

(d) Use MATLAB to plot x(¢), y(t), and z(t) and their corresponding magnitude line spectra. Find an
approximate of z(t) using the dc value and10 harmonics and plot it.
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4.9.

4.10.

4.11.

4.12.

Fourier series coefficients via Laplace—MATLAB

The computation of the Fourier series coefficients is simplified by the relation between the formula for

these coefficients and the Laplace transform of a period of the periodic signal.

(a) A periodic signal x(t), of period To = 2 sec, has as period with the signal x; (t) = u(t) — u(t — 1), s0
that x(t) can be represented as

o]

x(t) = Z x1(t —mTp)

m=—00

Expand this sum, and use the information for x1 (t) and Ty to carefully plot the periodic signal x(t).
(b) Find the Laplace transform of x1 (), and let s = jk2g, where Qg = 27 /Ty is the fundamental frequency,
to obtain the Fourier coefficients of x(t).
(c) Use MATLAB to plot the magnitude line spectrum of x(¢). Find an approximate of x(t) using the dc
and 40 harmonics. Plot it.

Half- and full-wave rectifying and Fourier—MATLAB

Rectifying a sinusoid provides a way to create a dc source. In this problem we consider the Fourier series
of the full- and half-wave rectified signals. The full-wave rectified signal x¢ (1) has a period Tp = 1 and its
period from 0 to 1 is

x1(t) = sin(rt) 0<t=<1
while the period for the half-wave rectifier signal xy, (¢) is

sin(t) 0<t<1

xz(t)z{o l<t<2

with period T = 2.

(a) Obtain the Fourier coefficients for both of these periodic signals.

(b) Use the even and odd decomposition of xy,(t) to obtain its Fourier coefficients. This computation of
the Fourier coefficients of x;,(t) avoids some difficulties when you attempt to plot its magnitude line
spectrum. Use MATLAB and your analytic results here to plot the magnitude line spectrum of the
half-wave signal and use the dc and 40 harmonics to obtain an approximation of the half-wave signal.

Smoothness and Fourier series—MATLAB

The smoothness of a period determines the way the magnitude line spectrum decays. Consider the
following periodic signals x(t) and y(t), both of period Ty = 2 sec, and with a period from 0 <t < Ty
equal to

x1(®) =u@®) —ut—1)
y1@®) =r@®) —2rt—1)+r(t—2)
Find the Fourier series coefficients of x(t) and y(t) and use MATLAB to plot their magnitude line spectrum

for k=0,+1,42, ...,£20. Determine which of these spectra decays faster and how it relates to the
smoothness of the period. (To see this relate |Xj| to the corresponding |Yy,|.)

Time support and frequency content—MATLAB
The support of a period of a periodic signal relates inversely to the support of the line spectrum. Consider
two periodic signals: x(t) of period Tp = 2 and y(t) of period T; = 1, and with periods

x1(t) =u(t) —ut—1) 0<t<?2

y1(®) = u(t) —u(t—0.5) 0<t<l1



Problems a

(a) Find the Fourier series coefficients for x(t) and y(t).

(b) Use MATLAB to plot the magnitude line spectra of the two signals from 0 to 40z rad/sec. Plot them on
the same figure so you can determine which has a broader support. Indicate which signal is smoother
and explain how it relates to its line spectrum.

4.13. Derivatives and Fourier Series
Given the Fourier series representation for a periodic signal,

o0
x(f) = Z XkeJont

k=—00
we can compute derivatives of it, just like for any other signal.
(a) Consider the periodic train of pulses shown in Figure 4.19. Compute its derivative
dx(t)
dt

Y@ =

and carefully plot it. Find the Fourier series of y(t).
(b) Use the Fourier series representation of x(¢) and find its derivative to obtain the Fourier series of y(t).
How does it compare to the Fourier series obtained above?
4.14. Fourier series of sampling delta
The periodic signal

[e¢]

b= ) 8(t—mTy)

m=—0oo

will be very useful in the sampling of continuous-time signals.
(a) Find the Fourier series of this signal—that is,

o0
b= Y A

k=—00

find the Fourier coefficients Ay,.

(b) Plot the magnitude line spectrum of this signal.

(c) Plot &7, (¢) and its corresponding line spectrum Ay, as functions of time and frequency. Are they both
periodic? How are their periods related? Explain.

x(1)

-1.25 -0.75 -0.25 0.25 0.75 1.25
FIGURE 4.19

Problem 4.13: train of

rectangular pulses. I(— To=1 —>|
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4.15.

4.16.

4.17.

4.18.

Figuring out Fourier's idea

Fourier proposed to represent a periodic signal as a sum of sinusoids, perhaps an infinite number of
them. For instance, consider the representation of a periodic signal x(t) as a sum of cosines of different
frequencies

o0
x(t) = Y Aj cos(Qpt + 0))
k=0

(a) Ifx(r) is periodic of period Ty, what should the frequencies €2, be?

(b) Consider x(t) = 2 + cos(2nt) — 3 cos(6xt + 7/4). Is this signal periodic? If so, what is its period Ty?
Determine its trigonometric Fourier series as given above by specifying the values of A;, and 6y, for all
valuesofk=0,1,....

(c) Let the signal x(t) = 2 + cos(2mt) — 3 cos(20t + 7 /4) (this signal is almost like x(t) given above,
except that the frequency 6z rad/sec of the second cosine has been approximated by 20 rad/sec).
Is this signal periodic? Can you determine its Fourier series as given above by specifying the values
of Ay, and 0y, for all values of k = 0, 1, ...? Explain.

DC output from a full-wave rectified signal—MATLAB
Consider a full-wave rectifier that has as output a periodic signal x(t) of period Tp = 1 and a period of it is
given as

cos(mt) —0.5<t<0.5

X () = 0 otherwise

(a) Obtain the Fourier coefficients Xj,.

(b) Suppose we pass x(t) through an ideal filter of transfer function H(s). Determine the values of this
filter at harmonic frequencies 2nk, = 0, 1, £2, ..., 5o that its output is a constant (i.e., we have a dc
source).

(c) Use MATLAB to plot the signal x(t) and its magnitude line spectrum.

Fourier series of sum of periodic signals

Suppose you have the Fourier series of two periodic signals x(t) and y(t) of periods Ty and Ty, respectively.

Let Xj, and Y}, be the Fourier series coefficients corresponding to x(t) and y(t).

(a) If Ty =T,, what would be the Fourier series coefficients of z(t) = x(¢) +y(¢) in terms of X,
and Y,?

(b) If T = 2T,, determine the Fourier series coefficients of w(t) = x(t) + y(t) in terms of X;, and Y}?

Manipulation of periodic signals
Let the following be the Fourier series of a periodic signal x(t) of period Ty (fundamental frequency Qg =
27/ To):

o
x(t) = Z Xke]ﬂokt

k=—00

Consider the following functions of x(t), and determine if they are periodic and what are their periods
if so:

B oy(t) =2x(t) —3

B z(t) =x(t—2) +x(t)

m o w(t) = x(21)

Express the Fourler series coefficients Yy, Z, and Wy, in terms of Xj,.
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4.19. Using properties to find the Fourier series
Use the Fourier series of a square train of pulses (done in this chapter) to compute the Fourier series of the
triangular signal x(t) with a period,

x1)=rt) =2r(t—1)+rt—2)

(a) Find the derivative of x(t) or y(t) = dx(t)/dt and carefully plot it. Plot also z(t) = y(t) + 1. Use the
Fourier series of the square train of pulses to compute the Fourier series coefficients of y(t) and z(t).

(a) Obtain the trigonometric Fourier series of y(t) and z(t) and explain why they are represented by sines
and why z(t) has a nonzero mean.

(c) Obtain the Fourier series coefficients of x(t) from those of y(t).

(d) Obtain the sinusoidal form of x(t) and explain why the cosine representation is more appropriate for
this signal than a sine representation.

4.20. Applying Parseval’'s result—MATLAB
We wish to approximate the triangular signal x(t) in Problem 4.19 by its Fourier series with a finite number
of terms, let’s say 2N. This approximation should have 95% of the average power of the triangular signal.
Use MATLAB to find the value of N.

4.21. Fourier series of multiplication of periodic signals
Consider the Fourier series of two periodic signals,

oo
Xty =y X

k=—00

o0
yo= 3 v
k=—o00

(a) Let 21 = Qq. Isz(t) = x(t)y(t) periodic? If so, what is its period and its Fourier series coefficients?

(b) If Q1 =2Qp. Isw(t) = x(2)y(r) periodic? If so, what is its period and its Fourier series coefficients?
4.22. Integration of periodic signals

Consider now the integral of the Fourier series of the pulse signal p(t) = x(t) — 1 of period Tg = 1, where

x(t) is given in Figure 4.20.

x(1)

-1.25 -0.75 -0.25 0.25 0.75 1.25
FIGURE 4.20

Problem 4.23: train of
[e—To=1—
rectangular pulses.
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(a) Given that an integral of p(t) is the area under the curve, find and plot the function

t

s(p) = / p(t)dt t<1

—00

Indicate the values of s(t) fort = 0, 0.25, 0.5, 0.75, and 1.
(b) Find the Fourier series of p(t) and s(t) and relate their Fourier series coefficients.
(c) Suppose you want to compute the integral

To/2

p(t)dt
—To/2

using the Fourier series of p(t). What is the integral equal to?
(d) You can also compute the integral from the plot of p(¢):

What is it? Does it coincide with the result obtained using the Fourier series? Explain.

4.23. Full-wave rectifying and DC sources
Let x(r) = sin?(27¢), a periodic signal of period Tg = 1, and y(t) = | sin(2xt)|, which is also periodic of
period T; = 0.5.
(a) A trigonometric identity gives that

1
x(t) = 5 [1 — cos(4mt)]

Use this result to find its complex exponential Fourier series.

(b) Use the Laplace transform to find the Fourier series of y(t).

(c) Are x(t) and y(t) identical? Explain.

(d) Indicate how you would use an ideal low-pass filter to get a DC source of unit value from x(t) and
y(t). Indicate the bandwidth and the magnitude of the filters. Compare these two signals in terms of
advantages or disadvantages in generating the desired DC source.

4.24. Windowing and music sounds—MATLAB

In the computer generation of musical sounds, pure tones need to be windowed to make them more

interesting. Windowing mimics the way a musician would approach the generation of a certain sound.

Increasing the richness of the harmonic frequencies is the result of the windowing, as we will see in this

problem. Consider the generation of a musical note with frequencies around f4 = 880 Hz. Assume our

“musician” while playing this note uses three strokes corresponding to a window wq (t) = r(t) — r(t —

T1) —r(t — Tp) + r(t — Tp), so that the resulting sound would be the multiplication, or windowing, of a

pure sinusoid cos(27fat) by a periodic signal w(z), with wy (¢) a period that repeats every To = 5T where

T is the period of the sinusoid. Let T = Tp/4 and T, = 3Ty /4.

(a) Analytically determine the Fourier series of the window w(t) and plot its line spectrum using MATLAB.
Indicate how you would choose the number of harmonics needed to obtain a good approximation to
w(t).

(b) Use the modulation or the convolution properties of the Fourier series to obtain the coefficients of the
product s(t) = cos(2rfat)w(t). Use MATLAB to plot the line spectrum of this periodic signal and again
determine how many harmonic frequencies you would need to obtain a good approximation to s(t).



Problems

(c) The line spectrum of the pure tone p(f) = cos(2xfat) only displays one harmonic, the one
corresponding to the f4 = 880 Hz frequency. How many more harmonics does s(t) have? To listen
to the richness in harmonics use the MATLAB function sound to play the sinusoid p(t) and s(t) (use
Fs = 2 x 880 Hz to play both).

(d) Consider a combination of notes in a certain scale; for instance, let

p(t) = sin(2w x 440¢t) + sin(2w x 550t) + sin(2w x 660¢)

Use the same windowing w(t), and let s(t) = p()w(t). Use MATLAB to plot p(t) and s(f) and to
compute and plot their corresponding line spectra. Use sound to play p(nTs) and s(nTs) using
Fs = 1000.
4.25. Computation of r—MATLAB

As you know, r is an irrational number that can only be approximated by a number with a finite number

of decimals. How to compute this value recursively is a problem of theoretical interest. In this problem we

show that the Fourier series can provide that formulation.

(a) Consider a train of rectangular pulses x(t), with a period

x1(t) = 2[u(t 4+ 0.25) — u(t — 0.25)] — 1 —05<t<05

and period Ty = 1. Plot the periodic signal and find its trigonometric Fourier series.
(b) Use the above Fourier series to find an infinite sum for .
(c) If rn is an approximation of the infinite sum with N coefficients, and x is the value given by MATLAB,
find the value of N so that 7p; is 95% of the value of = given by MATLAB.
4.26. Square error approximation of periodic signals—MATLAB
To understand the Fourier series consider a more general problem, where a periodic signal x(t), of period
Ty, is approximated as a finite sum of terms,

N
o= ) Xid®
k=—N

where {¢,(t)} are orthonormal functions. To pose the problem as an optimization problem, consider the
square error

£ = / [x(t) — 2(0)|2dt
To
and look for the coefficients { X(k)} that minimize e.

(a) Assume that x(t) as well as x(t) are real valued, and that x(t) is even so that the Fourier series
coefficients X, are real. Show that the error can be expressed as

N N

e = /xz(t)dt -2 Z Xy, /x(t)qbk(t)dt + Z 1X¢1%To
To k=—N 1, {=—N

(h) Compute the derivative of & with respect to X, and set it to zero to minimize the error. Find X,,.

(c) In the Fourier series the {¢(f)} are the complex exponentials and the {X,} coincide with the Fourier

series coefficients. To illustrate the above procedure consider the case of the pulse signal x(t), of period
To = 1, and a period

x1(t) = 2[u(t + 0.25) — u(t — 0.25)]
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4.27.

(d)

Use MATLAB to compute and plot the approximation x(t) and the errror ¢ for increasing values of N
from 1 to 100.

Concentrate your plot of x(t) around the one of the discontinuities, and observe the Gibb's phe-
nomenon. Does it disappear when N is very large. Plot x(t) around the discontinuity for N =
1000.

Walsh functions—MATLAB

As seen in Problem 4.26, the Fourier series is one of a possible class of representations in terms of orthonor-
mal functions. Consider the case of the Walsh functions, which are a set of rectangular pulse signals that
are orthonormal in a finite time interval [0, 1]. These functions are such that: (1) they take only 1 and —1
values, (2) ¢1,(0) = 1 for all k, and (3) they are ordered according to the number of sign changes.

(a)

Consider obtaining the functions {¢,},—o, .. 5. The Walsh functions are clearly normal since when
squared they are unity for t € [0, 1]. Let ¢o(t) = 1 for ¢t € [0, 1] and zero elsewhere. Obtain ¢4 (t) with
one change of sign and that is orthogonal to ¢q(t). Find then ¢, (t), which has two changes of sign
and is orthogonal to both ¢q(t) and ¢ (t). Continue this process. Carefully plot the {¢;(t)},i=0,...,5.
Use the MATLAB function stairs to plot these Walsh functions.

Consider the Walsh functions obtained above as sequences of 1s and —1s of length 8, and care-
fully write these six sequences. Observe the symmetry of the sequences corresponding to {¢;(t), i =
0, 1, 3, 5}, and determine the circular shift needed to find the sequence corresponding to ¢, (t) from
the sequence from ¢4 (t), and ¢4 (t) from ¢ (). Write a MATLAB script that generates a matrix ® with
entries as the sequences. Find the product (1/ 8)d®T, and explain how this result connects with the
orthonormality of the Walsh functions.

We wish to approximate a ramp function x(t) =r(t), 0 <t < 1, using {¢p}r=o
written as

5. This could be

P

r= ®a

where r is a vector of x(nT) = r(nT) where T = 1/8, a are the coefficients of the expansion, and ® is
the Walsh matrix found above. Determine the vector a and use it to obtain an approximation of x(t).
Plot x(t) and the approximation x(t) (use stairs for this signal).



CHAPTER 5

Frequency Analysis: The Fourier Transform

Imagination is the beginning of creation.

You imagine what you desire, you will what you imagine,
and at last you create what you will.

George Bernard Shaw (1856-1950)

Irish dramatist

5.1 INTRODUCTION

In this chapter we continue the frequency analysis of signals. In particular, we will concentrate in the
following issues:

m  Generalization of the Fourier series—The frequency representation of signals as well as the frequency
response of systems are tools of great significance in signal processing, communications, and
control theory. In this chapter we will complete the Fourier representation of signals by extend-
ing it to aperiodic signals. By a limiting process the harmonic representation of periodic signals
is extended to the Fourier transform, a frequency-dense representation for nonperiodic signals.
The concept of spectrum introduced for periodic signals is generalized for both finite-power and
finite-energy signals. Thus, the Fourier transform measures the frequency content of a signal, and
unifies the representation of periodic and aperiodic signals.

m  Laplace and Fourier transform—In this chapter the connection between the Laplace and the Fourier
transforms will be highlighted for computational and analytical reasons. The Fourier transform
turns out to be a very important case of the Laplace transform for signals of which the region of
convergence includes the j€2 axis. There are, however, signals where the Fourier transform cannot
be obtained from the Laplace transform; for those cases, properties of the Fourier transform will
be used. The duality of the direct and inverse transforms is of special interest in computing the
Fourier transform.

m  Basics of filtering—Filtering is an important application of the Fourier transform. The Fourier rep-
resentation of signals and the eigenfunction property of LTI systems provide the tools to change

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00008-9
(© 2011, Elsevier Inc. All rights reserved. 299
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the frequency content of a signal by processing it with an LTI system with a desired frequency
response.

m  Modulation and communications—The idea of changing the frequency content of a signal via modu-
lation is basic in analog communications. Modulation allows us to send signals over the airwaves
using antennas of reasonable sizes. Voice and music are relative low-frequency signals that can-
not be easily radiated without the help of modulation. Continuous-wave modulation changes
the amplitude, the frequency, or the phase of a sinusoidal carrier of frequency much greater than
the frequencies present in the message we wish to transmit.

5.2 FROM THE FOURIER SERIES TO THE FOURIER TRANSFORM

In practice there are no periodic signals—such signals would have infinite supports and exact periods,
which are not possible. Since only finite-support signals can be processed numerically, signals in
practice are treated as aperiodic. To obtain the Fourier representation of aperiodic signals, we use the
Fourier series representation in a limiting process.

An aperiodic, or nonperiodic, signal x(t) can be thought of as a periodic signal X(t) with an infinite period.
Using the Fourier series representation of this signal and a limiting process we obtain a pair
x(t) & X(Q)

where the signal x(t) is transformed into a function X(£2) in the frequency domain by the

o
Fourier transform: X(Q) = / x(0)e T dy (5.1)
—00

while X(€2) is transformed into a signal x(t) in the time domain by the

o0
1 .
Inverse Fourier transform: x(t) = 5 / X(Q)eJQtdQ (5.2)
T

—0

Any aperiodic signal can be assumed to be periodic with an infinite period. That is, an aperiodic
signal x(t) can be expressed as

x(t) = T(l)i_r)noo (1)

where X(t) is a periodic signal of period Ty. The Fourier series representation of X(t) is

2T

oo
x(t) = Z Xpelnsho! Qo = Ty

n=-00
To/2
1 4
X, = — f %()e ISt ge
To
=To/2



5.2 From the Fourier Series to the Fourier Transform m

As Tp — 00, X;; will tend to zero. To avoid this we define X(2,) = ToX,, where {Q, = nQp} are the
harmonic frequencies.

Letting AQ = 2 /Ty = Qo be the frequency interval between harmonics, we can then write the above
equations as

- o X(Q) o AR
() = n;m T—Oelw = ;X(Qn)efﬁntg
To/2
X(Q) = / X(t)e I tde
~To/2
AsTp — oo, then AQ — d2, the line spectrum becomes denser—that is, the lines in the line spectrum

get closer, the sum becomes an integral, and @, = nQ2p = nAQ — , so that in the limit we obtain

e ¢]

x(t) = L / X()HdQ
2
X(Q) = / x()e T dr

which are the inverse and the direct Fourier transforms, respectively. The first equation transforms
a function in the frequency domain X(€2) into a signal in the time domain x(t), while the other
equation does the opposite.

The Fourier transform measures the frequency content of a signal. As we will see, time and frequency
are complementary, thus the characterization in one domain provides information that is not clearly
available in the other.

Remarks

m  Although we have obtained the Fourier transform from the Fourier series, the Fourier transform of a periodic
signal cannot be obtained from the above integral. Consider x(t) = cos(Qot), —00 < t < 00, which is peri-
odic of period 27 / Q. If you attempt to compute its Fourier transform using the integral you do not have a
well-defined problem (try to obtain the integral to convince yourself ). But it is known from the line spectrum
that the power of this signal is concentrated at the frequencies £, so somehow we should be able to find
its Fourier transform. Sinusoids are basic functions.

»  On the other hand, if you consider a decaying exponential x(t) = e~ |%" signal, which has finite energy
and is absolutely integrable and has a Laplace transform that is valid on the jQ axis (i.e., the region
of convergence X(s) includes this axis), then its Fourier transform is simply the Laplace transform X(s)
computed at s = j2, as we will see. There is no need for the integral formula in this case, although if you
apply it your result coincides with the one from the Laplace transform.

m  Finally, consider finding the Fourier transform of a sinc function (which is the impulse response of a
low-pass filter as we see later). Neither the integral nor the Laplace transform can be used to find it. For
this signal, we need to exploit the duality that exists between the direct and the inverse Fourier transforms
(Notice the duality in Equations (5.1) and (5.2)).
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5.3 EXISTENCE OF THE FOURIER TRANSFORM

For the Fourier transform to exist, x(t) must be absolutely integrable—that is,
o oo
IX(Q)] < / lx(t)e 7 |dt = f lx(t)|dt < oo
—00 —00

Moreover, x(t) must have only a finite number of discontinuities and a finite number of minima and
maxima in any finite interval. (Given the limiting connection between the Fourier transform and the
Fourier series, it is not surprising that the above conditions coincide with the existence conditions for
the Fourier series.)

The Fourier transform
o0
X(Q) = / x(t)e Ty
—00
of a signal x(t) exists (i.e., we can calculate its Fourier transform via this integral) provided

= x(t) is absolutely integrable or the area under |x(t)| is finite.
= x(t) has only a finite number of discontinuites as well as maxima and minima.

From the definitions of the direct and the inverse Fourier transforms—both being infinite integrals—
one wonders whether they exist in general, and if so how to most efficiently compute them.
Commenting on the existence conditions, Professor E. Craig [17] wrote:

It appears that almost nothing has a Fourier transform—nothing except practical communi-
cation signals. No signal amplitude goes to infinity and no signal lasts forever; therefore, no
practical signal can have infinite area under it, and hence all have Fourier transforms.

Indeed, signals of practical interest have Fourier transforms and their spectra can be displayed using
a spectrum analyzer (or better yet, any signal for which we can display its spectrum will have a
Fourier transform). A spectrum analyzer is a device that displays the energy or the power of a signal
distributed over frequencies.

5.4 FOURIER TRANSFORMS FROM THE LAPLACE TRANSFORM

The region of convergence of the Laplace transform X(s) indicates the region in the s-plane where X(s)
is defined. The following applies to signals whether they are causal, anti-causal, or noncausal.

If the region of convergence (ROC) of X(s) = L£[x(t)] contains the j$2 axis, so that X(s) can be defined for s = j<2,
then
X
Fla®] = LIxO]ls=je = / x(ne T de
—0

=X |s=ja (5.3)
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The following rules of thumb will help you get a better understanding of the time-frequency relation-
ship of a signal and its Fourier transform, and the best way to compute it. On a first reading the use
of these rules might not be obvious, but they will be helpful in understanding the discussions that
follow and you might want to come back to these rules.

Rules of Thumb for Computing the Fourier Transform of a Signal x(t)

= If x(¢) has a finite time support and in that support x(t) is finite, its Fourier transform exists. To find it use the integral
definition or the Laplace transform of x(z).

m  Ifx(t) has a Laplace transform X(s) with a region of convergence including the j€2 axis, its Fourier transform is X(s) [s=j-

= Ifx(¢) is periodic of infinite energy but finite power, its Fourier transform is obtained from its Fourier series using delta
functions.

m If x(¢) is none of the above, if it has discontinuities (e.g., x(t) = u(¢)) or it has discontinuities and it is not finite energy
(e.g., x(t) = cos(Rot)u(t)), or it has possible discontinuities in the frequency domain even though it has finite energy
(e.g., x(t) = sinc(t)), use properties of the Fourier transform.

Keep in mind to

m Consider the Laplace transform if the interest is in transients and steady state, and the Fourier
transform if steady-state behavior is of interest.
Represent periodic signals by their Fourier series before considering their Fourier transforms.
Attempt other methods before performing integration to find the Fourier transform.

m Example 5.1

Discuss whether it is possible to obtain the Fourier transform of the following signals using their
Laplace transforms:

(@) x1 () =u®)
(b) x2() = e 2u(t)

(c) x3(t) = eI

Solution

(a) The Laplace transform of x1(t) is X1(s) = 1/s with a region of convergence corresponding
to the open right s-plane, or ROC ={s=0 4+jQ:0 > 0, 00 < Q < oo}, which does not
include the jQ axis, so the Laplace transform cannot be used to find the Fourier transform
of x1(1).

(b) The signal x,(¢) has as Laplace transform X, (s) = 1/(s + 2) with a region of convergence ROC
={s=0+4+jQ:0 > —2,—00 < Q < oo} containing the j axis. Then the Fourier transform of
x7(t) is

1
iQ+2

X2(82) = 2 li=jo =
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(c) The Laplace transform of x3(¢) is
LS S
+1 —s4+1 1-—42

X3(9) =

with a region of convergence ROC={s=0 +jQ: -1 <o < 1,—00 < Q < oo} that contains
the j2 axis. Then the Fourier transform of x3(¢) is

2 2
X3(Q2) =X =jQ = =
3(2) 3(9)|s=je 1- (922 1+2 n

5.5 LINEARITY, INVERSE PROPORTIONALITY, AND DUALITY

Many of the properties of the Fourier transform are very similar to those of the Fourier series or of
the Laplace transform, which is to be expected given the strong connection among these transforma-
tions. The linearity and the duality between time and frequency of the Fourier transform will help us
determine the transform of signals that do not satisfy the existence conditions given before.

5.5.1 Linearity

Just like the Laplace transform, the Fourier transform is linear.

If Flx(®] = X(2) and F[y(®)] = Y(), for constants « and 8, we have that
Flox(®) + By®)] = aF[x(®)] + BF[y(®)]

= aX(Q) + BY(Q) (5.4)

m Example 5.2

Suppose you create a periodic sine
x(t) = sin(RQot) —oc0 <t <00

by adding a causal sine v(t) = sin(Q2pt)u(t) and an anti-causal sine y(t) = sin(Qpt)u(—t), for each
of which you can find Laplace transforms V(s) and Y(s). Discuss what would be wrong with this
approach to find the Fourier transform of x(¢) by letting s = j<.

Solution

The Laplace transforms of v(t) and y(t) are

V(s) 2 ROC: Re [s] > 0
= : >
2+ QF
_QO
Y6)=———2—  ROC:Rel[s| <0
(—5)? + Q2

giving X(s) = V(s) + Y(s) = 0. Moreover, the region of convergence of X(s) is the intersection of
the two given ROCs, which is null, so it is not possible to obtain the Fourier transform of x(t) this
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way. This is so even though the time signals add correctly to x(t). The Fourier transform of the sine
signal will be found using the periodicity of x(t) or the duality property. |

5.5.2 Inverse Proportionality of Time and Frequency

It is very important to realize that frequency is inversely proportional to time, and that as such,
time and frequency signal characterizations are complementary. Consider the following examples to
illustrate this.

m The impulse signal x; (t) = §(t), although not a regular signal, has finite support (its support is
only at t = 0 as the signal is zero everywhere else). It is also absolutely integrable, so it has a
Fourier transform

X1(Q) = F[s(1)] = f S(t)e ¥ dt = ¢° / Sdi=1 —00<Q < o0

—0 —Q

displaying infinite support. (The Fourier transform could have also been obtained from the
Laplace transform L[§(t)] = 1 for all values of s. For s = jQ2, we have that F[§(¢)] = 1.) This result
means that since §(t) changes so fast in such a short time, its Fourier transform has all possible
frequency components.

= Consider then the opposite case: A signal that is constant for all times, that does not change, or
a dc signal x,(f) = A, —00 < t < co. We know that the frequency of 2 = 0 is assigned to it since
the signal does not vary at all. The Fourier transform cannot be found by means of the integral
because x; (t) is not absolutely integrable, but we can verify that it is given by X5 (2) = 27AS(Q2)
(we will formally show this using the duality property). In fact, the inverse Fourier transform is

o0 o0
1 , 1 .
— / X2(Q)e/dQ = — / 2T AS(Q)e/ A2 = A
2 2
—00 —00

Notice the complementary nature of x; (t) and x,(t): x;(t) = §(¢) has a one-point support, while
x2(t) = A has infinite support. Their corresponding Fourier transforms X;(2) = 1 and X,(2) =
2 A8(2) have infinite and one-point support in the frequency domain, respectively.

m To appreciate the transition from the dc signal to the impulse signal, consider a pulse signal
x3(t) = Alu(t + t/2) — u(t — t/2)]. This signal has finite energy, and its Fourier transform can be
found using its Laplace transform. We have

X500 = 2 [ — P2

with the whole s-plane as its region of convergence, so that

X3(R) = X(®)ls=ja

_ A(ejszr/z — ¢ i97/2)
i
sin(Q27/2)
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or a sinc function where At corresponds to the area under x3(t). The Fourier trans-
form X3(Q2) is an even function of Q. At Q =0 using L'Hopital's rule we find that
X3(0) = At. Finally, the Fourier transform of the pulse becomes zero when Q = 2kn/<,
=41,42,....

If we let A = 1/7 (so that the area of the pulse is unity), and let ¢ — 0, the pulse x3(t) becomes
a delta function §(¢) in the limit and the sinc function expands (for r — 0, X3(€2) is not zero
for any finite value) to become unity. On the other hand, if we let t — oo, the pulse becomes
a constant signal A extending from —oco to oo, and the Fourier transform gets closer and closer
to §(2) (the sinc function becomes zero at values very close to zero and the amplitude at 2 = 0
becomes larger and larger, although the area under the curve remains constant). As shown above,
X3(R2) = 2w AS(RQ) is the transform of x3(t) = A, —00 < t < 00.

m To illustrate the transition in the Fourier transform as the time support increases, we used the
following MATLAB script to compute the Fourier transform of pulses of the same amplitude A = 1
but different time supports 1 and 4. The script below shows the case when the support is 1, but
it can be easily changed to get the support of 4. The symbolic MATLAB function fourier computes
the Fourier transform. The results are shown in Figure 5.1.

9% % % % % % % % % % % % % % % % % % % % %
% Time-frequency relation

% % % % % % % % % % % % % % % % % % % % %
symstw

x = heaviside(t + 0.5) — heaviside(t — 0.5);
subplot(211)

ezplot(x, [— 3]);axis((—3 3 — 0.1 1.1]);grid

X = fourier(x) % Fourier transform
subplot(212)

ezplot(X, [-50 5Q)); axis([—50 50 —1 5));grid

In summary, the support of X(2) is inversely proportional to the support of x(t). If x(t) has a Fourier transform
X(2) and « # 0 is a real number, then x(«t) is an

Contracted (« > 1),

Contracted and reflected (o < —1),

Expanded (0 < o < 1),

Expanded and reflected (-1 < a < 0), or

Simply reflected (o = —1)

signal, and we have the pair

x(at) & ix(9> (5.6)

lo] \«

First let us mention that the symbol < means that to a signal x(¢) in the time domain (on the left)
there corresponds a Fourier transform X(2) in the frequency domain (on the right). This is not an
equality—far from it!
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FIGURE 5.1

Fourier transform of pulses (a) x1 (t) with A = 1 and T = 1, and (b) x, (t) with A = 1 and t = 4. Notice the wider
the pulse the more concentrated in frequency its Fourier transform, and that X;(0) = At, i =1, 2, is the area
under the pulses.
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This property is shown by a change of variable in the integration,

Flx(at)] = / x(at)e SHdt =

—00

-9

by change of variable p = «t. If |¢| > 1, when compared with x(t) the signal x(«t) contracts while its
corresponding Fourier transform expands. Likewise, when 0 < |«| < 1, the signal x(«t) expands, as
compared with x(t), and its Fourier transform contracts. If ¢ < 0, the corresponding contraction or
expansion is accompanied by a reflection in time. In particular, if « = —1, the reflected signal x(—t)
has X(—) as its Fourier transform.

o0
L[ x(p)e/%dp o« >0
—00

Q=

o
[ x(p)d**/%dp o <0
o

m Example 5.3
Consider a pulse x(t) = u(t) — u(t — 1). Find the Fourier transform of x; (t) = x(2¢t).
Solution
The Laplace transform of x(t) is

1—¢e°
X(s) =

with the whole s-plane as its region of convergence. Thus, its Fourier transform is

X(@) = 1 _ e IR _ e—]'Q/Z(eJ'S?ﬂ — e 1R/2)
72 2jS2/2
_ sin(£2/2) —i2/2
Q/2

To the finite-support signal x(t) corresponds X(2) of infinite support. Then,
x1(t) = x(2t) = u(2t) —ut — 1) = u(t) — u(t — 0.5)
and its Fourier transform is found, again using its Laplace transform, to be

1 —e %2 oI/ _ g8/

X; (Q) — ]Q = ]Q
_ 1sin@/) jon _ Lyg)o
2 Q/4 2

which is an expanded version of X(£2) in the frequency domain and coincides with the result from
the property. See Figure 5.2.
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The Fourier transforms can be found from the integral definitions. Thus, for x(t),

1

—iQt .
x@) = [16%= iy = T e
—iQ Q/2
0
Likewise, for x1(t),
0.5 —
X1(R) = / 1% dt = 0.5%51'9/4
0 [ |

m Example 5.4

Apply the reflection property to find the Fourier transform of x(t) = e, a > 0. For a = 1, plot
using MATLAB the signal and its magnitude and phase spectra.

Solution

The signal x(t) can be expressed as x(t) = e~ %u(t) + e*u(—t) = x1(t) + x1(—t). The Fourier trans-
form of x1(t) is

i@ = ! 1
= jQ+a

p ls=ja =
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-10 -5 0 5 10
t(sec)
2
1
FIGURE 5.3 1.5
Magnitude and phase = / \ =
spectrum of two-sided % 1 5{ 0
signal x(¢t) = e~ 1", The B 05 / \
magnitude spectrum ’ 1
indicates x(t) is low Ob——"" ]
pass. Notice the phase -10 -5 0 5 10 -20 0 20
is zero. Q Q
and according to the given result x; (—t) (@ = —1), we have that
Fln(=n] = ——
X1(— =
! —jQ+a
so that
1 1 2a
X(Q) =

Qe Sata a2t

If a =1, using MATLAB the signal x(t) = ¢!/ and its magnitude and phase spectra are com-
puted and plotted as shown in Figure 5.3. Since X(2) is real and positive, the corresponding
phase spectrum is zero. This signal is called low-pass since its energy is concentrated in the low
frequencies. [ |

5.5.3 Duality

Besides the inverse relationship of frequency and time, by interchanging the frequency and the time
variables in the definitions of the direct and the inverse Fourier transform (see Egs. 5.1 and 5.2)
similar equations are obtained. Thus, the direct and the inverse Fourier transforms are dual.

To the Fourier transform pair
xt) & X(Q) (5.7)
corresponds the following dual-Fourier transform pair

Xt <& 2nx(—Q) (5.8)
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This can be shown by considering the inverse Fourier transform
1 o0
x(0) = —— f X(p)e*'dp
2
—00
and replacing t by —Q and multiplying by 27 to get
oo
2rx(—Q) = / X(p)e P2 dp
—00
o0
= / X(t)e ¥dt
%
= FIX(©]
To understand the above equations you need to realize that p and ¢ are dummy variables inside the
integral, and as such they are not reflected outside the integral.
Remarks
m  This duality property allows us to obtain the Fourier transform of signals for which we already have a
Fourier pair and that would be difficult to obtain directly. It is thus one more method to obtain the Fourier
transform, besides the Laplace transform and the integral definition of the Fourier transform.
m  When computing the Fourier transform of a constant signal, x(t) = A, we indicated that it would be
X(R2) = 27 A8(R2). Indeed, we have the dual pairs
AS() & A
A & 27AS(—Q) = 2mAS(Q) (5.9)

where in the second equation we use the fact that §(S2) is even.

m Example 5.5
Use the duality property to find the Fourier transform of the sinc signal

sin(0.5t) )
x(t) =A “osr = A sinc(0.5¢1) —00<t< o0

Solution

The Fourier transform of the sinc signal cannot be found using the Laplace transform or the integral
definition of the Fourier transform. The duality property provides a way to obtain it. We found
before, for t = 0.5, the following pair of Fourier transforms:

sin(0.52)

Aut+05) —ut=05)] & A= = = Asinc(0.59)
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FIGURE 5.4
Application of duality to find the Fourier transform of x(t) = 10 sinc(0.5t). Notice that
X(R) = 27x1 () ~ 6.28x1(Q) = 62.8[u(Q + 0.5) — u(2 — 0.5)].

Then according to the duality property, the Fourier transform of x(t) is
X(Q) = 27A[u(—Q + 0.5) — u(—Q — 0.5)] = 27 A[u(Q + 0.5) — u(Q — 0.5)]

given that the function is even with respect to Q2. So the Fourier transform of the sinc is a rectangular
pulse in frequency, in the same way that the Fourier transform of a pulse in time is a sinc function
in frequency. Figure 5.4 shows the dual pairs for A = 10. |

m Example 5.6
Find the Fourier transform of x(t) = A cos(Q2pt) using duality.

Solution

The Fourier transform of x(t) cannot be computed using the integral definition since this signal
is not absolutely integrable, or using the Laplace transform since x(t) does not have a Laplace
transform. As a periodic signal, x(t) has a Fourier series representation and we will use it later to
find its Fourier transform. For now, let us consider the Fourier pair

8(t— po) +8(t+ po) & e TIPS 4 P2 = 3 cos(p)
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where we used the Laplace transform of §(t — pg) + §(t + po), which is e™*P0 4 ¢°/0 defined over
the whole s-plane. At s = j2, we get 2 cos(po€2). According to the duality property, we thus have
the following Fourier pair:

2cos(pot) <« 2m[8(—=RQ — po) + (=2 + po)| = 27[5(22 + po) + (2 — po)]
Replacing pg by €20 and canceling the 2 in both sides, and multiplying by A both sides, we have
x(t) = Acos(Qt) &  X(Q2) =mA[S(R2+ Qo) +5(2 — Qo)] (5.10)

indicating that it only exists at £. [

5.6 SPECTRAL REPRESENTATION

In this section, we consider first how to find the Fourier transform of periodic signals using the
modulation property, and then consider Parseval’s result for finite-energy signals. With these results,
we will unify the spectral representation of both periodic and aperiodic signals.

5.6.1 Signal Modulation

One of the most significant properties of the Fourier transform is modulation. Its application to
signal transmission is fundamental in communications.

m  Frequency shift: If X(2) is the Fourier transform of x(t), then we have the pair
XD & X(Q - Q) (5.11)
m  Modulation: The Fourier transform of the modulated signal
x(t) cos(Rpt) (5.12)
is given by
0.5[X(2 — Qo) + X(Q + Q)] (5.13)

That is, X(€2) is shifted to frequencies Q¢ and —g, and multiplied by 0.5.

The frequency shifting property is easily shown:

Flx®et] = /[x(t)ejﬂot]e*jmdt

e @]

= / x(t)e JE 20 gy

—00

= X(£2 — Qo)
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Applying the frequency shifting to

x(t) cos(Qot) = 0.5x(0)e/*! + 0.5x(t)e 0!

we obtain the Fourier transform of the modulated signal (Eq. 5.13). In communications, the message
x(t) (typically of lower frequency content than the frequency of the cosine) modulates the carrier
cos(Qot) to obtain the modulated signal x(t) cos(2ot). Modulation is an important application of the
Fourier transform, as it allows us to change the original frequencies of a message to much higher
frequencies, making it possible to transmit the signal over the airwaves.

Remarks

As indicated before, amplitude modulation consists in multiplying an incoming signal x(t), or
message, by a sinusoid of frequency higher than the maximum frequency of the incoming signal. The
modulated signal is

x(t) cos(Qt) = 0.5[x(1)e 0! + x(t)e /%1
with a Fourier transform, according to the frequency shifting property, of
Flx(t) cos(Qot)] = 0.5[X(2 — Qo) + X(2 + Q)]

Thus, modulation shifts the frequencies of x(t) to frequencies around +Qo.
Modulation using a sine, instead of a cosine, changes the phase of the Fourier transform of the incoming
signal besides performing the frequency shift. Indeed,

20t _ —jQot
Flx() sin(Qot)] = F |:x(t)e 2jx(t)e ]

1 1
= —X(2 — Qo) — =X(2 + Qo)
2j 2j

- %]xm —Q0) + %xm + Q)

where the —j and j terms add —m /2 and 7 /2, respectively, radians to the signal phase.

According to the eigenfunction property of LTI systems, modulation systems are not LTI. Modulation shifts
the frequencies at the input to new frequencies at the output. Nonlinear or time-varying systems are
typically used as amplitude modulation transmitters.

m Example 5.7

Consider modulating a carrier cos(10t) with the following signals:

1. x1(t) = e !, 00 < t < 0o. Use MATLAB to find the Fourier transform of y; (t) = x (t) cos(10t)
and plot y; (f) and its magnitude and phase spectra.

2. x(t) =0.2[r(t + 5) — 2r(t) + r(t + 5)], where r(¢) is the ramp signal. Use MATLAB to plot x5 (t)
and y, (t) = x2(t) cos(10t) and compute and plot the magnitude of their Fourier transforms.
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Solution

The modulated signals are

e y1(f) = x1(t) cos(10t) = el cos(10t) —00<t< o0

e (1) = x2(t) cos(10t) = 0.2[r(t + 5) — 2r(t) + r(t + 5)] cos(10t)

The signal x; (¢) is very smooth, although of infinite support, and thus most of its frequency com-
ponents are of low frequency. The signal x; (t) is not as smooth and has a finite support, so that its
frequency components are mostly low pass but its spectrum also displays higher frequencies.

The MATLAB scripts used to compute the Fourier transform of the modulated signals and to plot
the signals, their modulated versions, and the magnitude and phase of the Fourier transforms are
very similar. The following script indicates how to generate y;(t) and how to find the magnitude
and phase of its Fourier transform Y; (€2). Notice the way the phase is computed.

% % % % % % % % % % % % % % % % % % % % %

% Example 5.7---Modulation

%% % % % % % % % % % % % % % % % % % % %o

y1 = exp(—abs(t)). * cos(10 * 1);

% magnitude and phase of Y1(Omega)

Y1 = fourier(y1); Ym = abs(Y1); Ya = atan(imag(Y1)/real(Y1));

The signal x;(¢) is a triangular signal. The following script shows how to generate the signal x;(¢).
Instead of multiplying x,(t) by the cosine, we multiply it by the cosine-equivalent representa-
tion in complex exponentials, which will give better plots of the Fourier transforms when using

ezplot.

m = heaviside(t + 5) — heaviside(t);

m1 = heaviside(t) — heaviside(t—5);

X2 = +5)«*m+mlx(—t+5); x2 =x2/5;

X = X2 * exp(—j * 10 * 1)/2; y = X2 % exp(+] * 10 * t)/2;

X = fourier(x); Y = fourier(y);

Y2m = abs(X) + abs(Y); % magnitude of Y_2(Omega)

X2 = fourier(x2); X2m = abs(X2); % magnitude of X_2(Omega)

The results are shown in Figure 5.5.

Why Modulation?
The use of modulation to change the frequency content of a message from its baseband frequencies

to higher frequencies makes its transmission over the airwaves possible. Let us explore why it is nec-
essary to use modulation to transmit a music or a speech signal. Typically, acoustic signals such as
music are audible up to frequencies of about 22 KHz, while speech signals typically display frequen-
cies from about 100 Hz to about 5 KHz. Thus, music and speech signals are relatively low-frequency
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(a) The modulated signal y; (t) = e~ !l cos(10t) and its magnitude and phase spectra. Notice that the phase is
zero. (b) The triangular signal, its modulated version, and their magnitude spectra.
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signals. When radiating a signal with an antenna, the length of the antenna is about a quarter of the
wavelength,

_ 3x10®

f

where f is the frequency in hertz of the signal being radiated. Thus, if we assume that frequencies
up to f = 30 KHz are present in the signal (this would allow us to include music and speech in the
signal) the wavelength is 10 kilometers and the size of the antenna is 2.5 kilometers—a 1.5-mile
long antenna! Thus, for a music or a speech signal to be transmitted with a reasonable-size antenna
requires increasing the frequencies present in the signal. Modulation provides an efficient way to shift
an acoustic or speech signal to a desirable frequency.

meters

5.6.2 Fourier Transform of Periodic Signals

By applying the frequency-shifting property to compute the Fourier transform of periodic signals, we
are able to unify the Fourier representation of aperiodic as well as periodic signals.

For a periodic signal x(t) of period Ty, we have the Fourier pair

X0 =Y Xl o X(@) =) 27X,8(2 — k) (5.14)
k k

obtained by representing x(t) by its Fourier series.

Since a periodic signal x(t) is not absolutely integrable, its Fourier transform cannot be computed
using the integral formula. But we can use its Fourier series

x(0) = Y Xy !
k

where the {X,} are the Fourier coefficients, and Q¢ = 27 /Ty is the fundamental frequency of the peri-
odic signal x(t) of period Ty. As such, according to the linearity and the frequency-shifting properties
of the Fourier transform, we obtain

X(Q) =) FlXe™
k

= > 27X (Q — k)
k

where we used that X;, as a constant has a Fourier transform 27 X;,8(2). Notice that for a periodic sig-
nal the Fourier coefficients {X},} still characterize its frequency representation: The Fourier transform
of a periodic signal is a sequence of impulses in frequency at the harmonic frequencies, {§(2 — kQ20)},
with amplitudes {27 X},}.
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Remarks

When plotting |X(2)| versus 2, which we call the Fourier magnitude spectrum, for a periodic signal
x(t), we notice it is analogous to its line spectrum discussed before. Both indicate that the signal power is
concentrated in multiples of the fundamental frequency, the only difference being in how the information
is provided at each of the frequencies. The line spectrum displays the Fourier series coefficients at their
corresponding frequencies, while the spectrum from the Fourier transform displays the concentration of the
power at the harmonic frequencies by means of delta functions with amplitudes of 27 times the Fourier
series coefficients. Thus, there is a clear relation between these two spectra, showing exactly the same
information in slightly different form.

The Fourier transform of a cosine signal can now be computed directly as

Flcos(Qot)] = F[0.5¢/%0! + 0.5¢75%1]

= 18( — Qo) + T8 + Q)
and for a sine (compare this result with the one obtained before),

0.5 ; 0.5 _.
F[Sln(Qot)] =F [Te]QOt _ ]_.e—jﬂot}

T T
= —6(2 — Qo) — —8(2+ Qo)
j j
= e 25(Q — Qo) + 7d™?8(2 + Q)

The magnitude spectra of the two signals coincide, but the cosine has a zero-phase spectrum, while the
phase spectrum for the sine displays a phase of £ /2 at frequencies £.

m Example 5.8

Consider a periodic signal x(t) with a period
x1(t) =r(t) —2r(t—0.5) +r(t—1)

If the fundamental frequency is Q¢ = 277, determine the Fourier transform X(£2) analytically and
using MATLAB. Plot several periods of the signal and its Fourier transform.

Solution

The given period x; (t) corresponds to a triangular signal. Its Laplace transform is

1 e—O.Ss
Xl (S) = 5_2 <1 — 29_0'53 + e_s) — 5_2 (eo-55 —24 e—0_55>
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so that the Fourier coefficients of x(t) are (Tp = 1):

1 1 .
= — i = —m — _]”k
Xp TOXI (8)ls=j2rk (jznk)22(cos(nk) 1e
pi1) COS(TR) — 1 L sin®(k/2)
=D e =Y T

after using the identity cos(26) — 1 = —2 sin?(0). The DC term is Xy = 0.5. The Fourier transform
of x(t) is then

o0
X(Q) = 27 X08() + Z 27X, 8(Q — 2km)
k=—00,#0

To compute the Fourier transform using symbolic MATLAB, we approximate x(t) by its Fourier
series by means of its average and N = 10 harmonics (the Fourier coefficients are computed using
the fourierseries function from Chapter 4). We then create a sequence {27 X},} and the correspond-
ing harmonic frequencies {Q2;, = kQ¢} and plot them as the spectrum X(2) (see Figure 5.6). The
following script gives some of the necessary steps to generate the periodic signal and to find its
Fourier transform. The MATLAB function fliplr is used to reflect the Fourier coefficients.

AFANVANFANFANFA

x(t)

0
0 1 2 3 4 5
t
(a)
4
3
2
FIGURE 5.6 g
(a) Triangular periodic signal x(t), x 0. . — e
and (b) its Fourier transform X(2), »
which is zero except at harmonic ° ®
frequencies where it is an impulse -50 0 50
of magnitude 27X;, where X;, is a Q (rad/sec)

Fourier coefficient of x(t). (b)
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9% % % % % % % % % % % % % % % % % % % % %
% Example 5.8---Fourier series
9% % % % % % % % % % % % % % % % % % % % %
TO=1; N=10; w0 = 2 x pi/TO;
m = heaviside(t) — heaviside(t — T0/2);
m1 = heaviside(t — TO/2) — heaviside(t — TO);
x=txm+mlx(—t+T0); x =2 x x; % periodic signal
Xk, w] = fourierseries(x, TO, N); % Fourier coefficients, harmonic frequencies
% Fourier series approximation
for k = 1:N,
ifk==1;
x1 = abs(Xk(K));
else
x1 =x1 + 2 x abs(Xk(k)) * cos(WO * (k—1) x t + angle(Xk(k)));
end
end
% sequence of Fourier coefficients and harmonic frequencies
k =0:N—1; Xk1 = 2 % pi % Xk; wk = [fliplr(k(2:N—1)) K] * wO; Xk = [fliplr(Xk1(2:N — 1)) Xk1];

In this case, the Laplace transform simplifies the computation of the X}, values. Indeed, the Fourier
series coefficients are given by

0.5 1
X, = / te 127k gr 4 / (1 — t)e Tk gy
0 0.5
which need to be found using integration by parts. |

5.6.3 Parseval’s Energy Conservation

We saw in Chapter 4 that for periodic signals having finite power but infinite energy, Parseval’s theo-
rem indicates how the power of the signal is distributed among the harmonic components. Likewise,
for aperiodic signals of finite energy, an energy version of Parseval’s result indicates how the signal
energy is distributed over frequencies.

For a finite-energy signal x(t) with Fourier transform X(£2), its energy is conserved when going from the time
to the frequency domain, or

o o0
Ey = f |x(t)|2dt=$ / IX(Q)2d$2 (5.15)
—00 —00

Thus, |X(£2)|? is an energy density indicating the amount of energy at each of the frequencies .

The plot |X(2)|? versus 2 is called the energy spectrum of x(¢), and it displays how the energy of the signal is
distributed over frequency.
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This energy conservation property is shown using the inverse Fourier transform. The finite-energy
signal of x(t) can be computed in the frequency domain by

/ x(Ox*(D)dt = / x(f) % / X*(Q)e TdQ | dt

1 o o
= / X*(Q) / x(e e | dQ
2
—00 —00

1 o0
= — f IX(2)]%dS2
2w
-0

m Example 5.9

Parseval’s result helps us to understand better the nature of an impulse §(t). It is clear from its
definition that the area under an impulse is unity, which means §(t) is absolutely integrable, but
does it have finite energy? Show how Parseval’s result can help resolve this issue.

Solution

Let’s consider this from the frequency point of view, using Parseval’s result. The Fourier transform
of §(t) is unity for all values of frequency and as such its energy is infinite. Such a result seems
puzzling, because §(t) was defined as the limit of a pulse of finite duration and unity area. This is
what happens if

1
pal) = <[u(t+A/2) —u(t = A/2)]
is a pulse of the unity area from which we obtain the impulse by letting A — 0. The signal
1
pA(D) = [+ A7) —u = A/2)]

is a pulse of area 1/A. If we then let A — 0, the squared pulse p4 (1) will tend to infinity with an
infinite area under it. Thus, §(t) is not finite energy. [ |

m Example 5.10

Consider a pulse p(t) = u(t + 1) — u(t — 1). Use its Fourier transform P(2) and Parseval'’s result to

show that
[ (9 e
Q
—00
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Solution

The energy of the pulse is E = 2 (the area under the pulse). But according to Parseval’s result the
energy computed in the frequency domain is given by

o0

1 / <2sin(sz)>2dQZEx
2 Q

—0

since 2 sin(2)/ Q2 = P(2) = F(p(t)). Replacing E,, we obtain the interesting and not obvious result

%) ) 5
/' (sm(Q)) I9 =
Q

This is one more way to compute 7! ]

5.6.4 Symmetry of Spectral Representations

Now that the Fourier representation of aperiodic and periodic signals is unified, we can think of
just one spectrum that accommodates both finite-energy as well as infinite-energy signals. The word
spectrum is loosely used to mean different aspects of the frequency representation. In the following
we provide definitions and the symmetry characteristic of the spectrum of real-valued signals.

If X(2) is the Fourier transform of a real-valued signal x(t), periodic or aperiodic, the magnitude |X(£2)| is an
even function of :

X(@Q)] = X(—)| (5.16)

and the phase ZX(£2) is an odd function of Q:

ZX(Q) = —ZX(—9) (5.17)
We then have:
Magnitude spectrum: |X(€2)| versus ©
Phase spectrum: ZX(2) versus Q

Energy/power spectrum:  |X(£2)|2 versus 2

To show this, consider the inverse Fourier transform of a real-valued signal x(t),

x(t) = f X(Q)eHdQ

which, because of being real, is identical to

x*(1) = / X*(Q)e T4 = / X*(—Q)d¥dQ

—00 —00
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since the integral can be thought of as an infinite sum of complex values. Comparing the two
integrals, we have that

X(Q) = X*(—Q)
or
X(@)[e" @ = 1X(-@)]e "
where 6(2) = Z(X(R2)) is the phase of X(£2). We can then see that
IX(€)| = [X(—£2)|
0(Q) = —6(—Q)
or that the magnitude is an even function of Q and the phase is an odd function of Q. It can also be
seen that
RelX(Q)] = Re[X(—2)]
Im[X(Q)] = —Im[X(-)]
or that the real part of the Fourier transform is an even function and that the imaginary part of the
Fourier transform is an odd function of €.
Remarks
w  Clearly, if the signal is complex, the above symmetry will not hold. For instance, if x(t) = e/%t =
cos(Qot) + jsin(Qot), using the frequency-shift property its Fourier transform is
X(Q) = 278(2 — Q)

which occurs at Q = Qg only, so the symmetry in the magnitude and phase does not exist.

m It is important to recognize the meaning of “negative” frequencies. In reality, only positive frequencies
exist and can be measured, but as shown the spectrum, magnitude or phase, of a real-valued signal
requires negative frequencies. It is only under this context that negative frequencies should be understood
as necessary to generate “real-valued” signals.

m Example 5.11

Use MATLAB to compute the Fourier transform of the following signals:
(@ x1(t) =u@ —u(t—1)
(b) x2(t) = e~ u(t)

Plot their magnitude and phase spectra.

Solution

Three possible ways to compute the Fourier transforms of these signals using MATLAB are: (1)
find their Laplace transforms as in Chapter 3 using laplace and compute the magnitude and phase
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function by letting s = j2, (2) by using the symbolic function fourier, and (3) sample x(f) and find
its Fourier transform (this requires sampling theory—see Chapter 7).

The following script is used to compute and plot the signal x;(t) = ¢ 'u(t) and the magnitude and
phase of its Fourier transform using symbolic MATLAB. A similar script is used for x; (¢).

% % % % % % % % % % % % Y% % % % % % % % %o

% Example 5.11

% % % % % % % % % % % % % % % % % % % % %
symm t

x2 = exp(—t) * heaviside(t);

X2 = fourier(x2)

X2m = sgrt((real(X2))2 + (imag(X2))2; % magnitude
X2p = imag(log(X2); % phase

Notice the way that the magnitude and the phase are computed. To compute the magnitude we
use

X2 = RelX2 (] + ImlX2() .

The computation of the phase is complicated by the lack of the function atan2 in symbolic MAT-
LAB, which extends the principal values of the inverse tangent to (—, 77| by considering the sign
of the real part. The phase computation can be done by using the log function; indeed

log(X2(£2)) = log (1X2(2)[¢“*2 D) = 1og(1X2(Q)]) +j£X2(£2)
so that

/X2(R) = Im[log(X2(Q))]

Analytically, the phase of the Fourier transform of x;(t) = u(t) —u(t — 1) can be found by
considering the advanced signal z(t) = x; (t + 0.5) = u(t + 0.5) — u(t — 0.5) with Fourier transform

sin(€2/2)

ZE) = Q/2

Given that Z(2) is real, its phase is either zero when Z(2) > 0 and +7 when Z(Q2) < 0 (using t‘hese
values so that the phase is an odd function of 2). Since z(t) = x1 (t + 0.5), then Z(Q2) = X; ()05,
so that

X1(Q) = e 1952 7(Q)

and as such

~0.5Q Z(Q) >0

ZX1(Q) = LZ(Q) ~ 0.5Q = {:I:n' ~05Q Z(Q) <0
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The Fourier transform of x, (t) = e~ ‘u(t) is

06 =1 +1 i
The magnitude and phase are given by
Ko@) = ———s
ST

0(Q) = —tan~' Q
When we compute these in terms of 2, we have

QX ()

0 1 0
1 ! /4
— -
V2
00 0 —m/2

That is, the magnitude spectrum decays as 2 increases. The signal x; (¢) is called low-pass given that
the magnitude of its Fourier transform is concentrated in the low frequencies. This also implies
that the signal x,(¢) is rather smooth. See Figure 5.7 for results. [ |

m Example 5.12

It is not always the case that the Fourier transform is a complex-valued function. Consider the
signals

(@) x(t) = 0.5¢7
(b) y(t) = e 1" cos(Qot)

Find their Fourier transforms. Discuss the smoothness of these signals.

Solution

(a) The Fourier transform of x(t) is

X(Q) =

Q241
which is a real-valued function of 2. Indeed,

QX =X() 6()
0 1 0
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0.8
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(b)
FIGURE 5.7
Fourier transforms of (a) pulse x; (t) and of (b) decaying exponential x; (t).
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This is also a low-pass signal like x; (t) in Example 5.11, but this is “smoother” than that one
because the magnitude response is more concentrated in the low frequencies. Compare the
values of the magnitude responses to verify this. Also this signal has zero phase, because its
Fourier transform is real and positive for all values of Q.

(b) The signal y(t) = 2x(t) cos(Qpt) is a band-pass signal. It is not as smooth as the signals in the
above example given that the concentration of

Y(R) = X(Q — Qo) + X(2 + Q)

is around the frequency g, a frequency typically higher than the frequencies in x(t). The
higher this frequency, the more variation is displayed by the signal. In communications, low-
pass signals are called base-band signals. m

The bandwidth of a signal x(t) is the support—on the positive frequencies—of its Fourier transform X(£2).
There are different definitions of the bandwidth of a signal depending on how the support of its Fourier trans-
form is measured. We will discuss some of the bandwidth measures used in filtering and in communications
in Chapter 6.

The bandwidth together with the information about the signal being low-pass or band-pass provides
a good characterization of the signal. The concept of the bandwidth of a filter that was discussed
in circuit theory is one of its possible definitions; other possible definitions will be introduced in
Chapter 6. The spectrum analyzer, a device used to measure the spectral characteristics of a signal,
will be presented in section 5.7.4 after considering filtering.

5.7 CONVOLUTION AND FILTERING

The modulation and the convolution integral properties are the most important properties of the
Fourier transform. Modulation is essential in communications, and the convolution property is basic
in the analysis and design of filters.

If the input x(¢) (periodic or aperiodic) to a stable LTI system has a Fourier transform X(€2), and the system has
a frequency response H(j2) = F[h(t)] where h(t) is the impulse response of the system, the output of the LTI
system is the convolution integral y(t) = (x * h)(t), with Fourier transform

Y(Q) = X(Q) H(jQ) (5.18)

In particular, if the input signal x(t) is periodic, the output is also periodic with Fourier transform

o0
Y@ = Y 27 X H(jk £20)8(2 — kS0) (5.19)

k=—00

where X;, are the Fourier series coefficients of x(t) and Q¢ are its fundamental frequency.
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This can be shown by considering the eigenfunction property of LTI systems. The Fourier
representation of x(t), if aperiodic, is an infinite summation of complex exponentials ¢** multiplied
by complex constants X(£2), or

oo

x(f) = % / X(Q)dQ

—00

According to the eigenfunction property, the response of an LTI system to each term X(2)&* is
X(Q)e***H(j2) where H(jQ) is the frequency response of the system, and thus by superposition the
response y(t) is

o0

1 .
_ : JQt
V(t)——zn / [X(2)H(j2)] & d2

—00
1 o0
= — / Y(Q)dQ
2
—00

so that Y(2) = X(Q)H(jRQ).
If x(t) is periodic of period Ty (or fundamental frequency Qo = 27/Ty), then
o
X(Q) = ) 27X8(Q — ko)
k=—00
so that the output y(t) has as its Fourier transform

Y () = X(QH(j2)

= Z 2 X H(j)8(2 — kQ0)
ke

27 X, H( jkS20)8 (22 — k)

o ]

k

Therefore, the output is periodic—that is,

o]
y = Y Vet

ke=—00
where Y}, = X, H(jEQ20).

An important consequence of the convolution property, just like in the Laplace transform, is that the
ratio of the Fourier transforms of the input and the output gives the frequency response of the system,



5.7 Convolution and Filtering a

or

Y(Q)

H(j2) = )

(5.20)
The magnitude and the phase of H(j2) are the magnitude and phase frequency responses of the
system, or how the system responds to each particular frequency.

Remarks

m It is important to keep in mind the following connection between the impulse response h(t), the transfer
function H(s), and the frequency response H(j2) that characterize an LTI system:

H(j) = L[h®]ls=je

= H($)|s=ja
Y(s)
= X_(S|s=jQ
= As the Fourier transform of a real-valued function, the impulse response h(t), the function H(j2) has a
magnitude |H(jQ)| and a phase ZH(jS2), which are even and odd functions of the frequency Q2.
= The convolution property relates to the processing of an input signal by an LTI system. But it is possible, in
general, to consider the case of convolving two signals x(t) and y(t) to get z(t) = [x * y](t), in which case
we have that Z(2) = X(Q)Y (2) where X(2) and Y (2) are the Fourier transforms of x(t) and y(t).

5.7.1 Basics of Filtering

The most important application of LTI systems is filtering. Filtering consists in getting rid of
undesirable components of a signal. A typical example is when noise 7(t) is added to a desired
signal x(t) (i.e., y(t) = x(t) + n(t)), and the spectral characteristics of x(t) and the noise 7n(t) are
known. The problem then is to design a filter, or an LTI system, that will get rid of the noise
as much as possible. The filter design consists in finding a transfer function H(s) = B(s)/A(s) that
satisfies certain specifications that will allow getting rid of the noise. Such specifications are typ-
ically given in the frequency domain. This is a rational approximation problem, as we look for
the coefficients of the numerator and denominator of H(s) that make H(j2) in magnitude and
phase approximate the filter specifications. The designed filter should be implementable and sta-
ble. In this section we discuss the basics of filtering and in Chapter 6 we introduce the filter
design.

Frequency-discriminating filters keep the frequency components of a signal in a certain frequency
band and attenuate the rest. Filtering an aperiodic signal x(t) represented by its Fourier transform
X(€2) with magnitude |X(€2)| and phase ZX(2), using a filter with frequency response H(j<2), gives
an output y(t) with a Fourier transform of

Y(£2) = H(j$2)X(2)

Thus, the output y(t) is composed of only those frequency components of the input that are not
filtered out by the filter. When designing the filter, we assign appropriate values to the magnitude in
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the desirable frequency band or bands, and let it be close to zero in those frequencies we would not
want in the output signal.

If the input signal x(t) is periodic of period Ty, or fundamental frequency Q29 = 27/Ty, the Fourier
transform of the output is

Y(Q2) = X(Q)H(jS2)
=27 Y XpH(jk20)8 (2 — k) (5.21)
k

where the magnitude and the phase of each of the Fourier series coefficients are changed by the fre-
quency response of the filter at the harmonic frequencies. Indeed, X;, corresponding to the frequency
kS is changed into

XiH(jkS0) = |Xel[H(jleo) |/ it <HUG0)

The filter output y(¢) is also periodic of period Ty but is missing the harmonics of the input that have
been filtered out.

The above shows that independent of whether the input signal x(t) is periodic or aperiodic, the output
signal y(t) has the frequency components allowed through by the filter.

m Example 5.13

Consider how to obtain a dc source using a full-wave rectifier and a low-pass filter (it keeps only
the low-frequency components). Let the full-wave rectified signal x(t) be the input of the filter
and let the output of the filter be y(t). We want y(t) = 1 volt. The rectifier and the low-pass filter
constitute a system that converts alternating into direct voltage.

Solution
We found in Chapter 4 that the Fourier series coefficients of x(t) = | cos(xt)|, —00 < t < 00, are
given by
2=
T T = 4k2)

so that the average of x(t) is Xo = 2/x. To filter out all the harmonics and leave only the average
component, we need an ideal low-pass filter with a magnitude A and a cut-off frequency 0 <
Q. < Qo where Qg = 27/Ty = 27 is the fundamental frequency of x(t). Thus, the filter is given by
H(j2) = A for —Qp < Q. < Q0 and zero otherwise. According to the convolution property, then

Y(R) = HQ)X(R) = H(jQ) | 21X08(Q) + Y 2mX:8(2 — k<)
k0

= 27 AX8(R2)
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so that AXp =1, or A=1/Xp = /2, to get the output to have a unit amplitude. Although the
proposed filter is not realizable, the above provides what needs to be done to obtain a dc source
from a full-wave rectified signal. |

m Example 5.14

Windowing is a time-domain process by which we select part of a signal. This is done by multiplying
the signal by a “window” signal w(t). Consider the rectangular window

w(t) =ut+ A) —u(t—A) A>0
For a given signal x(t), the windowed signal is given by
y(@) = x(Ow(t)
Discuss how windowing relates to the convolution property.

Solution

Windowing is the dual of filtering. In this case, the signal y(t) has the support determined by the
window, or —A <t < A, and as such it is zero outside this interval. The window gets rid of parts
of the signal outside its support. The signal y(t) can be written as

y(t) = w(t)x(t) = w(t) i / X(,O)ejptdp
2r
1 T )
=— / X(p)w(tyedp
2

Considering the integral an infinite summation, the Fourier transform of y(t) is

o]

1 .
V(@) = f X(p)Flw(t)e*'dp

—00

1 o0
= f X(0)W(Q — p)dp
T

using the frequency-shifting property. Thus, we have that the windowing, or multiplication in the
time domain, y(t) = w(t)x(t) gives Y(£2) as the convolution of X(2) = F[x(¢)] and

2sin(RA)
s=jiQ Q

» | =

W(Q) = Flw(®)] = — [ — e 2]
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multiplied by a constant. This is one more example of the inverse relationship between time and
frequency. In this case, the support of the result of the windowing is finite, while the convolu-
tion in the frequency domain gives an infinite support for Y(Q2) given that W(2) has an infinite
support. |

5.7.2 Ideal Filters

Frequency-discriminating filters that keep low-, middle-, and high-frequency components, or a
combination of these, are called low-pass, band-pass, high-pass, and multiband filters, respectively. A
band-eliminating or notch filter gets rid of middle-frequency components. It is also possible to have an
all-pass filter that although it does not filter out any of the input frequency components, it changes
the phase of the input signal.

The magnitude frequency response of an ideal low-pass filter is given by

1 —Q1 =Q=<Q

IHip (G| = {O otherwise

and the phase frequency response of this filter is
ZHp(jQ) = —aQ

which as a function of Q2 is a straight line with slope —«, thus its term linear phase. The frequency €,
is called the cut-off frequency of the low-pass filter. The above magnitude and phase responses only
need to be given for positive frequencies, given that the magnitude and the phase responses are the
even and odd function of . The rest of the frequency response is obtained by symmetry.

An ideal band-pass filter has a magnitude response

. o 1 1 <Q2=<Q and — Q) <2< -
Hyp (S = {0 otherwise
with cut-off frequencies ©2; and ;. The magnitude response of an ideal high-pass filter is given by

1 >, and < -Q,

|Hpp(j$2)| = {o otherwise

with a cut-off frequency of €2,. For both of these filters, i is assumed the phase is linear in the pass-
band (band of frequencies where the magnitude is unity).

From these definitions, we have that the ideal band-stop filter has as magnitude response of
[Hps (jS)| = 1 — [Hpp (jS2)|

The sum of the magnitude responses of the given low-, band-, and high-pass filters gives the
magnitude response of an ideal all-pass filter

[Hap(jSO1 = [Hyp (jS2)| + [Hpp(jS2)| + [Hpp (jE)| = 1
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|Hi (/)| [Hpp( /)|
A
Q1 Q Q1 Qg EZ
(a) (b)
|Hbe(jg)| |th(jQ)|
A
FIGURE 5.8 » >
Ideal filters: (a) low pass, (b) band pass, (c) band Q Q Q Q Q
eliminating, and (d) high pass. (c) (d)

for all frequencies, since in this case we chose the frequencies 27 and €2, so that the response of these
filters add to unity. An ideal multi-band filter can be obtained as a combination of the low-, band-,
and high-pass filters. Figure 5.8 displays the frequency responses of the ideal filters discussed here.

Remarks

w If hy(t) is the impulse response of a low-pass filter, applying the modulation property we get that
2hyy(t) cos(Q0t) (where Qo >> Q1 and Q2 is the cut-off frequency of the low-pass filter) corresponds to
the impulse response of a band-pass filter centered around Q. Indeed, its Fourier transform is given by

F2hip (1) cos(S200)] = Hip(j($2 — Q0)) + Hip (j(2 4 $20))

which is the frequency response of the low-pass filter shifted to new center frequencies Qo and —Q,
making it a band-pass filter.

= A zero-phase ideal low-pass filter Hy,(jS2) = u(2 + Q1) — u(2 — Q1) has as impulse response a sinc
function with a support from —oo to oco. This ideal low-pass filter is clearly noncausal as its impulse
response is not zero for negative values of time t. To make it causal we could approximate its impulse
response by a function hy(t) = hy()w(t) where w(t) = u(t + v) —u(t — ) is a rectangular window
where the value of T is chosen so that outside the window the values of the impulse response hy,(t) are very
close to zero. Although the Fourier transform of hy(t) is a very good approximation of the desired frequency
response, the frequency response of hi(t) displays ringing around the cut-off frequency Q1 because of
the rectangular window. Finally, we delay hi(t) by t to get a causal filter with linear phase. That is,
hi(t — ©) has as its magnitude response |H(j2)| ~ |H},(jS2)| and its phase response is ZH;(j2) =
—1Q. Although the above procedure is a valid way to obtain approximate low-pass filters with linear
phase, they are not guaranteed to be rational and would be difficult to implement. Thus, other methods
are used to design filters.

m  Since ideal filters are not causal they cannot be used in real-time applications—that is when the input
signal needs to be processed as it comes to the filter. Imposing causality on the filter restricts the frequency
response of the filter in significant ways. According to the Paley-Wiener integral condition, a causal
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and stable filter with frequency response H(j2) should satisfy the condition

[ 1log(H(jQ)|

or 49 <o (5.22)

%
To satisfy this condition, H(j2) cannot be zero in any band of frequencies, because in such cases the
numerator of the integrand would be infinite. The Paley-Wiener integral condition is clearly not
satisfied by ideal filters. So they cannot be implemented or used in actual situations, but they can be
used as models for designing filters.

m  That ideal filters are not realizable can be understood also by considering what it means to make the
magnitude response of a filter zero in some frequency bands. A measure of attenuation is given by the loss
function in decibels, defined as

a(Q) = —101log,, IH(jQ)|?
= —20log;, IH(j2)| dB

Thus, when |H(j2)| = 1 and there is no attenuation the loss is 0 dB, and when |H(j2)| = 10> for a
large attenuation the loss is 100 dB. You quickly convince yourself that if a filter achieves a magnitude
response of 0 at any frequency this would mean a loss or attenuation at that frequency of oo dBs! Values
of 60 to 100 dB attenuation are considered extremely good, and to obtain that the signal needs to be
attenuated by a factor of 1073 to 107>. A curious term JND or “just noticeable difference” is used by
experts in human hearing to characterize the smallest sound intensity that can be judged by a human
as different. Such a value varies from 0.25 to 1dB. To illustrate what is loud in the dB scale, consider
the following cases: A sound pressure level higher than 130 dB causes pain; 110 dB is generated by an
amplified rock band performance [65].

m Example 5.15

The Gibb’s phenomenon, which we mentioned when discussing the Fourier series of periodic
signals with discontinuities, consists in ringing around these discontinuities. To see this, consider
a periodic train of square pulses x(t) of period Ty displaying discontinuities at kTy/2, for k =
41,42, .... Show how the Gibb’s phenomenon is due to ideal low-pass filtering.

Solution

Choosing 2N + 1 of the Fourier series coefficients to approximate the signal x(¢) is equivalent to
passing x(t) through an ideal low-pass filter,

. 1 —Q.<Q<Q
H(jRQ) = —. =
(j$2) {O otherwise
having as impulse response a sinc function h(t). If the Fourier transform of the periodic signal x(t)

of fundamental frequency Q¢ = 27/Tp is

X(Q) = > 27Xp8(Q — ko)

k=—00
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the output of the filter is the signal

w(t) = FHX(QH(Q)]
N
=F 1 D 2mX8(2 — kQo)
k=—N
or the inverse Fourier transform of X(€2) multiplied by a low-pass filter with an ideal magnitude

response of 1 for —Q; < Q < Q. where the cut-off frequency Q. is chosen so that NQy < @, <
(N 4+ 1)Qg. As such, xn(t) is the convolution

aN(8) =[x h](t)

where h(t) is the inverse Fourier transform of H(j$2), or a sinc signal of infinite support. The con-
volution around the discontinuities of x(t) causes ringing before and after them, and this ringing
appears independent of the value of N. |

m Example 5.16

Obtain different filters from an RLC circuit (Figure 5.9) by choosing different outputs. Let the input
be a voltage source with Laplace transform V;(s). For simplicity, let R=1Q,L=1H,and C=1F
and assume the initial conditions to be zero.

Solution

m  Low-pass filter: Let the output be the voltage across the capacitor; by voltage division we have
that

_ i/ Vi)
VC(S)_1+5+1/5_52+5+1

so that the transfer function is
Ve@s) 1
Viis)  s2+s+1

Hiy(s) =

This is the transfer function of a second-order low-pass filter. If the input is a dc source, so
that its frequency is 2 = 0, the inductor is a short circuit (its impedance would be 0) and

vg(t) L
W
R v (t) +

CT~ Vc(t)

+
vi(t) C)
FIGURE 5.9 ~

RLC circuit for implementing different
filters.
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the capacitor is an open circuit (its impedance would be infinite), so that the voltage in the
capacitor is equal to the voltage in the source. On the other hand, if the frequency of the input
source is very high, then the inductor is an open circuit and the capacitor a short circuit (its
impedance is zero) so that the capacitor voltage is zero. This is a low-pass filter. Notice that this
filter has no finite zeros, and complex conjugate poles.

m  High-pass filter: Suppose then that we let the output be the voltage across the inductor. Then
again by voltage division the transfer function

Vi(s) s2

Hyp(s) = _
w® =0 T s

is that of a high-pass filter. Indeed, for a dc input (frequency zero) the impedance in the induc-

tor is zero, so that the inductor voltage is zero, and for very high frequency the impedance

of the inductor is very large so that it can be considered open circuit and the voltage in the

inductor equals that of the source. This filter has the same poles of the low-pass filter (this is

determined by the overall impedance of the circuit, which has not changed) and double zeros

at zero. It is these zeros that make the frequency response for low frequencies be close to zero.
m  Band-pass filter: Letting the output be the voltage across the resistor, its transfer function is

VR(S) _ s
Viis)  s2+s+1

Hppp(s) =

or the transfer function of a band-pass filter. For zero frequency, the capacitor is an open cir-
cuit so the current is zero and the voltage across the resistor is zero. Similarly, for very high
frequency the impedance of the inductor is very large, or an open circuit, making the voltage
across the resistor zero because again the current is zero. For some middle frequency the serial
combination of the inductor and the capacitor resonates and will have zero impedance. At the
resonance frequency, the current achieves its largest value and the voltage across the resistor
does too. This behavior is that of a band-pass filter. This filter again has the same poles as the
other two, but only one zero at zero.

= Band-stop filter: Finally, suppose we consider as output the voltage across the connection of the
inductor and the capacitor. At low and high frequencies, the impedance of the LC connection
is very high, or open circuit, and so the output voltage is the input voltage. At the resonance
frequency 2, = 1 the impedance of the LC connection is zero, so the output voltage is zero.
The resulting filter is a band-stop filter with the transfer function

s241

=7

Second-order filters can then be easily identified by the numerator of their transfer functions.
Second-order low-pass filters have no zeros, and the numerator is N(s) = 1; band-pass filters
have a zero at s = 0 so N(s) = s, and so on. We will see next that such a behavior can be easily
seen from a geometric approach.
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5.7.3 Frequency Response from Poles and Zeros
Given a rational transfer function H(s) = B(s)/A(s), to calculate its frequency response we let s = jQ
and find the magnitude and phase for a discrete set of frequencies. This can be done using MATLAB.
A geometric way to obtain an approximate magnitude and phase frequency responses is using the
effects of zeros and poles on the frequency response of a system.

Consider a function

§—2
G(s) = —

with a zero z and a pole p, as shown in Figure 5.10. The frequency response corresponding to G(s) at
some frequency Qo is found by letting s = jQ¢, or

jQO —Z

jS20 —p

G(9)ls=jn, =

Representing j<2o, z, and p, which are complex numbers, as vectors coming from the origin, then the
vector Z(Qo) = jQo — z (adding to Z(Qo) the vector corresponding to z gives a vector corresponding
to jQ0) goes from the zero z to jQo, and likewise the vector P(Qg) = jQo — p goes from the pole p to
j20. The argument Qg in the vectors indicates that the magnitude and phase of these vectors depend
on the frequency at which we are finding the frequency response. As we change the frequency at
which we are finding the frequency response, the lengths and the phases of these vectors change.
Therefore,

_ 280 _ 1ZQ0)l 70~ 2P0y

G(jQo) = 2220 _ 12
PR = Bqe ~ 1Pl

and the magnitude response is

_ Z(Q
1G(j20)| = 2520 (5.23)
[P(€20)|
and the phase response is
£G(jSQ0) = LZ(Q) — LP(Q) (5.24)
s-plane

FIGURE 5.10
Geometric interpretation of poles and
Zeros.
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So that for 0 < Qg < oo, if we compute the length and the angle on(QO) and f’(Qo), the ratio of these
lengths gives the magnitude response and the difference of their angles gives the phase response.

For a filter with a transfer function

Hi(S —z)

H(s) =
© [T — pr)

where z;, py, are zeros and poles of H(s) with vectors Zi(Q) =jQ — zj and DPp(Q) = jQ — py,, going from each of
the zeros and poles to the frequency at which we are computing the magnitude and phase response in the j&
axis, gives

[1: Zi(2)
[T Pre(€)
_ ILZ@)| {3 2@@)-y £0ue)]

[Ti IPe()]

—_— G ZH(R)
[H(jS2)]

H(jQ) = H®)ls=jo =

(5.25)

m Example 5.17

Consider series RC circuit with a voltage source v;(t). Choose the output to obtain low-pass and
high-pass filters and use the poles and zeros of the transfer functions to determine their frequency
responses. Let R = 1 2, C = 1 E and the initial conditions be zero.

Solution

m  Low-pass filter: Let the output be the voltage across the capacitor. By voltage division, we obtain
that the transfer function of the filter is

_ Ve(s) . 1/Cs

"~ Vi)  R+1/Cs

For dc frequency, the capacitor behaves as an open circuit so that the output voltage equals the

input voltage, and for very high frequencies the impedance of the capacitor tends to zero so

that the voltage across the capacitor also goes to zero. This is a low-pass filter.

LetR=1Qand C=1E so

H(s)

1
TSR T e
Drawing a vector from the pole s = —1 to any point on the j& axis gives P(€2), and for different
frequencies we get
Q=0 P0) =1
Q=1 PQ1)=+2J"*
Q=00 DP(c0) =00 d™?
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Since there are no zeros, the frequency response of this filter depends inversely on the behavior
of the pole vector P(2). The frequency responses for these three frequencies are:

H(jo) = 1£°
H(j1) = 0.707¢777/*
H(joo) = 0e/7/?
Thus, the magnitude response is unity at £ = 0 and it decays as the frequency increases. The

phase is zero at = 0, —r/4 at @ = 1, and —7/2 at Q — oo. The magnitude response is even
and the phase response is odd.

m High-pass filter: Consider then the output being the voltage across the resistor. Again by voltage

division we obtain the transfer function of this circuit as

_ Vi (s) _ CRs

H(s) = v =
()  CRs+1

Again, let C = R = 1, so the frequency response is

e _Z@
1+jQ  P(Q)

H(jQ) =

The vector Z(Q) goes from zero at the origin s = 0 to jQ in the jQ axis, and the vector P(Q)
goes from the pole s = —1 to j2 in the j2 axis. The vectors and the frequency response, at three
different frequencies, are given by

-

> . - . . Z(0) .
Q=0 PO)=14° Z0)=0d"?  H(jO)= == = 0d7/?
0) 0) e (jO) 50) e

Z(1)

Q=1 P =2  Za)=14"2  H(j1) = )~ 0.707¢™/4

z(oo)

Q=00 P(00) = oo &7/2 Z(00) = 00 &"/2 H(joo) = = = 1°
P(oc0

Thus, the magnitude response is zero at 2 = 0 (this is due to the zero at s = 0, making Z(0)=0
as it is right on top of the zero), and it grows to unity as the frequency increases (at very high
frequency, the lengths of the pole and the zero vectors are alike and so the magnitude response
is unity and the phase response is zero). m

Remarks

Poles create “hills” at frequencies in the jQ axis in front of the poles imaginary parts. The closer the pole
is to the j2 axis, the narrower and higher the hill. If, for instance, the poles are on the jQ axis (this would
correspond to an unstable and useless filter) the frequency response at the frequency of the poles will be

infinity.
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Zeros create “valleys” at the frequencies in the jQ2 axis in front of the zeros imaginary parts. The closer the
zero is to the j2 axis (from its left or its right, as the zeros are not restricted by stability to be in the open
left-hand s-plane) the closer the frequency response is to zero. If the zeros are on the jQ2 axis, the frequency
response at the frequency of the zeros is zero. Thus, poles produce frequency responses that look like hills (or
like the main pole in a circus) around the frequencies of the poles, and zeros make the frequency response
g0 to zero in the form of valleys around the frequencies of the zeros.

m Example 5.18

Use MATLAB to find and plot the poles and zeros and the corresponding magnitude and phase
frequency responses of:

(a) A second-order band-pass filter and a high-pass filter realized using a series connection of a
resistor, an inductor, and a capacitor, each with unit resistance, inductance, and capacitance.
Let the input be a voltage source v(t) and initial conditions be zero.

(b) An all-pass filter with a transfer function

s2—255+1

HG$) = ————
© s24+255+1

Solution

Our function freq resp_s computes and plots the poles and the zeros of the filter transfer function
and the corresponding frequency response (the function requests the coefficients of its numerator
and denominator in decreasing order of powers of s).

(a) As from a Example 5.16, the transfer functions of the band-pass and high-pass second-order
filters are

N
Hip(s) = ————
w® = 5 T

2
Hpp(s) = ————
WO =g

The denominator in the two cases is exactly the same since the values of R, L, and C remain
the same for the two filters—the only difference is in the numerator.
To compute the frequency response of these filters and to plot their poles and zeros, we
used the following script, which uses two functions: fregresp_s, which we give below, and
splane, which plots the poles and zeros. The coefficients of the numerator and the denomi-
nator correspond to the coefficients, from the highest to the lowest order of s, of the transfer
function.

%% % % % % % % % % % % % % % % % % % % %

% Example 5.18---Frequency response

% % % % % % % % % % % % % % % % % % % % %

n = [0 1 O]; % numerator coefficients -- bandpass

% n=[10 O]; % numerator coefficients -- highpass

d=[111]; % denominator coefficients
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wmax = 10; % maximum frequency
[w, Hm, Ha] = fregresp_s(n, d, wmax); % frequency response
splane(n, d) % plotting of poles and zeros

The following is the function fregresp_s used to compute the magnitude and phase response
of the filter with the given numerator and denominator coefficients.

function [w, Hm, Ha] = fregresp_s(b, a, wmax)
w = 0:0.01:wmax;

H = freqgs(b, a, w);

Hm = abs(H); % magnitude

Ha = angle(H) * 180/pi; % phase in degrees

m  Band-pass filter: Letting the output of the filter be the voltage across resistor, we find that
the transfer function has a zero at zero, so that the frequency response is zero at 2 = 0.
When € goes to infinity, one of the two poles cancels the zero effect so that the other pole
makes the frequency response tend to zero.

m High-pass filter: When the output of the filter is the voltage across the inductor the filter is
high pass. In this case there is a double zero at s = 0, and the poles are located as before.
Thus, when © = 0 the magnitude response is zero due to the double zeros at zero, and
when Q goes to infinity the effect of two poles and the two zeros cancel out giving a
constant magnitude response, which corresponds to a high-pass filter.

The results for the band-pass and the high-pass filters are shown in Figure 5.11. Notice that the

frequency response of the band-pass and the high-pass filter is determined by the 'number’

of zeros at the origin. The ‘location’ of zeros, like in the all-pass filter we consider next, also
determines the frequency response.

(b)  All-pass filter: The poles and the zeros of an all-pass filter have the same imaginary parts, but
the negative of its real part. At any frequency in the jQ2-axis the lengths of the vectors from the
poles equal the length of the vectors from the zeros to the frequency in the jQ axis. Thus the
magnitude response of the filter is unity. The following changes to the above script are needed
for the all-pass filter:

clear all

clf

n=[1 -2.51];
d=[1251];
wmax = 10;

freg_resp_s(n, d, wmax)

The results are shown in Figure 5.12. [ |

5.7.4 Spectrum Analyzer

A spectrum analyzer is a device that measures the spectral characteristics of a signal. It can be imple-
mented as a bank of narrow band band-pass filters with fixed bandwidths covering the desired
frequencies (see Figure 5.13). The power at the output of each filter is computed and displayed at the
corresponding center frequency. Another possible implementation is using a band-pass filter with an
adjustable center frequency, with the power in its bandwidth being computed and displayed [16].
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Magnitude Response Phase Response

[H(jQ)
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FIGURE 5.11
Frequency response and poles/zeros location of (a) band-pass and (b) high-pass RLC filters.
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Magnitude Response Phase Response
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FIGURE 5.12
Frequency response and poles/zeros location of the all-pass filter.
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FIGURE 5.13
Bank-of-filter spectrum analyzer. LPF stands for Power
low-pass filter, and BPF; corresponds to band-pass —> BPFN o easurement [ Px(@n)
filters,i=1,...,N.
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If the input of the spectrum analyzer is x(t), the output of either the fixed- or the adjustable-bandpass
filters in the implementations—assumed to have a very narrow bandwidth AQ—would be

Qo+0.5AQ

1 .
YO = — / X(Q)e¥dQ

2w

Qo—0.5AQ

1 .
~—AQ X(Q0)d0!
2w

Computing the mean square of this signal we get

1 2, (AR 5
f/IV(t)I dt = (E) 1X(£20)]
T

which is proportional to the power or the energy of the signal in Q¢ & AQ. A similar computation
can be done at each of the frequencies of the input signal.

Remarks

m  The bank-of-filter spectrum analyzer is used for the audio range of the spectrum.
Radio frequency spectrum analyzers resemble an AM demodulator. It usually consists of a single narrow-
band intermediate frequency (IF) bandpass filter fed by a mixer. The local oscillator sweeps across the
desired band, and the power at the output of the filter is computed and displayed on a monitor.

5.8 ADDITIONAL PROPERTIES

We consider now some additional properties of the Fourier transform, some of which look like those
of the Laplace transform when s = jQ and some are different.

5.8.1 Time Shifting

If x(¢) has a Fourier transform X(€2), then

x(t—1g) & X(Q)e I

X(t+19) & X(Q)Ho (5.26)

The Fourier transform of x(t — tg) is
o

Flxt —t9)] = / x(t — to)e T4 dt

—00

[o/0]
= /X(T)e_jQ(T+tO)dT = e MX(Q)
e

where we changed the variable to t = t — ty. Likewise for x(t + to).
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It is important to realize that shifting in time does not change the frequency content of the signal—
that is, the signal does not change when delayed or advanced. This is clear when we see that the
magnitude of the two transforms, corresponding to the original and the shifted signals, is the same,

IX(Q)] = |X(Q2)e0

and the effect of the time shift is only in the phase spectrum.

m Example 5.19

Consider the signal
x(t) = A[8(t — 1) +8(t+ 1))

Find its Fourier transform X(€2). Use this Fourier pair and the duality property to verify the Fourier
transform of a cos(Qpt) obtained before.

Solution
Applying the time-shift property, we have
X(Q) = A[1e75 4 197
= 2A cos(Q27)
giving the Fourier transform pair

x(t) = A8t —1)+8(t+1)] & X(2) = 2A cos(Q21)
Using the duality property, we then have
X(t) = 2Acos(tt) &  2ax(—Q) = 27A[8(—Q — 1) + 8(—Q + 7)]

Let T = Qg, Use the evenness of §(t) to get
Acos(Qt) & TA[S(Q+ Qo) +8(2 — Q)] [

m Example 5.20

Consider computing the Fourier transform of y(t) = sin(2t) using the Fourier transform of the
cosine signal x(t) = cos(2pt) we just found.

Solution
Since y(t) = cos(Qot — 7 /2) = x(t — 7/(2Q0)), applying the time-shifting property, we then get
Fsin(Qot)] = Flx(t — 7/220)]

= 7[8(22 — Qo) + 8(Q + Qg)]e T/ (250)
= 8(2 = Q0)e T + 78(Q2 + Qo)™

= —jm8(82 — Qo) +jmd (2 + Qo)
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after applying the sifting property of §(£2). The above shows that this Fourier transform is different
from the one for the cosine in the phase only. |

5.8.2 Differentiation and Integration

If x(t), =00 < t < o0, has a Fourier tranform X(2), then
Q) X(Q 5.27
N & (RTX(E) (5.27)
‘ X(2
/ x(@)do & (T) + 7X(0)8(82) (5.28)
e ]
where
o0
X(0) = /x(t)dt
—00
From the inverse Fourier transform given by
1 oo
x(f) = — / X(Q)e¥dQ
2
—00
we then have that
@ 1 [ d ot
x(t e
=— | X(2 17191
dt 27 / ) dt
—00
1 o0
= — [ [X(Q)jQ] #¥adQ
- [ xayere
%
indicating that
dx(t) | .
QX (2
w7 (€2)

and similarly for higher derivatives.
The proof of the integration property can be done in two parts:
1. The convolution of u(t) and x(t) gives the integral—that is

t oo

/ x(t)dt = / x(Du(t — v)dr = [x * u](t)

—0 —0
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since u(t — 7) as a function of t equals

1 <t
u(t—r):{o T>t
We thus have that
t
F / x(v)dr | = X(Q)F[u(®)] (5.29)

—00

2. Since the unit-step signal is not absolutely integrable its Fourier transform cannot be found from
the integral definition, and we cannot use its Laplace transform either because its ROC does not
include the j2 axis. Let’s transform it into an absolutely integrable signal by subtracting 1/2 and
multiplying the result by 2. This gives the sign signal:

t>0

sgn(t) = 2[u(t) — 0.5] = {1_1 F <0

The derivative of sgn(t) is

@ = 25(t)
and thus if S(2) = F[sgn(t)],
@ ==
72

using the derivative property. The linearity of the Fourier transform applied to the definition of
sgn(t) gives

Flsgn(®)] = 2F[u@®)] —278(2) = Flu@®)]= JLQ + 75(2) (5.30)

Replacing the Fourier transform of u(t) in Equation (5.29), we get

t

F /x(r)dr =X(Q) [i +n8(§2)}
72

—00

P
=g 7X(0)8(RQ) (5.31)

Remarks

m Just like in the Laplace transform where the operator s corresponds to the derivative operation in time of
the signal, in the Fourier transform j2 becomes the corresponding operator for the derivative operation in
time of the signal.
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s If X(0) (i.e., the dc value of X(2)) is zero, then the operator 1/(j2) corresponds to integration in time
of x(t), just like 1/s in the Laplace domain. For X(0) to be zero the integral of the signal from —oo to 0o
must be zero.

m Example 5.21

Suppose a system is represented by a second-order differential equation with constant coefficients:

dy(y &’y
2y(t) + 37 + —dt2 = x(1)

and that the initial conditions are zero. Let x(t) = §(t). Find y(t).

Solution

Computing the Fourier transform of this equation, we get
[2 + 32 + (j2)?]Y(Q) = X()

Replacing X(2) = 1 and solving for Y(£2), we have

1
2 + 3jQ + (jR)2
B 1
4+ D2 +2)
1 -1
- + —
(GR+1) (UR+2)

Y(Q) =

and the inverse Fourier transform of these terms gives

y() = e — e Ju(t) m

m Example 5.22

Find the Fourier transform of the triangular pulse

x() =71(t) —2rt—1)+1(t —2)
which is piecewise linear, using the derivative property.
Solution

A first derivative gives

dx(t)
dt

=u(t) —2u(t—1)+u(t—2)
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and a second derivative gives

d?x(t)

—z =8(1) —28(t—1)+8(t—2)

Using the time-shift and the derivative properties, we get from the expression for the second
derivative and letting X(£2) be the Fourier transform of x(t):
GOX(Q) =1 — 2¢77% 4 ¢72

= 9% — 2 4 7Y

so that

2e77¢
X(Q) = o [1 — cos(2)] -

m Example 5.23

Consider the integral

t

y(t):/x(r)dt—oo<t<oo

—00

where x(t) = u(t + 1) — u(t — 1). Find the Fourier transform Y (€2) directly and from the integration
property.

Solution

The integral is

0 t<—1
y)y=1t+1 —-1<t<l1
2 t>1

or

y@) =[rt+1) —rt—1) —2u(t — )] +2ut — 1)

n®

The Fourier transform of y; (t) is

e —e 2e—5} —2jsin(Q) 2e7I%
S ls=je

Yi(Q) = [ > - -
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The Fourier transform of 2u(t — 1) is —2je 7%/ Q + 278(Q) so that

—2jsin(£2) 2e77¢ 2¢7%

Y(Q) = —j 2w 8(82
() o HiTg it
—2jsin(2)
- —]Qz + 28 (%)
To use the integration property we first need X(2), which is
2 sin(£2)
X(Q)= """
Q
and according to the property,
X(Q)
Y(Q) = == + nX(0)5(2)
—2jsin(R2)
since X(0) = 2 (using L'Hopital's rule). As expected, the two results coincide. |

5.9 WHAT HAVE WE ACCOMPLISHED? WHAT IS NEXT?

You should by now have a very good understanding of the frequency representation of signals and
systems. In this chapter, we have unified the treatment of periodic and nonperiodic signals and their
spectra, and consolidated the concept of frequency response of a linear time-invariant system.

Basic properties of the Fourier transform and important Fourier pairs are given in Tables 5.1 and
5.2. Two significant applications are in filtering and communications. We introduced the basics of
filtering in this chapter and will expand on them in Chapter 6. The fundamentals of modulation
provided in this chapter will be illustrated in Chapter 6 where we will consider their application in
communications.

Certainly the next step is to find out where the Laplace and the Fourier analyses apply, which will be
done in Chapter 6. After that, we will go into discrete-time signals and systems. We will show that
sampling, quantization, and coding bridge the continuous-time and the digital signal processing, and
that transformations similar to the Laplace and the Fourier transforms will permit us to do processing
of discrete-time signals and systems.

PROBLEMS

5.1. Fourier series versus Fourier transform—MATLAB
The connection between the Fourier series and the Fourier transform can be seen by considering what
happens when the period of a periodic signal increases to a point at which the periodicity is not clear
as only one period is seen. Consider a train of pulses x(t) with a period Tg = 2, and a period of x(t) is
x1(t) = u(t+ 0.5) — u(t — 0.5). Let Ty be increased to 4, 8, and 16.
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Table 5.1 Basic Properties of the Fourier Transform

Signals and constants

Linearity

Expansion/contraction in time

Reflection

Parseval’s energy relation

Duality
Time differentiation

Frequency differentiation

Integration

Time shifting
Frequency shifting
Modulation
Periodic signals
Symmetry

Convolution in time

Windowing/multiplication

Cosine transform
Sine transform

Time Domain

x(®), y(0), 2(1), , B

ax(t) + By() aX(Q) + Y ()

x(at), o £ 0 wX (%)

x(—1) X(—%2)

Ee = [ |x()|2dt Ey = 5= [ IX(Q)]2dQ

X 27x(— )

X0 n > 1, integer  (jR)"X(RQ)

—jtx(t) o0

[ x@hdd A + 7X(0)8(9)

x(t — ) e T*RX(Q)

&0t x(1) X(2 = Q)

x(t) cos(£2:t) 0.5[X(Q2 — Q) + X(2+ Q)]
x(t) = 3, Xje"Sot X(Q) = 37, 27 X,8(82 — k)
x(t) real IX(2)] = 1X(—=Q)]

z(t) = [x xy](®)
x(Oy(t)

x(t) even

x(t) odd

Frequency Domain

X(£2),Y(2), Z(€2)

ZX(Q) = —ZX(—9Q)
Z(Q) = X(QY(R)
7= [X* Y](Q)

X(Q) = [ x(t) cos(Q)dt, real
X(Q) = —j [, x(t) sin(Q0)dt, imaginary

0 N O o~ 0N =

- 4 4 o o
A WONM 2 O O

Function of Time

3(0)

S(t—1)

u(t)

u(—t)

sgn(t) = 2[u(t) — 0.5]
A —0<t<
Ae~u(t), a> 0
Ate="u(t), a > 0

el g>0

cos(Rt), —co <t <0
sin(Qpt), —o0 <t < 0

Alu(t+7)—ut—1)], 7>0
sin(Qpt)
Tt

x(t) cos(Rpt)

Table 5.2 Fourier Transform Pairs

Function of Q

1
eijr
&+ Q)
T+ Q)
2
i
2 AS(RQ)
A
jQ+a
_A
(jQ+a)?
2a
a?+Q?
T[8(Q — Qo) + (2 + Qo)]
—jm[8(2 — Qo) — 8(2 + Q0)]
in(Qr)
ZAT SanTT
u(2 + Qo) — u(2 — Qo)

0.5[X(2 — Q0) + X(2 + Q)]
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5.2.

5.3.

5.4.

(a) Find the Fourier series coefficient X for each of the values of Ty and indicate how it changes for the
different values of Tg.

(b) Find the Fourier series coefficients for x(t) and carefully plot the magnitude line spectrum for each of
the values of Ty. Explain what is happening in these spectra.

(c) If you were to let Tg be very large, what would you expect to happen to the Fourier coefficients?
Explain.

(d) Write a MATLAB script that simulates the conversion from the Fourier series to the Fourier transform
of a sequence of rectangular pulses as the period is increased. The Fourier coefficients need to be
multiplied by the period so that they do not become insignificant. Plot using stem the magnitude line
spectrum for pulse sequences with periods Ty from 4 to 62.

Fourier transform from Laplace transform—MATLAB
The Fourier transform of finite-support signals, which are absolutely integrable or finite energy, can be
obtained from their Laplace transform rather than doing the integral. Consider the following signals:

x1(t) = u(t+ 0.5) —u(t —0.5)
X2 (t) = sin(27t)[u(t) — u(t — 0.5)]

x3(t) =r(t+1)=2r@)+rt—1)

(a) Plot each of the signals.
(b) Find the Fourier transforms {X;(€2)} for i = 1, 2, and 3 using the Laplace transform.

(c) Use MATLAB's symbolic function fourier to compute the Fourier transform of the given signals. Plot
the magnitude spectrum corresponding to each of the signals.

Fourier transform from Laplace transform of infinite-support signals—MATLAB

For signals with infinite support, their Fourier transforms cannot be derived from the Laplace transform
unless they are absolutely integrable or the region of convergence of the Laplace transform contains the jQ
axis. Consider the signal x(t) = 2¢=2t,

(a) Plot the signal x(t) for —co < t < 0.

(b) Use the evenness of the signal to find the integral

o
/ lx(t)|dt
00

and determine whether this signal is absolutely integrable or not.

(c) Use the integral definition of the Fourier transform to find X(2).

(d) Use the Laplace transform of x(t) to verify the above found Fourier transform.

(e) Use MATLAB's symbolic function fourier to compute the Fourier transform of x(t). Plot the magnitude
spectrum corresponding to x(t).

Fourier and Laplace transforms—MATLAB
Consider the signal x(t) = 2e=2! cos(2mt)u(r).
(a) Use the fact this signal is bounded by the exponential +2e~2!u(t) to show that the integral

o0
/ x(t)|dt
—00



5.5.

5.6.

5.7.

Problems m

is finite, indicating the signal is absolutely integrable and also finite energy.
(b) Use the Laplace transform to find the Fourier transform X(£2) of x(t).
(c) Use the MATLAB function fourier to compute the magnitude and phase spectrum of X(£2).

Fourier transform of causal signals

Any causal signal x(t) having a Laplace transform with poles in the open-left s-plane (i.e., not including the
jQ axis) has, as we saw before, a region of convergence that includes the jQ axis, and as such its Fourier
transform can be found from its Laplace transform. Consider the following signals:

x1(0) = e 2tu(r)
x(8) =1(0)

x3(0) = x1(H)x2 (D)

(a) Determine the Laplace transform of the above signals (use properties of the Laplace transform)
indicating the corresponding region of convergence.

(b) Determine for which of these signals you can find its Fourier transform from its Laplace transform.
Explain.

(c) Give the Fourier transform of the signals that can be obtained from their Laplace transform.

Duality of Fourier transform

There are some signals for which the Fourier transforms cannot be found directly by either the integral
definition or the Laplace transform, and for those we need to use the properties of the Fourier transform, in
particular the duality property. Consider, for instance,

() = sin(t)

or the sinc signal. Its importance is that it is the impulse response of an ideal low-pass filter.

(a) Let X(Q2) = A[u(2 + Qp) — u(2 — Q] be a possible Fourier transform of x(t). Find the inverse Fourier
transform of X(£2) using the integral equation to determine the values of A and Q.

(b) How could you use the duality property of the Fourier transform to obtain X(£2)? Explain.

Cosine and sine transforms

The Fourier transforms of even and odd functions are very important. The reason is that they are

computationally simpler than the Fourier transform. Let x(t) = el and y(t) = e~ fu(t) — etu(—1).

(a) Plot x(f) and y(t), and determine whether they are even or odd.

(b) Show that the Fourier transform of x(t) is found from

e¢]

X(Q) = /x(t)cos(Qt)dt

—00

which is a real function of &, thus its computational importance. Show that X(2) is also even as a
function of .

(c) Find X(£2) from the above equation (called the cosine transform).

(d) Show that the Fourier transform of y(¢) is found from

o]

Y(Q) = —j / y(0) sin(Qo)dt

—00
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5.8.

5.9.

5.10.

5.11.

which is imaginary function of €, thus its computational importance. Show that Y(2) is also odd as a
function of €.

(e) Find Y(£2) from the above equation (called the sine transform). Verify that your results are correct by
finding the Fourier transform of z(t) = x(t) + y(t) directly and using the above results.

(f) What advantages do you see to the cosine and sine transtorms? How would you use the cosine and the
sine transforms to compute the Fourier transform of any signal, not necessarily even or odd? Explain.

Time versus frequency—MATLAB
The supports in time and in frequency of a signal x(¢) and its Fourier transform X(2) are inversely
proportional. Consider a pulse

1
x(t) = ?O[u(t) —u(t — Tp)]

(a) Let To =1 and Tp = 10 and find and compare the corresponding |X(£2)].

(b) Use MATLAB to simulate the changes in the magnitude spectrum when Ty = 10% for
k=0,...,4 for x(t). Compute X(2) and plot its magnitude spectra for the increasing values of
To on the same plot. Explain the results.

Smoothness and frequency content—MATLAB
The smoothness of the signal determines the frequency content of its spectrum. Consider the signals

x(t) = u(t+0.5) —u(t — 0.5)
y(®) = (1 + cos(r0)[u(t + 0.5) — u(t — 0.5)]

(a) Plot these signals. Can you tell which one is smoother?

(b) Find X(€2) and carefully plot its magnitude |X(£2)| versus frequency 2.

(c) Find Y(2) (use the Fourier transform properties) and carefully plot its magnitude |Y(£2)| versus
frequency Q.

(d) Which one of these two signals has higher frequencies? Can you now tell which of the signals is
smoother? Use MATLAB to decide. Make x(t) and y(t) have unit energy. Plot 20log;y |Y(€2)| and
201log;q 1X(2)] using MATLAB and see which of the spectra shows lower frequencies.

Smoothness and frequency—MATLAB

Let the signals x(t) = r(t + 1) — 2r(t) + r(t — 1) and y(t) = dx(t)/dt.

(a) Plot x(t) and y(t).

(b) Find X(2) and carefully plot its magnitude spectrum. Is X(€2) real? Explain.

(c) Find Y(2) (use properties of Fourier transform) and carefully plot its magnitude spectrum. Is Y(£2) real?
Explain.

(d) Determine from the above spectra which of these two signals is smoother. Use MATLAB to plot
201log;q [Y(£2)| and 20 log; |X(€2)| and decide. Would you say in general that computing the derivative
of a signal generates high frequencies or possible discontinuities?

Integration and smoothing—MATLAB
Consider the signal

x(t) =u(t+ 1) —2u(t) +ut—1)

and let

t

y(t) = /x(r)dt

—00
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(a) Plot x(t) and y(t).
(b) Find X(2) and carefully plot its magnitude spectrum. Is X(R2) real? Explain. (Use MATLAB to do the
plotting.)
(c) Find Y(£2) and carefully plot its magnitude spectrum. Is Y(£2) real? Explain. (Use MATLAB to do the
plotting.)
(d) Determine from the above spectra which of these two signals is smoother. Use MATLAB to decide.
Would you say that in general by integrating a signal you get rid of higher frequencies, or smooth out
a signal?
5.12. Duality of Fourier transforms
As indicated by the derivative property, if we multiply a Fourier transform by ( jQ)N , it corresponds to
computing an Nth derivative of its time signal. Consider the dual of this property—that is, if we compute
the derivative of X(€2), what would happen to the signal in the time?
(a) Letx(t) =6(t— 1)+ 8(t+ 1). Find its Fourier transform (using properties) X(£2).
(b) Compute dX(£2)/d2 and determine its inverse Fourier transform.
5.13. Periodic functions in frequency
The duality property provides interesting results. Consider the signal

x() =8(t+T1)+ 81 —Tp)

(a) Find X(2) = F|x(t)] and plot both x(t) and X(2).
(b) Suppose you then generate a signal

o0
YO =8 + Y [8(t+kTo) +8(t — kTp)]
k=1
Find its Fourier transform Y (€2) and plot both y(¢) and Y (£2).

(c) Are y(r) and the corresponding Fourier transform Y(£2) periodic in time and in frequency? If so,
determine their periods.

5.14. Sampling signal
The sampling signal

e e}
S =) 8(t—nTy)

n=—.o0

will be important in the sampling theory later on.

(a) As a periodic signal of period Ts, express ér, (t) by its Fourier series.

(b) Determine then the Fourier transform A() = F[é1,(1)].

(c) Plot é7,(t) and A(2) and comment on the periodicity of these two functions.

5.15. Piecewise linear signals
The derivative property can be used to simplify the computation of some Fourier transforms. Let

x(®) =r@t) —2r(t—1)4+1r({t—2)
(a) Find and plot the second derivative with respect to t of x(t), or y(t) = d2x(t)/dt2.

(b) Find X(2) from Y(2) using the derivative property.

(c) Verify the above result by computing the Fourier transform X(£2) directly from x(t) using the Laplace
transform.
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5.16.

5.17.

5.18.

5.19.

Periodic signal-equivalent representations
Applying the time and frequency shifts it is possible to get different but equivalent Fourier transforms of
periodic signals. Assume a period of a periodic signal x(t) of period Ty is x1 (t), so that

x(t) = ) x1(t — kTo)
k

and as seen in Chapter 4 the Fourier series coefficients of x(t) are found as X;, = X1 (jk20)/To, so that x(t)
can also be represented as

1 . ;
m=%2&wmww
I

(a) Find the Fourier transform of the first expression given above for x(t) using the time-shift property.
(b) Find the Fourier transform of the second expression for x(t) using the frequency-shift property.
(c) Compare the two expressions and comment on your results.

Modulation property
Consider the raised-cosine pulse

x(t) = [1 4 cos(mt)|(u(t + 1) —u(t — 1))

(a) Carefully plot x(t).

(b) Find the Fourier transform of the pulse p(t) = u(t + 1) — u(t — 1).

(c) Use the definition of the pulse p(t) and the modulation property to find the Fourier transform of x(¢) in
terms of P(R2) = F[p(®)].

Solution of differential equations
An analog averager is characterized by the relationship

% = 0.5[x(t) — x(t — 2)]
where x(t) is the input and y(t) the output. If x(t) = u(t) — 2u(t — 1) + u(t — 2):
(a) Find the Fourier transform of the output Y(£2).
(b) Find y(¢) from Y(£2).

Generalized AM

Consider the following generalization of amplitude modulation where instead of multiplying by a cosine we
multiply by a periodic signal with harmonic frequencies much higher than those of the message. Suppose
the carrier ¢(¢) is a periodic signal with fundamental frequency g, let’s say

6

c(t) = Z 2 cos(k21)
k=4

and that the message is a sinusoid of frequency Q¢ = 27, or x(t) = cos(Qt).

(a) Find the AM signal s(t) = x(t)c(t).

(b) Determine the Fourier transform S(£2).

(c) What would be a possible advantage of this generalized AM system? Explain.



Problems

5.20. Filter for half-wave rectifier
Suppose you want to design a dc¢ source using a half-wave rectified signal x(t) and an ideal filter. Let x(t)
be periodic, To = 2, and with a period

__fsin(zt) 0=<t<1
xl(t)_{o 1<t<2,

(a) Find the Fourier transform X(£2) of x(t), and plot the magnitude spectrum including the dc and the first
three harmonics.

(b) Determine the magnitude and cut-off frequency of an ideal low-pass filter H(j€2) such that when we
have x(¢) as its input, the output is y(t) = 1. Plot the magnitude response of the ideal low-pass filter.
(For simplicity assume the phase is zero.)

5.21. Passive RLC filters—MATLAB
Consider an RLC series circuit with a voltage source vs(t). Let the values of the resistor, capacitor, and
inductor be unity. Plot the poles and zeros and the corresponding frequency responses of the filters with
the output the voltage across the
(a) Capacitor
(b) Inductor
(c) Resistor
Indicate the type of filter obtained in each case. Use MATLAB to plot the poles and zeros, the magnitude,
and the phase response of each of the filters obtained above.

5.22. AM modulation and demodulation
A pure tone x(t) = 4 cos(1000¢) is transmitted using an AM communication system with a carrier
c0s(10,000t). The output of the AM system is

y(t) = x(t) cos(10,000¢)

At the receiver, to recover x(t) the sent signal y(t) needs first to be separated from the thousands of other
signals. This is done with a band-pass filter with a center frequency equal to the carrier frequency, and the
output of this filter then needs to be demodulated.

(a) Consider an ideal band-pass filter H(j<2). Let its phase be zero. Determine its bandwidth, center
frequency, and amplitude so we get as its output 10y(t). Plot the spectrum of x(t), 10y(t), and the
magnitude frequency response of H(j<2).

(b) To demodulate 10y(t), we multiply it by cos(10,000t). You need then to pass the resulting signal
through an ideal low-pass filter to recover the original signal x(t). Plot the spectrum of

z(t) = 10y(t) cos(10,000t1)

and from it determine the frequency response of the low-pass filter G(j€2) needed to recover x(t). Plot
the magnitude response of G(j<2).

5.23. Ideal low-pass filter—MATLAB
Consider an ideal low-pass filter H(s) with zero phase and magnitude response

. 1 - 7n<Q<nm
IHGD)! = {O otherwise

(a) Find the impulse response h(t) of the low-pass filter. Plot it and indicate whether this filter is a causal
system or not.
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5.24.

5.25.

5.26.

(b) Suppose you wish to obtain a band-pass filter G(j2) from H(jS2). If the desired center frequency of
|G(j2)| is 57, and its desired magnitude is 1 at the center frequency, how would you process h(t) to
get the desired filter? Explain your procedure.

(c) Use symbolic MATLAB to find h(t), g(t), and G(jS2). Plot |[H(jS)|, h(t), g(t), and |G(j2)|.

Magnitude response from poles and zeros—MATLAB
Consider the following filters with the given poles and zeros and dc constant:

Hi(s): K=1poles p; =-1,pp3=—1=xjm; zeros z3=1,z223=1=%jn
Hj(s): K=1poles p; =-1,p33=—1=%jm; zeros zj3==Ljm
Hs(s): K=1poles p; =-1,pp3=—1=%jm; zero z3 =1

Use MATLAB to plot the magnitude responses of these filters and indicate the type of filters
they are.

Different types of AM modulations—MATLAB
Let the signal

m(t) = sinQut)[u(t) — u(t — 1)]

be the message or input to different types of AM systems with the output the following signals. Carefully

plot m(t) and the following outputs in 0 < ¢t < 1 and their corresponding spectra using MATLAB. Let the

sampling period be Ty = 0.001.

(a) y1(t) = m(t) cos(20mt)

(b) y2(® =1+ m(t)] cos(207t)

Windows—MATLAB

The signal x(t) in Problem 5.17 is called a raised-cosine window. Notice that it is a very smooth signal and

that it decreases at both ends. The rectangular window is the signal y(t) = u(t + 1) — u(t — 1).

(a) Use MATLAB to compute the magnitude spectrum of x(t) and y(t) and indicate which is the smoother
of the two by considering the presence of high frequencies as an indication of roughness.

(b) When computing the Fourier transform of a very long signal it makes sense to break it up into smaller
sections and compute the Fourier transform of each. In such a case, windows are used to smooth out
the transition from one section to the other. Consider a sinusoid z(t) = cos(2xt) for 0 < t < 1000 sec.
Divide the signal into two sections of duration 500 sec. Multiply the corresponding signal in each of
the sections by a raised-cosine x(t) and rectangular y(t) windows of length 500 and compute using
MATLAB the corresponding Fourier transforms. Compare them to the Fourier transform of the whole
signal and comment on your results. Sample all the signals using Ty = 1/(47) as the sampling period.

(c) Consider the computation of the Fourier transform of the acoustic signal corresponding to a train
whistle, which MATLAB provides as a sampled signal in “train.mat” using the discrete approximation
of the Fourier transform. The frequency content of the whole signal (hard to find) would not be as
meaningful as the frequency content of a smaller section of it as they change with time. Compute
the Fourier transform of sections of 1000 samples by windowing the signal with the raised-cosine
window (sampled with the same sampling period as the “train.mat” signal or T = 1/Fs where F; is the
sampling frequency given for “train.mat”). Plot the spectra of a few of these segments and comment
on the change in the frequency content as time changes.



CHAPTER 6

Application to Control and
Communications

Who are you going to believe? Me or
your own eyes.

Julius “Groucho” Marx (1890-1977)
comedian and actor

6.1 INTRODUCTION

Control and communications are areas in electrical engineering where the Laplace and the Fourier
analyses apply. In this chapter, we illustrate how these transform methods and the concepts of trans-
fer function, frequency response, and spectrum connect with the classical theories of control and
communications.

In classical control, the objective is to change the dynamics of a given system to be able to achieve
a desired response by frequency-domain methods. This is typically done by means of a feedback
connection of a controller to a plant. The plant is a system such as a motor, a chemical plant, or an
automobile we would like to control so that it responds in a certain way. The controller is a system we
design to make the plant follow a prescribed input or reference signal. By feeding back the response of
the system to the input, it can be determined how the plant responds to the controller. The commonly
used negative feedback generates an error signal that permits us to judge the performance of the
controller. The concepts of transfer function, stability of systems, and different types of responses
obtained through the Laplace transform are very useful in the analysis and design of classical control
systems.

A communication system consists of three components: a transmitter, a channel, and a receiver. The
objective of communications is to transmit a message over a channel to a receiver. The message is a
signal, for instance, a voice or a music signal, typically containing low frequencies. Transmission of
the message can be done over the airwaves or through a line connecting the transmitter to the receiver,
or a combination of the two—constituting channels with different characteristics. Telephone commu-
nication can be done with or without wires, and radio and television are wireless. The concepts of

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00009-0
(© 2011, Elsevier Inc. All rights reserved. 359
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frequency, bandwidth, spectrum, and modulation developed by means of the Fourier transform are
fundamental in the analysis and design of communication systems.

The aim of this chapter is to serve as an introduction to problems in classical control and commu-
nications and to link them with the Laplace and Fourier analyses. More in-depth discussion of these
topics can be found in many excellent texts in control and communications.

The other topic covered in this chapter is an introduction to analog filter design. Filtering is a very
important application of LTI systems in communications, control, and digital signal processing.
The material in this chapter will be complemented by the design of discrete filters in Chapter 11.
Important issues related to signals and system are illustrated in the design and implementation of
filters.

6.2 SYSTEM CONNECTIONS AND BLOCK DIAGRAMS

Control and communication systems consist of interconnection of several subsystems. As we
indicated in Chapter 2, there are three important connections of LTI systems:

m Cascade
m DParallel
m Feedback

Cascade and parallel result from properties of the convolution integral, while the feedback con-
nection relates the output of the overall system to its input. With the background of the Laplace
transform we present now a transform characterization of these connections that can be related to
the time-domain characterizations given in Chapter 2.

The connection of two LTT continuous-time systems with transfer functions Hj (s) and H;(s) (and correspond-

ing impulse responses hq (t) and ho (t)) can be done in:

m Cascade (Figure 6.1(a)): Provided that the two systems are isolated, the transfer function of the overall
system is

H(s) = H1(s)H2(5) (6.1)

m Parallel (Figure 6.1(b)): The transfer function of the overall system is

H(s) = H1(s) + Ha(s) (6.2)
= Negative feedback (Figure 6.4): The transfer function of the overall system is

_ Hi(s)
") = T, 0me (6:3)

= Open-loop transfer function: Hyy(s) = Hy(s).
m  Closed-loop transfer function: Hgy(s) = H(s).




6.2 System Connections and Block Diagrams m

Cascading of LTI Systems

Given two LTI systems with transfer functions Hy (s) = L[h1(t)] and H,(s) = L[h2(t)] where h; (t) and
h, (t) are the corresponding impulse responses of the systems, the cascading of these systems gives a
new system with transfer function

H(s) = H1(s)H2(s) = H2(s)H1(s)

provided that these systems are isolated from each other (i.e., they do not load each other). A graph-
ical representation of the cascading of two systems is obtained by representing each of the systems
with blocks with their corresponding transfer function (see Figure 6.1(a)). Although cascading of
systems is a simple procedure, it has some disadvantages:

m It requires isolation of the systems.
m It causes delay as it processes the input signal, possibly compounding any errors in the processing.

Remarks

s Loading, or lack of system isolation, needs to be considered when cascading two systems. Loading does
not allow the overall transfer function to be the product of the transfer functions of the connected systems.
Consider the cascade connection of two resistive voltage dividers (Figure 6.2), each with a simple transfer
function Hi(s) = 1/2, i =1, 2. The cascade in Figure 6.2(b) clearly will not have as transfer function
H(s) = Hi1(s)H2(s) = (1/2)(1/2) unless we include a buffer (such as an operational amplifier voltage

Hy(s)

A4

X(s) —
x(1) y()
Ha(s)

X(s) Y(s)

x(t) y(1)
(a) (b)

=L
e
v
x
&
v

FIGURE 6.1
(a) Cascade and (b) parallel connections of systems with transfer function Hj (s) and H;(s). The input and output
are given in the time or in the frequency domains.

1Q 10 10 10
T M "
+ +
Vos) 19 19 v(s) v 1@ 10 Z Vy(s)
(a) (b)

FIGURE 6.2
Cascading of two voltage dividers: (a) using a voltage follower gives V1 (s)/Vo(s) = (1/2)(1/2) with no loading
effect, and (b) using no voltage follower V7 (s)/Vo(s) = 1/5 # V1(s)/Vo(s) due to loading.
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Modulator Modulator
i i rTh
1 1 d ad 1 1
SO G 2 g O
FIGURE63 = s
Cascading of (a) an LTV and (b) an LTI system. f(t) f(t)
The outputs are different, y1 (t) # y2(t). (@) (b)

follower) in between (see Figure 6.2(a)). The cascading of the two voltage dividers without the voltage
follower gives a transfer function Hy(s) = 1/5, as can be easily shown by doing mesh analysis on the
circuit.

m  The block diagrams of the cascade of two or more LTI systems can be interchanged with no effect on the
overall transfer function, provided the connection is done with no loading. That is not true if the systems
are not LTI. For instance, consider cascading a modulator (LTV system) and a differentiator (LTI) as
shown in Figure 6.3. If the modulator is first, Figure 6.3(a), the output of the overall system is

_ OO 0O
n®=—H=—=fO—=+xO—
while if we put the differentiator first, Figure 6.3(b), the output is
. dx(t)
n®=fO—

It is obvious that if f (t) is not a constant, the two responses are very different.

Parallel Connection of LTI Systems

According to the distributive property of the convolution integral, the parallel connection of two
or more LTI systems has the same input and its output is the sum of the outputs of the systems
being connected (see Figure 6.1(b)). The parallel connection is better than the cascade, as it does
not require isolation between the systems, and reduces the delay in processing an input signal. The
transfer function of the parallel system is

H(s) = Hi(s) + Ha(s)
Remarks

m  Although a communication system can be visualized as the cascading of three subsystems—the transmitter,
the channel, and the receiver—typically none of these subsystems is LT1. As we discussed in Chapter 5, the
low-frequency nature of the message signals requires us to use as the transmitter a system that can generate
a signal with much higher frequencies, and that is not possible with LTI systems (recall the eigenfunction
property). Transmitters are thus typically nonlinear or linear time varying. The receiver is also not LTI. A
wireless channel is typically time varying.

m  Some communication systems use parallel connections (see quadrature amplitude modulation (QAM)
later in this chapter). To make it possible for several users to communicate over the same channel, a
combination of parallel and cascade connections are used (see frequency division multiplexing (FDM)
systems later in this chapter). But again, it should be emphasized that these subsystems are not LTI.
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FIGURE 6.4 x(t) ~e | (s y(1)
Negative-feedback connection of + ! i’

systems with transfer function Hy (s)
and Hj (s). The input and the output
are x(t) and y(t), respectively, and e(t) Hy(s) |«
is the error signal.

Feedback Connection of LTI Systems

In control, feedback connections are more appropriate than cascade or parallel connections. In the
feedback connection, the output of the first system is fed back through the second system into
the input (see Figure 6.4). In this case, like in the parallel connection, beside the blocks representing
the systems we use adders to add/subtract two signals.

It is possible to have positive- or negative-feedback systems depending on whether we add or subtract the
signal being fed back to the input. Typically, negative feedback is used, as positive feedback can greatly
increase the gain of the system. (Think of the screeching sound created by an open microphone near
a loud-speaker: the microphone continuously picks up the amplified sound from the loud-speaker,
increasing the volume of the produced signal. This is caused by positive feedback.) For negative
feedback, the connection of two systems is done by putting one in the feedforward loop, Hi(s),
and the other in the feedback loop, H»(s) (there are other possible connections). To find the overall
transfer function we consider the Laplace transforms of the error signal e(t), E(s), and of the output
y(t), Y(s), in terms of the Laplace transform of the input x(¢), X(s), and the transfer functions Hj (s)
and H;(s) of the systems:

E(s) = X(s) — Ha($)Y(s)
Y(s) = H1(s)E(s)
Replacing E(s) in the second equation gives
Y(©)[1 + Hi(9)H2(5)] = H1()X(s)
and the transfer function of the feedback system is then

Y(s Hi (s
oo YO O 61
X(s) 1+ Hi()Ha(s)
As you recall, in Chapter 2 we were not able to find an explicit expression for the impulse response
of the overall system and now you can understand why.

6.3 APPLICATION TO CLASSIC CONTROL

Because of different approaches, the theory of control systems can be divided into classic and modern
control. Classic control uses frequency-domain methods, while modern control uses time-domain
methods. In classic linear control, the transfer function of the plant we wish to control is available;
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FIGURE 6.5

(a) Closed- and (b) open-loop control systems. The transfer function of the plant is G(s) and the transfer function
of the controller is H¢(s).

let us call it G(s). The controller, with a transfer function H.(s), is designed to make the output of
the overall system perform in a specified way. For instance, in a cruise control the plant is the car,
and the desired performance is to automatically set the speed of the car to a desired value. There are
two possible ways the controller and the plant are connected: in open-loop or in closed-loop (see
Figure 6.5).

Open-Loop Control
In the open-loop approach the controller is cascaded with the plant (Figure 6.5(b)). To make the
output y(t) follow the reference signal at the input x(t), we minimize an error signal

e(t) = y(t) — x(1)

Typically, the output is affected by a disturbance 7(t), due to modeling or measurement errors. If we
assume initially no disturbance, n(t) = 0, we find that the Laplace transform of the output of the
overall system is

Y(s5) = L[y(®] = He(s)G()X(s)

and that of the error is
E(s) = Y(s) — X(s) = [Hc(5)G(s) — 1]X(5)

To make the error zero, so that y(t) = x(t), it would require that H.(s) = 1/G(s) or the inverse of the
plant, making the overall transfer function of the system H;(s)G(s) unity.

Remarks
Although open-loop systems are simple to implement, they have several disadvantages:

m  The controller H.(s) must cancel the poles and the zeros of G(s) exactly, which is not very practical. In
actual systems, the exact location of poles and zeros is not known due to measurement errors.

m  If the plant G(s) has zeros on the right-hand s-plane, then the controller H.(s) will be unstable, as its poles
are the zeros of the plant.

m  Due to ambiguity in the modeling of the plant, measurement errors, or simply the presence of noise, the
output y(t) is typically affected by a disturbance signal n(t) mentioned above (n(t) is typically random—
we are going to assume for simplicity that it is deterministic so we can compute its Laplace transform).
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The Laplace transform of the overall system output is
Y(s) = He(9)G($)X(s) + n(5)
where n(s) = L[n(t)]. In this case, E(s) is given by
E(s) = [He(5)G(s) — 1]X () +n(5)

Although we can minimize this error by choosing H.(s) = 1/G(s) as above, in this case e(t) cannot be
made zero—it remains equal to the disturbance 1(t) and we have no control over this.

Closed-Loop Control

Assuming y(t) and x(¢) in the open-loop control are the same type of signals, (e.g., both are voltages,
or temperatures), if we feed back y(t) and compare it with the input x(t) we obtain a closed-loop
control. Considering the case of negative-feedback system (see Figure 6.5(a)), and assuming no
disturbance (n(t) = 0), we have that

E(s) =X(s) —Y(s)
Y(s) = He()G(S)E(s)
and replacing Y (s) gives

X(s)

FO = 1 eome

If we wish the error to go to zero in the steady state, so that y(t) tracks the input, the poles of E(s)
should be in the open left-hand s-plane.

If a disturbance signal 7(t) (consider it for simplicity deterministic and with Laplace transform 7(s))
is present (See Figure 6.5(a)), the above analysis becomes

E(s) = X(s) = Y(9)
Y(s) = He()G()E(s) + n(s)
so that
E(s) = X(s) — Hc(5)G(S)E(s) — n(s)
or solving for E(s),

_ X(s) _ nG)
T 14+ GEH() 14 G(s)H.(s)

=Ei1(5) + E2(9)

E(s)

If we wish e(t) to go to zero in the steady state, then poles of E; (s) and E; (s) should be in the open left-
hand s-plane. Different from the open-loop control, the closed-loop control offers more flexibility in
achieving this by minimizing the effects of the disturbance.



m CHAPTER 6: Application to Control and Communications

Remarks

A control system includes two very important components:

Transducer: Since it is possible that the output signal y(t) and the reference signal x(t) might not be of
the same type, a transducer is used to change the output so as to be compatible with the reference input.
Simple examples of a transducer are: lightbulbs, which convert voltage into light; a thermocouple, which
converts temperature into voltage.

Actuator: A device that makes possible the execution of the control action on the plant, so that the output
of the plant follows the reference input.

m Example 6.1: Controlling an unstable plant

LU TN Gls)=— ®

= » )y
FIGURE 6.6 o S i
Proportional control of a motor.

Consider a dc motor modeled as an LTI system with a transfer function

G(s)

- s(s+1)

The motor is not BIBO stable given that its impulse response g(t) = (1 — e ")u(t) is not absolutely
integrable. We wish the output of the motor y(t) to track a given reference input x(t), and pro-
pose using a so-called proportional controller with transfer H.(s) = K > 0 to control the motor (see
Figure 6.6). The transfer function of the overall negative-feedback system is

YO KGO
©=%5 = T7KCO)

Suppose that X(s) = 1/s, or the reference signal is x(t) = u(t). The question is: What should be
the value of K so that in the steady state the output of the system y(t) coincides with x(t)? Or,
equivalently, is the error signal in the steady state zero? We have that the Laplace transform of the
error signal e(t) = x(t) — y(t) is

1 _ s+1
s(1+GEK)  ss+1)+K
The poles of E(s) are the roots of the polynomial s(s + 1) + K = s*> + s + K, or

s1,0 =—05=£0.5¢1—-4K

For 0 < K < 0.25 the roots are real, and complex for K > 0.25, and in either case in the left-hand
s-plane. The partial fraction expansion corresponding to E(s) would be
B B
LI
S—81 S$—5

E@s) =X(s)[1 = H(9)] =

E(s) =

Proportional

controller Motor

A 4
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for some values B; and B;. Given that the real parts of s; and s, are negative, their corresponding
inverse Laplace terms will have a zero steady-state response. Thus,

lim e(t) - 0
t— 00

This can be found also with the final value theorem, e(0) is
SE($)[s=0 =0

So forany K > 0, y(t) — x(t) in steady state.

Suppose then that X(s) = 1/s? or that x(t) = tu(t), a ramp signal. Intuitively, this is a much harder
situation to control, as the output needs to be continuously growing to try to follow the input. In
this case, the Laplace transform of the error signal is

_ _ s+ 1
T 2(14+GE)K)  s(sGs+ 1) +K)

E(s)

In this case, even if we choose K to make the roots of s(s + 1) + K be in the left-hand s-plane, we
have a pole at s = 0. Thus, in the steady state, the partial fraction expansion terms corresponding
to poles s; and s, will give a zero steady-state response, but the pole s = 0 will give a constant
steady-state response A where

A = E(s)s[s=0 = 1/K
In the case of a ramp as input, it is not possible to make the output follow exactly the input
command, although by choosing a very large gain K we can get them to be very close. |

Choosing the values of the gain K of the open-loop transfer function

KN(s)

G()Hc(s) = DG)

to be such that the roots of
1 4+ G(s)Hc(s) = 0

are in the open left-hand s-plane, is the root-locus method, which is of great interest in control theory.

m Example 6.2: A cruise control

Suppose we are interested in controlling the speed of a car or in obtaining a cruise control. How to
choose the appropriate controller is not clear. We consider initially a proportional plus integral (PI)
controller H.(s) = 1 + 1/s and will ask you to consider the proportional controller as an exercise.
See Figure 6.7.

Suppose we want to keep the speed of the car at Vp miles/hour for ¢t > 0 (i.e., x(¢t) = Vpu(t)), and

that the model for a car in motion is a system with transfer function .

Hy(s) = B/ + )
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PI Controller Plant

t e t
FIGURE 6.7 ﬂ»Qﬁ> Hc(s)=1+1; °0, Hp(s)

Cruise control system: reference speed +_T
x(t) = Vou(t) and output speed of car v(t).

A
\ A=)

with both 8 and « positive values related to the mass of the car and the friction coefficient. For

simplicity, let « = 8 = 1. The question is: Can this be achieved with the PI controller? The Laplace

transform of the output speed v(t) of the car is
Hc(s)Hp(s)

1+ Hc(s)Hp(s)
Vo(s+ 1) _ Vo

s(s2+25+1)  sGs+1)

The poles of V(s) are s = 0 and s = —1 on the left-hand s-plane. We can then write V (s) as

V(s) = B +A
Ts+1 S

V(s) = X(s)

where A = Vj. The steady-state response is
lim v(t) = Vy
t—00

since the inverse Laplace transform of the first term goes to zero due to its poles being in the left-
hand s-plane. The error signal e(t) = x(t) — v(t) in the steady state is zero. The controlling signal
c(t) (see Figure 6.7) that changes the speed of the car is

t
c(t) = e(t) + / e(t)dr
0

so that even if the error signal becomes zero at some point—indicating the desired speed had been
reached—the value of ¢(t) is not necessarily zero. The values of e(t) at t = 0 and at steady-state can
be obtained using the initial- and the final-value theorems of the Laplace transform applied to

Vo 1
E(s):X(s)—V(s):T[l—s+1]

The final-value theorem gives that the steady-state error is
lim e(t) = limsE(s) = 0
=00 s—0

coinciding with our previous result. The initial value is found as

e(0) = Sl_l)rglo SE(s)

1
:limVO[l— /s ]ZVO

5—00 1+ 1/s
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The PI controller used here is one of various possible controllers. Consider a simpler and cheaper
controller such as a proportional controller with H.(s) = K. Would you be able to obtain the same
results? Try it. u

6.3.1 Stability and Stabilization

A very important question related to the performance of systems is: How do we know that a given
causal system has finite zero-input, zero-state, or steady-state responses? This is the stability prob-
lem of great interest in control. Thus, if the system is represented by a linear differential equation
with constant coefficients the stability of the system determines that the zero-input, the zero-state,
as well as the steady-state responses may exist. The stability of the system is also required when con-
sidering the frequency response in the Fourier analysis. It is important to understand that only the
Laplace transform allows us to characterize stable as well as unstable systems; the Fourier transform
does not.

Two possible ways to look at the stability of a causal LTI system are:

= When there is no input so that the response of the system depends on initial energy in the system.
This is related to the zero-input response of the system.

= When there is a bounded input and no initial condition. This is related to the zero-state response
of the system.

Relating the zero-input response of a causal LTI system to stability leads to asymptotic stability. An LTI
system is said to be asymptotically stable if the zero-input response (due only to initial conditions in
the system) goes to zero as t increases—that is,

Yzi() >0 t—> 00 (6.5)

for all possible initial conditions.

The second interpretation leads to the bounded-input bounded-output (BIBO) stability, which we
defined in Chapter 2. A causal LTI system is BIBO stable if its response to a bounded input is also
bounded. The condition we found in Chapter 2 for a causal LTI system to be BIBO stable was that
the impulse response of the system be absolutely integrable—that is

/|h(t)|dt <0 (6.6)
0

Such a condition is difficult to test, and we will see in this section that it is equivalent to the poles
of the transfer function being in the open left-hand s-plane, a condition that can be more easily
visualized and for which algebraic tests exist.

Consider a system being represented by the differential equation

M

¢
= box(t) + Z by ()
=1

. M <N

N
dk (©)
YO+ Y e
k=1 t
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For some initial conditions and input x(t), with Laplace transform X(s), we have that the Laplace
transform of the output is

I X(s)B
Y(9) = Yzi(s) + Yas(s) = Ly®)] = z% * %

N M
AS) =14 aps’, Bs)=bo+ Y byps"
k=1 m=1

where I(s) is due to the initial conditions. To find the poles of Hi(s) = 1/A(s), we set A(s) =0,
which corresponds to the characteristic equation of the system and its roots (real, complex conjugate,
simple, and multiple) are the natural modes or eigenvalues of the system.

A causal LTT system with transfer function H(s) = B(s)/A(s) exhibiting no pole-zero cancellation is said
to be:

= Asymptotically stable if the all-pole transfer function Hy(s) = 1/A(s), used to determine the zero-input
response, has all its poles in the open left-hand s-plane (the j2 axis excluded), or equivalently

A(s) #0 for TRels] >0 (6.7)
= BIBO stable if all the poles of H(s) are in the open left-hand s-plane (the j2 axis excluded), or equivalently
A(s) #0 for TRels] >0 (6.8)

m If H(s) exhibits pole-zero cancellations, the system can be BIBO stable but not necessarily asymptotically
stable.

Testing the stability of a causal LTI system thus requires finding the location of the roots of A(s), or the
poles of the system. This can be done for low-order polynomials A(s) for which there are formulas to
find the roots of a polynomial exactly. But as shown by Abel,! there are no equations to find the roots
of higher than fourth-order polynomials. Numerical methods to find roots of these polynomials only
provide approximate results that might not be good enough for cases where the poles are close to
the jQ axis. The Routh stability criterion [53] is an algebraic test capable of determining whether the
roots of A(s) are on the left-hand s-plane or not, thus determining the stability of the system.

m Example 6.3: Stabilization of a plant

Consider a plant with a transfer function G(s) = 1/(s — 2), which has a pole in the right-hand
s-plane and therefore is unstable. Let us consider stabilizing it by cascading it with an all-pass filter
(Figure 6.8(a)) so that the overall system is not only stable but also keeps its magnitude response.

Niels H. Abel (1802-1829) was a Norwegian mathematician who accomplished brilliant work in his short lifetime. At age 19, he
showed there is no general algebraic solution for the roots of equations of degree greater than four, in terms of explicit algebraic
operations.
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FIGURE 6.8
Stabilization of an unstable plant G(s) using (a) an all-pass filter and (b) a proportional controller of gain K.

To get rid of the pole at s = 2 and to replace it with a new pole ats = —2, we let the all-pass filter be
s—2
Hgy(s) = S—|—_2
To see that this filter has a constant magnitude response consider
5= 2)(=s-2)
G+ 2(=s+2)
=2 +2)
G+ -2)

If we let s = j$2, the above gives the magnitude-squared function

Hy(s)Hg(—s)

H,(jQH(—j) = Ha(jQ)H*(j)
= [HGQ)?

which is unity for all values of frequency. The cascade of the unstable system with the all-pass
system gives a stable system
1
H(s) = G(s)Ha(s) = Y

with the same magnitude response as G(s). This is an open-loop stabilization and it depends on
the all-pass system having a zero exactly at 2 so that it cancels the pole causing the instability. Any
small change on the zero and the overall system would not be stabilized. Another problem with
the cascading of an all-pass filter to stabilize a filter is that it does not work when the pole causing
the unstability is at the origin, as we cannot obtain an all-pass filter able to cancel that pole.

Consider then a negative-feedback system (Figure 6.8(b)). Suppose we use a proportional
controller with a gain K, then the overall system transfer function is

KG(s) K
H(S) = =
1+KG(s) s+ (K-2)
and if the gain K is chosen so that K — 2 > 0 or K > 2, the feedback system will be stable. [

6.3.2 Transient Analysis of First- and Second-Order Control Systems

Although the input to a control system is not known a-priori, there are many applications where the
system is frequently subjected to a certain type of input and thus one can select a test signal. For
instance, if a system is subjected to intense and sudden inputs, then an impulse signal might be the
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appropriate test input for the system; if the input applied to a system is constant or continuously
increasing, then a unit step or a ramp signal would be appropriate. Using test signals such as an
impulse, a unit-step, a ramp, or a sinusoid, mathematical and experimental analyses of systems can
be done.

When designing a control system its stability becomes its most important attribute, but there are other
system characteristics that need to be considered. The transient behavior of the system, for instance,
needs to be stressed in the design. Typically, as we drive the system to reach a desired response, the
system’s response goes through a transient before reaching the desired response. Thus, how fast the
system responds and what steady-state error it reaches need to be part of the design considerations.

First-Order Systems

As an example of a first-order system consider an RC serial circuit with a voltage source v;(t) = u(t) as
input (Figure 6.9), and as the output the voltage across the capacitor, v.(t). By voltage division, the
transfer function of the circuit is

V:(s) 1

Vi(s) 1+ RCs

Considering the RC circuit, a feedback system with input v;(t) and output v.(t), the feedforward
transfer function G(s) in Figure 6.9 is 1/RCs. Indeed, from the feedback system we have

H(s) =

E(s) = Vi(s) = Vi(5)
Ve(s) = E(5)G(s)
Replacing E(s) in the second of the above equations, we have that

Ve Gl 1
Vis)  14+G@s) 14 1/G(s)

so that the open-loop transfer function, when we compare the above equation to H(s), is

1
G() = —
© RCs
The RC circuit can be seen as a feedback system: the voltage across the capacitor is constantly com-
pared with the input voltage, and if found smaller, the capacitor continues charging until its voltage
coincides with it. How fast depends on the RC value.

vi(t) e(t) 1
+ G(8)= Fes

FIGURE 6.9
Feedback modeling of an RC circuit in series.
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FIGURE 6.10
(a) Clustering of poles and (b) time responses of a first-order feedback system for 1 < RC < 10.

For vj(t) = u(t), so that V;(s) = 1/s, then the Laplace transform of the output is
1 1/RC 1 1
Ve(s) = = ==-
SGRC+1) s(s+1/RC) s s+ 1/RC

so that

ve(t) = (1 — e (o)
The following MATLAB script plots the poles V.(s)/Vi(s) and simulates the transients of v.(t) for
1 < RC < 10, shown in Figure 6.10. Thus, if we wish the system to respond fast to the unit-step input

we locate the system pole far from the origin.
% % % % % % % % % % % % % % % % % % % % %
% Transient analysis
9% % % % % % % % % % % % % % % % % % % % %
clf; clear all
syms st
num = [0 1];
for RC = 1:2:10,
den =[RC 1];
figure(1)
splane(num, den) % plotting of poles and zeros
hold on
vc = ilaplace(1/(RC % s"2 + s)) % inverse Laplace
figure(2)
ezplot(vc, [0, 50]); axis([0 50 0 1.2]); grid
hold on
end
hold off
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Second-Order System
A series RLC circuit with the input a voltage source, vs(t), and the output the voltage across the
capacitor, v.(t), has a transfer function

Ve(s) 1/Cs _ 1/LC
Vs(s) R+4+Ls+1/Cs s2+ (R/L)s+ 1/LC
If we define
1
Natural frequency: Q, = — 6.9
. . C
Damping ratio: = 0.5R\/; (6.10)

we can write

Ve(s) Q2
Vi(s)  s2 4+ 29 Qs + Q2

(6.11)

A feedback system with this transfer function is given in Figure 6.11 where the feedforward transfer

function is
2

Q‘rl
GG) = ——
s(s+ 29 Q2p)

Indeed, the transfer function of the feedback system is given by
Ve _ 6B
Vi) 14+G(s)
_ %

$2+ 29 Qs + Q2

H(s) =

The dynamics of a second-order system can be described in terms of the parameters €2, and v, as these
two parameters determine the location of the poles of the system and thus its response. We adapted
the previously given script to plot the cluster of poles and the time response of the second-order
system.

Assume Q, = 1 rad/sec and let 0 < ¢y < 1 (so that the poles of H(s) are complex conjugate for 0 <
¥ < 1 and double real for = 1). Let the input be a unit-step signal so that Vi(s) = 1/s. We then
have:

vs(t) e(t) ve(t)
G(s) >

FIGURE 6.11
Second-order feedback system.
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(a) Clustering of poles and time responses v¢(t) of second-order feedback system for (b) v/2/2 < ¢ < 1 and

©0=<y <+2/2.

(a) If we plot the poles of H(s) as ¥ changes from 0 (poles in j<2 axis) to 1 (double real poles) the
response y(t) in the steady state changes from a sinusoid shifted up by 1 to a damped signal. The
locus of the poles is a semicircle of radius €2, = 1. Figure 6.12 shows this behavior of the poles
and the responses.

(b) As in the first-order system, the location of the poles determines the response of the system. The
system is useless if the poles are on the jQ2 axis, as the response is completely oscillatory and
the input will never be followed. On the other extreme, the response of the system is slow when
the poles become real. The designer would have to choose a value in between these two for .

(c) For values of i between +/2/2 to 1 the oscillation is minimum and the response is relatively
fast (see Figure 6.12(b)). For values of ¢ from 0 to +/2/2 the response oscillates more and more,
giving a large steady-state error (see Figure 6.12(c)).

m Example 6.4

In this example we find the response of an LTI system to different inputs by using functions in the
control toolbox of MATLAB. You can learn more about the capabilities of this toolbox, or set of
specialized functions for control, by running the demo respdemo and then using help to learn more
about the functions tf, impulse, step, and pzmap, which we will use here.
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We want to create a MATLAB function that has as inputs the coefficients of the numerator N(s)
and of the denominator D(s) of the system’s transfer function H(s) = N(s)/D(s) (the coefficients
are ordered from the highest order to the lowest order or constant term). The other input of the
function is the type of response t where t = 1 corresponds to the impulse response, t = 2 to the
unit-step response, and t = 3 to the response to a ramp. The output of the function is the desired
response. The function should show the transfer function, the poles, and zeros, and plot the cor-
responding response. We need to figure out how to compute the ramp response using the step
function.

Consider the following transfer functions:

s+1
Hi(s) = — 1 —
@ MO =50
(b) Ha(s) = d
TS s

Determine the stability of these systems.

Solution

The following script is used to look at the desired responses of the two systems and the location
of their poles and zeros. We consider the second system; you can run the script for the first system
by putting % at the numerator and the denominator after H,(s) and getting rid of % after H(s)
in the script. The function response computes the desired responses (in this case the impulse, step,
and ramp responses).

% % % % % % % % % % % % % % % % % % %
% Example 6.4 -- Control toolbox

%% % % % % % % % % % % % % % % % % %
clear all; clf

% % H_1(s)

%nu=[11];de=[111]

%% H_2(s)

nu=[10];de=[1111]; % unstable
h = response(nu, de, 1);

s = response(nu, de, 2);

r = response(nu, de, 3);

function y = response(N, D, t)
sys = tf(N, D)
poles = roots(D)
zeros = roots(N)
figure(1)
pzmap(sys);grid
if t == 3,
D1 =[D Q]; % for ramp response
end



figure(2)
ift==1,

subplot(311)

y = impulse(sys,20);

plot(y);title(’ Impulse response’);ylabel(’h(t)’);xlabel(’'t’); grid
elseif t == 2,

subplot(312)

y = step(sys, 20);

plot(y);title(” Unit-step response’);ylabel(’s(t)’);xlabe(’t’);grid
else

subplot(313)

sys = tf(N, D1); % ramp response

y = step(sys, 40);

plot(y); title(" Ramp response’); ylabel('q(t)’); xlabel(’t’);grid
end

The results for H, (s) are as follows.

Transfer function:

S3+S2+s+ 1
poles =
—1.0000
—0.0000 + 1.0000i
—0.0000 — 1.0000i
Zeros =
0

6.4 Application to Communications

As you can see, two of the poles are on the jQ axis, and so the system corresponding to Hj(s) is
unstable. The other system is stable. Results for both systems are shown in Figure 6.13. |

6.4 APPLICATION TO COMMUNICATIONS

The application of the Fourier transform in communications is clear. The representation of signals in
the frequency domain and the concept of modulation are basic in communications. In this section we
show examples of linear (amplitude modulation or AM) as well as nonlinear (frequency modulation
or FM, and phase modulation or PM) modulation methods. We also consider important extensions
such as frequency-division multiplexing (FDM) and quadrature amplitude modulation (QAM).

Given the low-pass nature of most message signals, it is necessary to shift in frequency the spectrum
of the message to avoid using a very large antenna. This can be attained by means of modulation,
which is done by changing either the magnitude or the phase of a carrier:

A(t) cos(2rf, + 6(1))

(6.12)



CHAPTER 6: Application to Control and Communications

Impulse Response

1 Pole-Zero Map
~ 05 1 =N LTSN T N
l_;, o L0727 058 044
0.8F}.- Tl IR
-05 ose
10 20 30 40 50 60 70 80 90 100 061 -
t -
04fF -
Unit-Step Response ) Bt
2 Xz 02f
SR / = A L____08_ ___0§____o
c .
0 g -02f .
0O 10 20 30 40 50 60 70 80 90 100 £ N e S
t - -0.4 096 e szlsete-"_“osgs_oseei
Ramp Response -, _.-~’| Damping: 0.5 S
40 -0.6 _.-7"*._| Overshoot (%): 163 [ --.. |
. P — <ﬂ_5é" e Frequency (rad/sec): 1 ;
< 2 o —0.8 - el el AR
= . R ST
0 L ] “\9_172-" |0~58 ) 03421";-»0,3'2_,912;2””0.1
0O 10 20 30 40 50 60 70 80 90 100 -1 -0.8 -0.6 -0.4 -0.2 0
t Real Axis
(a)
. Impulse Response
= o 2 / Pole-Zero Map
< \/ o7l T -0ss bae_olsz- 02" o1
1 L S
0O 10 20 30 40 50 60 70 80 90 100 08k .
t Bross -
. Unit-Step Response 0.6
0.4 095
_ N 2 Rt
s oL T < o2k
@ >
» § of2..t...0d... 9.0
0O 10 20 30 40 50 60 70 80 90 100 'Q 02k
t E paboes N
Ramp Response .
2 S0.6F el T P ‘
_‘0.’8’4‘ DR :
SN VANVARAN VAN AN I B O
0 / \/ \ J \/ 1o oz 0867 044" --082 08 01
0O 10 20 30 40 50 60 70 80 90 100 ' -1 -08 -06 -04 -02 0 0.2
t Real Axis
(b)
FIGURE 6.13
Impulse, unit-step, and ramp responses and poles and zeros for system with transfer function (a) Hy (s) and
(b) Ha(s).

When A(t) is proportional to the message, for constant phase, we have amplitude modulation (AM).
On the other hand, if we let 6(t) change with the message, keeping the amplitude constant, we then
have frequency modulation (FM) or phase modulation (PM), which are called angle modulations.
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6.4.1 AM with Suppressed Carrier

Consider a message signal m(t) (e.g., voice or music, or a combination of the two) modulating a
cosine carrier cos(£2.t) to give an amplitude modulated signal

s(t) = m(t) cos(2t) (6.13)

The carrier frequency Q2 >> 2nfo where fy (Hz) is the maximum frequency in the message (for music
fo is about 22 KHz). The signal s(t) is called an amplitude modulated with suppressed carrier (AM-SC)
signal (the last part of this denomination will become clear later). According to the modulation
property of the Fourier transform, the transform of s(t) is

S = 5 M@~ Q) + M@ +20)] (6.14)

where M(2) is the spectrum of the message. The frequency content of the message is now shifted to
a much larger frequency Q. (rad/sec) than that of the baseband signal m(t). Accordingly, the antenna
needed to transmit the amplitude modulated signal is of reasonable length. An AM-SC system is
shown in Figure 6.14.

At the receiver, we need to first detect the desired signal among the many signals transmitted by
several sources. This is possible with a tunable band-pass filter that selects the desired signal and
rejects the others. Suppose that the signal obtained by the receiver, after the band-pass filtering, is
exactly s(t)—we then need to demodulate this signal to get the original message signal m(t). This is
done by multiplying s(t) by a cosine of exactly the same frequency of the carrier in the transmitter
(i.e., ©2¢), which will give r(t) = 2s(t) cos(2.t), which again according to the modulation property has
a Fourier transform

R(2) = 8(2 — Q) + S(Q2 + Q) =M(Q) + % [M(©2 —29Q0) + M(Q2 +220)] (6.15)

The spectrum of the message, M(£2), is obtained by passing the received signal r(¢) through a low-pass
filter that rejects the other terms M(2 + 2€2,). The obtained signal is the desired message m(t).

The above is a simplification of the actual processing of the received signal. Besides the many other
transmitted signals that the receiver encounters, there is channel noise caused by interferences from

cos(Qt) 2cos(Q,f)

Low-pass
filter

Band-pass
filter

Transmitter Receiver

FIGURE 6.14
AM-SC transmitter, channel, and receiver.
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equipment in the transmission path and interference from other signals being transmitted around
the carrier frequency. This noise will also be picked up by the band-pass filter and a perfect recovery
of m(t) will not be possible. Furthermore, the sent signal has no indication of the carrier frequency
Q., which is suppressed in the sent signal, and so the receiver needs to guess it and any deviation
would give errors.

Remarks

m  The transmitter is linear but time varying. AM-SC is thus called a linear modulation. The fact that the
modulated signal displays frequencies much higher than those in the message indicates the transmitter is
not LTI—otherwise it would satisfy the eigenfunction property.

m A more general characterization than Q. >> 2w fy where fy is the largest frequency in the message is given
by Q; >> BW where BW (rad/sec) is the bandwidth of the message. You probably recall the definition
of bandwidth of filters used in circuit theory. In communications there are several possible definitions for
bandwidth. The bandwidth of a signal is the width of the range of positive frequencies for which some
measure of the spectral content is satisfied. For instance, two possible definitions are:

The half-power or 3-dB bandwidth is the width of the range of positive frequencies where a peak
value at zero or infinite frequency (low-pass and high-pass signals) or at a center frequency (band-pass
signals) is attenuated to 0.707, the value at the peak. This corresponds to the frequencies for which the
power at dc, infinity, or center frequency reduces to half.

The null-to-null bandwidth determines the width of the range of positive frequencies of the spectrum
of a signal that has a main lobe containing a significant part of the energy of the signal. If a low-pass
signal has a clearly defined maximum frequency, then the bandwidth are frequencies from zero to the
maximum frequency, and if the signal is a band-pass signal and has a minimum and a maximum
frequency, its bandwidth is the maximum minus the minimum frequency.

s In AM-SC demodulation it is important to know exactly the carrier frequency. Any small deviation would
cause errors when recovering the message. Suppose, for instance, that there is a small error in the carrier
frequency—that is, instead of Q2; the demodulator uses Q. + A—so that the received signal in that case
has the Fourier transform

R =SQ—Q —A)+S(Q+ Q +A)

- % [M(Q+ A) + M(R2 — A)]

45 M2 = 2@ + 5/2) + M@+ 2@ + 5/2)]

The low-pass filtered signal will not be the message.

6.4.2 Commercial AM

In commercial broadcasting, the carrier is added to the AM signal so that information of the carrier
is available at the receiver helping in the identification of the radio station. For demodulation, such
information is not important, as commercial AM uses envelope detectors to obtain the message. By
making the envelope of the modulated signal look like the message, detecting this envelope is all
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that is needed. Thus, the commercial AM signal is of the form
s(t) = [K 4+ m(t)] cos(2:t)

where the AM modulation index K is chosen so that K 4+ m(t) > 0 for all values of t so that the
envelope of s(t) is proportional to the message m(t). The Fourier transform is given by

S(2) = K [52 — 20 + 52+ 0] + 5 [M@ — 20 + M@+ )]

The receiver for this type of AM is an envelope receiver, which basically detects the message by finding
the envelope of the received signal.

Remarks

m  The advantage of adding the carrier to the message, which allows the use of a simple envelope detector,
comes at the expense of increasing the power in the transmitted signal.

m  The demodulation in commercial AM is called noncoherent. Coherent demodulation consists in
multiplying—or mixing—the received signal with a sinusoid of the same frequency and phase of the
carrier. A local oscillator generates this sinusoid.

m A disadvantage of commercial as well as suppressed-carrier AM is the doubling of the bandwidth of the
transmitted signal compared to the bandwidth of the message. Given the symmetry of the spectrum, in
magnitude as well as in phase, it becomes clear that it is not necessary to send the upper and the lower
sidebands of the spectrum to get back the signal in the demodulation. It is thus possible to have upper- and
lower-sideband AM modulations, which are more efficient in spectrum utilization.

m  Most AM receivers use the superheterodyne receiver technique developed by Armstrong and Fessenden.?

m Example 6.5: Simulation of AM modulation with MATLAB

For simulations, MATLAB provides different data files, such as “train.mat” (the extension mat indi-
cates it is a data file) used here. Suppose the analog signal y(t) is a recording of a “choo-choo” train,
and we wish to use it to modulate a cosine cos(£2.t) to create an amplitude modulated signal z(t).
Because the train y(t) signal is given in a sampled form, the simulation requires discrete-time pro-
cessing, and so we will comment on the results here and leave the discussion of the issues related
to the code for the next chapters.

The carrier frequency is chosen to be f, = 20.48 KHz. For the envelope detector to work at the
transmitter we add a constant K to the message to ensure this sum is positive. The envelope of the
AM-modulated signal should resemble the message. Thus, the AM signal is

z(t) = [K + y(t)] cos(L2.t) Q. = 2nf,

In Figure 6.15 we show the train signal, a segment of the signal, and the corresponding modulated
signal displaying the envelope, as well as the Fourier transform of the segment and of its modulated

2Reginald Fessenden was the first to suggest the heterodyne principle: mixing the radio-frequency signal using a local oscillator of
different frequency, resulting in a signal that could drive the diaphragm of an earpiece at an audio frequency. Fessenden could not
make a practical success of the heterodyne receiver, which was accomplished by Edwin H. Armstrong in the 1920s using electron tubes.
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Commercial AM modulation: (a) original signal, (b) part of original signal and corresponding AM-modulated
signal, and (c) spectrum of the original signal, and of the modulated signal.

version. Notice that the envelope resembles the original signal. Also from the spectrum of the
segment of the train signal its bandwidth is about 5 Khz, while the spectrum of the modulated
segment displays the frequency-shifted spectrum plus the large spectrum at f, corresponding to the

carrier.

6.4.3 AM Single Sideband

The message m(t) is typically a real-valued signal that, as indicated before, has a symmetric
spectrum—that is, the magnitude and the phase of the Fourier transform M(2) are even and odd
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cos(Q.t)
m(t)
BPF —— s(f)
FIGURE 6.16 H(<) 1
Upper sideband AM transmitter. Q. is
the carrier frequency and B is the >

bandwidth in rad/sec of the message. 2 Q+B

functions of frequency. When using AM modulation the resulting spectrum has redundant informa-
tion by providing the upper and the lower sidebands. To reduce the bandwidth of the transmitted
signal, we could get rid of either the upper or the lower sideband of the AM signal. The resulting
modulation is called AM single sideband (AM-SSB) (upper or lower sideband depending on which
of the two sidebands is kept). This type of modulation is used whenever the quality of the received
signal is not as important as the advantages of a narrowband and having less noise in the frequency
band of the received signal. AM-SSB is used by amateur radio operators.

As shown in Figure 6.16, the upper sideband modulated signal is obtained by band-pass filtering the
upper sideband in the modulated signal. At the receiver, band-pass filtering the received signal the
output is then demodulated like in an AM-SC system, and the result is then low-pass filtered using
the bandwidth of the message.

6.4.4 Quadrature AM and Frequency-Division Multiplexing

Quadrature amplitude modulation (QAM) and frequency division multiplexing (FDM) are the pre-
cursors of many of the new communication systems. QAM and FDM are of great interest for their
efficient use of the radio spectrum.

Quadrature Amplitude Modulation

QAM enables two AM-SC signals to be transmitted over the same frequency band, conserving band-
width. The messages can be separated at the receiver. This is accomplished by using two orthogonal
carriers, such as a cosine and a sine (see Figure 6.17). The QAM-modulated signal is given by

s(t) = my(t) cos(2:t) + mo (t) sin(2.t) (6.16)

where mj (t) and m, (t) are the messages. You can think of s(t) as having a phasor representation that
is the sum of two phasors perpendicular to each other (the cosine leading the sine by 7/2); indeed,

s(t) = Re[(my (e + my (£)e77/2)el%!].
Since

m1 (00 + my (e 7% = my (t) — jma(t)

we could interpret the QAM signal as the result of amplitude modulating the real and the imaginary
parts of a complex message m(t) = mj (t) — jmy(1).
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FIGURE 6.17

QAM transmitter and receiver: s(t) is the transmitted signal and r(t) is the received signal.

To simplify the computation of the spectrum of s(t), let us consider the message m(t) = my (t) — jma(t)
(i.e., a complex message) with spectrum M(Q2) = M1(2) — jM5(2) so that

s(t) = Re[m(t)e**!]
= 0.5[m(t)e**" 4+ m*(H)e %]
where * stands for complex conjugate. The spectrum of s(¢) is then given by
S(R) = 0.5[M(Q — Q) + M*(Q + Q)]
= 0.5[M (R — Q) — jM2(2 — ) + MI(Q + Q) + M5 (2 + Q20)]

where the superposition of the spectra of the two messages is clearly seen. At the receiver, if we
multiply the received signal (for simplicity assume it to be s(t)) by cos(2.t), we get

r1(t) = s(t) cos(L2:t)
= 0.25[m(t) + m*(t)] + 0.25[m(t)e> " 4 m* (t)e 2!
which when passed through a low-pass filter, with the appropriate bandwidth, gives
0.25[m(t) + m*(t)] = 0.25[m1 (t) — jma(t) + my () + jma ()]
= 0.5m(¢t)

Likewise, to get the second message we multiply s(t) by sin(£2.t) and pass the resulting signal through
a low-pass filter.

Frequency-Division Multiplexing
Frequency-division multiplexing (FDM) implements sharing of the spectrum by several users by allo-
cating a specific frequency band to each. One could, for instance, think of the commercial AM or FM
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FDM system: transmitter (left), channel, and receiver (right).

locally as an FDM sytem. In the United States, the Federal Communication Commission (FCC) is in
charge of the spectral allocation. In telephony, using a bank of filters it is possible to also get several
users in the same system—it is, however, necessary to have a similar system at the receiver to have a
two-way communication.

To illustrate an FDM system (Figure 6.18), consider we have a set of messages of known finite band-
width (we could low-pass filter the messages to satisfy this condition) that we wish to transmit. Each
of the messages modulate different carriers so that the modulated signals are in different frequency
bands without interfering with each other (if needed a frequency guard could be used to make sure
of this). These frequency-multiplexed messages can now be transmitted. At the receiver, using a bank
of band-pass filters centered at the carrier frequencies in the transmitter and followed by appropri-
ate demodulators recover the different messages (see FDM receiver in Figure 6.18). Any of the AM
modulation techniques could be used in the FDM system.

6.4.5 Angle Modulation

Amplitude modulation is said to be linear modulation, because as a system it behaves like a linear
system. Frequency and phase, or angle, modulation systems on the other hand are nonlinear. The
interest in angle modulation is due to the decreasing effect of noise or interferences on it, when
compared with AM, although at the cost of a much wider bandwidth and greater complexity in
implementation. The nonlinear behavior of angle modulation systems makes their analysis more
difficult than that for AM. The spectrum of an FM or PM signal is much harder to obtain than that
of an AM signal. In the following we consider the case of the so-called narrowband FM where we are
able to find its spectrum directly.

Professor Edwin H. Armstrong developed the first successful frequency modulation system—
narrowband FM.3 If m(t) is the message signal, and we modulate a carrier signal of frequency

3Edwind H. Armstrong (1890-1954), professor of electrical engineering at Columbia University, and inventor of some of the basic
electronic circuits underlying all modern radio, radar, and television, was born in New York. His inventions and developments form
the backbone of radio communications as we know it.
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Q. (rad/sec) with m(¢), the transmitted signal s(f) in angle modulation is of the form
s(t) = A cos(Q:t + 6(1)) (6.17)

where the angle 6(t) depends on the message m(t). In the case of phase modulation, the angle function
is proportional to the message m(t)—that is,

6(t) = Ky m(t) (6.18)
where Ky > 0 is called the modulation index. If the angle is such that

de(r)

o = Aam®) (6.19)

this relation defines frequency modulation. The instantaneous frequency, as a function of time, is the
derivative of the argument of the cosine or

IF(t) = w (6.20)
10
a4 PO (6.21)
— Q.+ AQ m(D) (6.22)

indicating how the frequency is changing with time. For instance, if (t) is a constant—so that the
carrier is just a sinusoid of frequency 2. and constant phase § —the instantaneous frequency is simply
Q.. The term AQ m(t) relates to the spreading of the frequency about €2.. Thus, the modulation paradox
Professor E. Craig proposed in his book [17]:

In amplitude modulation the bandwidth depends on the frequency of the message, while in
frequency modulation the bandwidth depends on the amplitude of the message.

Thus, the modulated signals are

PM:  spm(t) = cos(2:t + Kym(t)) (6.23)
t
FM:  sppm(t) = cos(Qet + AQ / m(t)dr) (6.24)

Narrowband FM
In this case the angle 6 (t) is small, so that cos(6(t)) ~ 1 and sin(6(t)) ~ 6(t), simplifying the spectrum
of the transmitted signal:
S(Q) = F[cos(Qt + 6(D)]
= F [cos(£2:t) cos(0(t)) — sin(L2.t) sin(B(t))]
~ F [cos(2:t) — sin(2:1)0(1)] (6.25)
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Using the spectrum of a cosine and the modulation theorem, we get
1
S(Q) ~ 7 [§(2 — Q) +8(2+ Q)] — 2% [©(Q — Q) — O(Q + Q)] (6.26)

where ®(2) is the spectrum of the angle, which is found to be (using the derivative property of the
Fourier transform)

@Q—A—QMQ 6.27
(@) = S5 M@ (6.27)

If the angle 6(t) is not small, we have wideband FM and its spectrum is more difficult to obtain.

m Example 6.6: Simulation of FM modulation with MATLAB

In these simulations we will concern ourselves with the results and leave the discussion of issues
related to the code for the next chapter since the signals are approximated by discrete-time signals.
For the narrowband FM we consider a sinusoidal message

m(t) = 80sin(20mt)u(t),

and a sinusoidal carrier of frequency f, = 100 Hz, so that for AQ = 0.17 the FM signal is
t
x(t) = cos2nf;t+ 0.1w / m(t)dr)

—0o0
Figure 6.19 shows on the top left the message and the narrowband FM signal x(¢) right below it, and
on the top right their corresponding magnitude spectra [M(€2)| and below |X(€2)|. The narrowband
FM has only shifted the frequency of the message. The instantaneous frequency (the derivative of
the argument of the cosine) is

IF(t) = 27f; + 0.1wm(t) = 2007 + 87 sin(207t) ~ 2007

That is, it remains almost constant for all times. For the narrowband FM, the spectrum of the
modulated signal remains the same for all times. To illustrate this we computed the spectrogram
of x(t). Simply, the spectrogram can be thought of as the computation of the Fourier transform as
the signal evolves with time (see Figure 6.19(c)).

To illustrate the wideband FM, we consider two messages,
m1(t) = 80sin(20m t)u(t)
my (t) = 2000tu(t)
giving FM signals,
t
xi(t) = cos(2rf,t + 507 / mi(t)dt) i=1,2
—o0
where f;; = 2500 Hz and f,, = 25 Hz. In this case, the instantaneous frequency is

IF;(t) = 27 fe + 50 m;(t) i=1,2
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Narrowband frequency modulation: (a) message m(t) and narrowband FM signal x(t); (b) magnitude spectra of
m(t) and x(t); and (c) spectrogram of x(t) displaying evolution of its Fourier transform with respect to time.

These instantaneous frequencies are not almost constant as before. The frequency of the carrier
is now continuously changing with time. For instance, for the ramp message the instantaneous
frequency is

IF,(t) = 507 + 10°t

so that for a small time interval [0, 0.1] we get a chirp (sinusoid with time-varying frequency), as
shown in Figure 6.20(b). Figure 6.20 display the messages, the FM signals, and their corresponding
magnitude spectra and their spectrograms. These FM signals are broadband, occupying a band of
frequencies much larger than the messages, and their spectrograms show that their spectra change
with time. |
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6.5 ANALOG FILTERING

The basic idea of filtering is to get rid of frequency components of a signal that are not desirable.
Application of filtering can be found in control, in communications, and in signal processing. In this
section we provide a short introduction to the design of analog filters. Chapter 11 is dedicated to the
design of discrete filters and to some degree that chapter will be based on the material in this section.

According to the eigenfunction property of LTI systems (Figure 6.21) the steady-state response of an
LTI system to a sinusoidal input—with a certain magnitude, frequency, and phase—is a sinusoid of
the same frequency as the input, but with magnitude and phase affected by the response of the system
at the frequency of the input. Since periodic as well as aperiodic signals have Fourier representations
consisting of sinusoids of different frequencies, the frequency components of any signal can be mod-
ified by appropriately choosing the frequency response of the LTI system, or filter. Filtering can thus
be seen as a way of changing the frequency content of an input signal.

The appropriate filter for a certain application is specified using the spectral characterization of the
input and the desired spectral characteristics of the output. Once the specifications of the filter are set,
the problem becomes one of approximation as a ratio of polynomials in s. The classical approach in
filter design is to consider low-pass prototypes, with normalized frequency and magnitude responses,
which may be transformed into other filters with the desired frequency response. Thus, a great deal
of effort is put into designing low-pass filters and into developing frequency transformations to map
low-pass filters into other types of filters. Using cascade and parallel connections of filters also provide
a way to obtain different types of filters.

The resulting filter should be causal, stable, and have real-valued coefficients so that it can be used in
real-time applications and realized as a passive or an active filter. Resistors, capacitors, and inductors
are used in the realization of passive filters, while resistors, capacitors, and operational amplifiers are
used in active filter realizations.

6.5.1 Filtering Basics

A filter H(s) = B(s)/A(s) is an LTI system having a specific frequency response. The convolution
property of the Fourier transform gives that

Y(Q2) = X(Q)H(j2) (6.28)

where
H(j2) = H(s)|s=je
Thus, the frequency content of the input, represented by the Fourier transform X(£2), is changed by

the frequency response H(jS2) of the filter so that the output signal with spectrum Y(2) only has
desirable frequency components.

LTI system

Aej(QOHB) AlH(/'QO)|ej(Qot+9+ZH(jQO)
FIGURE 6.21 EE— H(s) >

Eigenfunction property of continuous LTI systems.
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Magnitude Squared Function
The magnitude-squared function of an analog low-pass filter has the general form

H()I? = (6.29)

1+ f(©2)
where for low frequencies f(22?) ~ 0 so that |[H(jQ)|?> ~ 1, and for high frequencies f(22?) — oo so
that |[H(j2)|> — 0. Accordingly, there are two important issues to consider:

= Selection of the appropriate function f(.).
m The factorization needed to get H(s) from the magnitude-squared function.

As an example of the above steps, consider the Butterworth low-pass analog filter. The Butterworth
magnitude-squared response of order N is

IHN G = (6.30)

2N
Q
1+ [ ]
where Qy,, is the half-power frequency of the filter. We then have that for Q << Q, |[HN(jQ)| ~ 1,
and for Q >> Qy, then |Hn(j2)| — 0. To find H(s) we need to factorize Equation (6.30). Letting S

be a normalized variable S = s/, the magnitude-squared function (Eq. 6.30) can be expressed in
terms of the S variable by letting S/j = 2/, to obtain

HOHES) = 17— —ax

since |H(jQ')|? = H(jR)H*(jQ') = H(jQ')H(—jR'). As we will see, the poles of H(S)H(—S) are sym-
metrically clustered in the s-plane with none on the jQ axis. The factorization then consists of
assigning poles in the open left-hand s-plane to H(S), and the rest to H(—S). We thus obtain

1 1
HOSH(-S) = ——
(SH(=S) D) D(=S)
so that the final form of the filter is
1
HS) = ——
(S) DES)

where D(S) has roots on the left-hand s-plane. A final step is the replacement of S by the
unnormalized variable s, to obtain the final form of the filter transfer function:

Butterworth low-pass filter: H(s) = H(S)[s=s/ 2, (6.31)

Filter Specifications
Although an ideal low-pass filter is not realizable (recall the Paley-Wiener condition in Chapter 5)
its magnitude response can be used as prototype for specifying low-pass filters. Thus, the desired
magnitude is specified as

1—-6 <|H(jQ)| <1 0<Q=<Q, (passband)

0 < |H(j2)| < 4, Q > Q, (stopband) (6.32)
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|H(jQ)] o
A A ; 1
R L I min
1- 52 |
FIGURE 6.22 P Omax |
Magnitude specifications for [ > O 1 | o)
a low-pass filter. QL 0 p Qs

for some small values §; and §,. There is no specification in the transition region 2, < < ;. Also
the phase is not specified, although we wish it to be linear at least in the passband. See Figure 6.22.

To simplify the computation of the filter parameters, and to provide a scale that has more resolution
and physiological significance than the specifications given above, the magnitude specifications are
typically expressed in a logarithmic scale. Defining the loss function (in decibels, or dBs) as

a(Q) = —101log,, |H(Q)|?
= —20log,, [H(jQ)|  dBs (6.33)

an equivalent set of specifications to those in Equation (6.32) is

0<a(Q) <amax 0= =<K, (passband)
() > dmin Q > Q; (stopband) (6.34)

where amax = —201og,5(1 — §2) and epin = —201og,,(81).

In the above specifications, the dc loss was 0 dB corresponding to a normalized dc gain of 1. In
more general cases, «(0) # 0 and the loss specifications are given as @(0) = @1, a, in the passband
and «s3 in the stopband. To normalize these specifications we need to subtract o1, so that the loss
specifications are

a(0) = a1 (dcloss)
Omax = @2 — o1 (maximum attenuation in passband)
Omin = 3 — @1 (minimum attenuation in stopband)
Using {&max, 2p, @min, 5} we proceed to design a magnitude-normalized filter, and then use a1 to

achieve the desired dc gain.

The design problem is then: Given the magnitude specifications in the passband («(0), armax, and €2,)
and in the stopband (omin and €2;) we then

1. Choose the rational approximation method (e.g., Butterworth).
2. Solve for the parameters of the filter to obtain a magnitude-squared function that satisfies the
given specifications.
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3. Factorize the magnitude-squared function and choose the poles on the left-hand s-plane,
guaranteeing the filter stability, to obtain the transfer function Hy(s) of the filter.

6.5.2 Butterworth Low-Pass Filter Design

The magnitude-squared approximation of a low-pass Nth-order Butterworth filter is given by
1 , Q

NG = ————5  @'=—
1+ (/)" Qp

(6.35)
where Qj, is the half-power or —3-dB frequency. This frequency response is normalized with respect
to the half-power frequency (i.e., the normalized frequency is Q' = Q/Qj,) and normalized in mag-
nitude as the dc gain is |[H(jO)| = 1. The frequency Q' = Q/Qy, = 1 is the normalized half-power
frequency since |Hy(j1)|> = 1/2. The given magnitude-squared function is thus normalized with
respect to frequency (giving a unity half-power frequency) and in magnitude (giving a unity DC gain
for the low-pass filter). The approximation improves (i.e., gets closer to the ideal filter) as the order
N increases.

Remarks

m  The half-power frequency is called the —3-dB frequency because in the case of the low-pass filter with a
dc gain of 1, at the half-power frequency 2y, the magnitude-squared function is

. H(jO)I? 1
H(jQpp)|? = —2— = —. 6.36
H(jSup) = —2— = 3 (636)
In the logarithmic scale we have
10 log10(|H(thp)|2) = —10log;,(2) ~ —3 (dB) (6.37)

This corresponds to a loss of 3 dB.

m It is important to understand the significance of the frequency and magnitude normalizations typical in
filter design. Having a low-pass filter with normalized magnitude, its dc gain is 1, if one desires a filter
with a DC gain K # 1 it can be obtained by multiplying the magnitude-normalized filter by the constant
K. Likewise, a filter H(S) designed with a normalized frequency, say Q' = Q/Qy, so that the normalized
half-power frequency is 1, is converted into a denormalized filter H(s) with a desired Qp, by replacing
S =5/ Qpp in H(S).

Factorization

To obtain a filter that satisfies the specifications and that is stable we need to factorize the
magnitude-squared function. By letting S = s/ Qy,, be a normalized Laplace variable, then S/j = Q' =
Q/Qpp and

HOHES) = 7T

If the denominator can be factorized as

DS)D(=S) =1+ (=SHN (6.38)
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we let H(S) = 1/D(S)—that is, we assign to H(S) the poles in the left-hand s-plane so that the resulting
filter is stable. The roots of D(S) in Equation (6.38) are
JQ=Dm
SiN = = HNT forintegers k= 1,...,2N
e JTN

after replacing —1 = é@*=D7 and (—1)N = ¢7™N. The 2N roots are then
Sp = JERTIFNT/C@N) =1 2N (6.39)
Remarks

m  Since |S,| = 1, the poles of the Butterworth filter are on a circle of unit radius. De Moivre’s theorem guar-
antees that the poles are also symmetrically distributed around the circle, and because of the condition that
complex poles should be complex conjugate pairs, the poles are symmetrically distributed with respect to the
o axis. Letting S = s/ Qy,, be the normalized Laplace variable, then s = SQy,, so that the denormalized
filter H(s) has its poles in a circle of radius Qp,.

m  No poles are on the jQ' axis, as can be seen by showing that the angle of the poles are not equal to 7 /2 or
37 /2. In fact, for 1 <k < N, the angle of the poles are bounded below and above by letting 1 < k and

then k < N to get
Ty Ly Gt N 7y 1
2 N 2N 2 N

and for integers N > 1 the above indicates that the angle will not be equal to either /2 or 37 /2, or on
the j axis.

m  Consecutive poles are separated by w/N radians from each other. In fact, subtracting the angles of two
consecutive poles can be shown to give +m /N.

Using the above remarks and the fact that the poles must be in conjugate pairs, since the coefficients
of the filter are real-valued, it is easy to determine the location of the poles geometrically.

m Example 6.7

A second-order low-pass Butterworth filter, normalized in magnitude and in frequency, has a
transfer function of

1
S2 + /28 +1
We would like to obtain a new filter H(s) with a dc gain of 10 and a half-power frequency Q,, =
100 rad/sec.

H(S) =

The DC gain of H(S) is unity—in fact, when Q =0, S =j0 gives H(jO) = 1. The half-power
frequency of H(S) is unity, indeed letting ' = 1, then S = j1 and

1 1
2 +ivV2+ 1] V2
so that |H(j1)|? = |H(j0)|?/2 = 1/2, or Q' = 1 is the half-power frequency.

H(j1) = [
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Thus, the desired filter with a dc gain of 10 is obtained by multiplying H(S) by 10. Furthermore,
if we let S = 5/100 be the normalized Laplace variable when S = jQ;w =j1, we get that s = j2j, =
j100, or Qp, = 100, the desired half-power frequency. Thus, the denormalized filter in frequency
H(s) is obtained by replacing S = s/100. The denormalized filter in magnitude and frequency
is then

_ 10 _ 10°
©(s/100)2 4+ +/2(s/100) +1 52 + 100+/2s + 10 -

H(s)

Design

For the Butterworth low-pass filter, the design consists in finding the parameters N, the minimum
order, and 2, the half-power frequency, of the filter from the constrains in the passband and in the
stopband.

The loss function for the low-pass Butterworth is
2N
@ () = —101logyg [Hn(2/ Q)% = 10log (1 + (2/ Q) ")
The loss specifications are

0 < a(R2) < amax 0=<=Q=<

Omin < a(2) < 00 Q> Q
At Q = Q,, we have that

1010g,0(1 + (2p/ Rp)™™) < ctmax

so that

(-”) < 100 1emax _ 1 (6.40)

and similarly for @ = €, we have that

0.1oty; £ N
100 Temin _ 1 < (6.41)

We then have that from Equation (6.40) and (6.41), the half-power frequency is in the range
Q) Q

(100-1emax — 1)1/2N = Qpp < (100 Tetmn — 1)1/2N (6.42)
and from the log of the two extremes of Equation (6.42), we have that
log,o[(100-1%min — 1) /(100-1max — 1
N> 810l ( )/( )] (6.43)

2logy(825/ 2p)
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Remarks

m  According to Equation (6.43) when either
u  The transition band is narrowed (i.e., 2, — ), or
m  The loss aip is increased, or
m  The loss omax is decreased
the quality of the filter is improved at the cost of having to implement a filter with a high order N.

s The minimum order N is an integer larger or equal to the right side of Equation (6.43). Any integer
larger than the minimum N also satisfies the specifications but increases the complexity of the filter.

m  Although there is a range of possible values for the half-power frequency, it is typical to make the frequency
response coincide with either the passband or the stopband specifications giving a value for the half-power
frequency in the range. Thus, we can have either

§2p
Snp = (100 1@max — 1)1/2N (6.44)
or
Q
QhP = (]00-10tmin _ 1)1/21\] (6'45)

as possible values for the half-power frequency.

m  The design aspect is clearly seen in the flexibility given by the equations. We can select out of an infinite
possible set of values of N and of half-power frequencies. The optimal order is the smallest value of N and
the half-power frequency can be taken as one of the extreme values.

m  After the factorization, or the formation of D(S) from the poles, we need to denormalize the obtained
transfer function HN(S) = 1/D(S) by letting S = s/ to get HN(s) = 1/D(s/ Qpp), the filter that
satisfies the specifications. If the desired DC gain is not unit, the filter needs to be denormalized in
magnitude by multiplying it by an appropriate gain K.

6.5.3 Chebyshev Low-Pass Filter Design
The normalized magnitude-squared function for the Chebyshev low-pass filter is given by
1 , Q
Q' =—
1+ 82C3(Q/ Q) Qp

IHN(Q)|* = (6.46)
where the frequency is normalized with respect to the passband frequency ©, so that Q' = Q/Q,,
N stands for the order of the filter, ¢ is a ripple factor, and Cy(.) are the Chebyshev orthogonal*
polynomials of the first kind defined as

cos(N cos™1(Q)) ] <1

cosh(Ncosh™1(Q)) |€]>1 (6.47)

Cn(Q) = {

The definition of the Chebyshev polynomials depends on the value of &'. Indeed, whenever |2'| > 1,
the definition based in the cosine is not possible since the inverse would not exist; thus the cosh(.)

4Pafnuty Chebyshev (1821-1894), a brilliant Russian mathematician, was probably the first one to recognize the general concept of
orthogonal polynomials.
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definition is used. Likewise, whenever |Q2’| < 1, the definition based in the hyperbolic cosine would
not be possible since the inverse of this function only exists for values of €’ bigger or equal to 1 and
so the cos(.) definition is used. From the definition it is not clear that Cn(€2’) is an Nth-order poly-
nomial in €’. However, if we let = cos™! (') or ' = cos(9) when || < 1, we have that Cn(Q) =
cos(N6) and

Cn+1() = cos((N + 1)8) = cos(N6) cos(h) — sin(N8) sin(6)

CN_1(2") = cos((N — 1)8) = cos(N8) cos(9) + sin(N6) sin(0)
so that adding them we get
CN+1(2") + Cn-1(R2") = 2 cos(8) cos(NO) = 2Q'Cn(R)
This gives a three-term expression for computing Cy(2'), or a difference equation
Cn+1(2) + Cn—1(2) = 2Q'CN ()  N=>0 (6.48)
with initial conditions
Co(2) = cos(0) =1
C1(Q) = cos(cos™(Q)) = @
We can then see that
Co(2) =1
Ci(Q) =<
C(R) = —1+42Q72
C3(Q) = -39 +4Q"

which are polynomials in ' of order N =0, 1, 2, 3,.... In Chapter 0 we gave a script to compute
and plot these polynomials using symbolic MATLAB.

Remarks

s Two fundamental characteristics of the Cn(2') polynomials are: (1) they vary between O and 1 in the
range Q' € |[—1, 1], and (2) they grow outside this range (according to their definition, the Chebyshev
polynomials outside this range become cosh(.) functions, which are functions always bigger than 1). The
first characteristic generates ripples in the passband, while the second makes these filters have a magnitude
response that goes to zero faster than Butterworth’s.

m There are other characteristics of interest for the Chebyshev polynomials. The Chebyshev polynomials are
unity at Q' =1 (i.e, Cy(1) =1 for all N). In fact, Co(1) =1, C1(1) = 1, and if we assume that
Cn-1(1) = CN(1) = 1, we then have that Cn11(1) = 1 according to the three-term recursion. This
indicates that the magnitude-square function is |[Hy(j1)|*> = 1/(1 + &?) for any N.
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Different from the Butterworth filter that has a unit dc gain, the dc gain of the Chebyshev filter depends
on the order of the filter. This is due to the property of the Chebyshev polynomial of being |Cn(0)| = O if
N is odd and 1 if N is even. Thus, the dc gain is 1 when N is odd, but 1/+/1 + €2 when N is even. This
is due to the fact that the Chebyshev polynomials of odd order do not have a constant term, and those of
even order have 1 or —1 as the constant term.

Finally, the polynomials Cn(2") have N real roots between —1 and 1. Thus, the Chebyshev filter displays
N/2 ripples between 1 and ~/1 + &2 for normalized frequencies between 0 and 1.

Design
The loss function for the Chebyshev filter is

Q
a(Q) = 10logo [1 + &2 CH(Q)] Q = Q_p (6.49)

The design equations for the Chebyshev filter are obtained as follows:

Ripple factor ¢ and ripple width (RW): From Cn(1) = 1, and letting the loss equal a4, at that
normalized frequency, we have that

£ = /100-1omax — 1

1
RW=1- Niwws (6.50)

Minimum order: The loss function at Q; is bigger or equal to oy, so that solving for the Chebyshev
polynomial we get after replacing ¢,

Cn(S,) = cosh(N cosh™1(€,))
10 1emin — 1\
> S
= (10.1% — 1)
where we used the cosh(.) definition of the Chebyshev polynomials since €2, > 1. Solving for N
we get
—1 ([ 109 1min —1 1%
cosh ([W] >
—1 (%
cosh (Q_p>

Half-power frequency: Letting the loss at the half-power frequency equal 3 dB and using that 1093 ~
2, we obtain from Equation 6.49 the Chebyshev polynomial at that normalized frequency to be

N >

(6.51)

/ 1
Cn(S,) = —

= cosh (N cosh™! (Q;w))



6.5 Analog Filtering m

where the last term is the definition of the Chebyshev polynomial for Q/hp > 1. Thus, we get

1 1
th = Qp COShI:N COSh_1 (g)] (652)

Factorization

The factorization of the magnitude-squared function is a lot more complicated for the Cheby-
shev filter than for the Butterworth filter. If we let the normalized variable S = s/, equal jQ’, the
magnitude-squared function can be written as

1 1

H(S)H(-S) = =
OHED =17 a2@ 57 ~ DEDES)

As before in the Butterworth case, the poles in the left-hand s-plane gives H(S) = 1/D(S), a stable
filter.

The poles of the H(S) can be found to be in an ellipse. They can be connected with the poles of the
corresponding order Butterworth filter by an algorithm due to Professor Ernst Guillemin. The poles
of H(S) are given by the following equations fork = 1, ..., N, with N the minimal order of the filter:

1 1
a= —sinh™! (—>
N e

o, = —sinh(a) cos(yy,) (real part)
Q) = £ cosh(a) sin(y,) (imaginary part) (6.53)

where 0 < ¥, < /2 (refer to Equation 6.39) are the angles corresponding to the Butterworth filters
(measured with respect to the negative real axis of the s-plane).

Remarks

m  The dc gain of the Chebyshev filter is not easy to determine as in the Butterworth filter, as it depends on
the order N. We can, however, set the desired dc value by choosing the appropriate value of a gain K so
that H(S) = K/D(S) satisfies the dc gain specification.

= The poles of the Chebyshev filter depend now on the ripple factor & and so there is no simple way to find
them as it was in the case of the Butterworth.

u  The final step is to replace the normalized variable S = s/ 2, in H(S) to get the desired filter H(s).

m Example 6.8

Consider the low-pass filtering of an analog signal x(t) = [—2 cos(5t) + cos(10¢t) + 4 sin(20¢)|u(t)
with MATLAB. The filter is a third-order low-pass Butterworth filter with a half-power frequency
Qpp = 5 rad/sec—that is, we wish to attenuate the frequency components of the frequencies
10 and 20 rad/sec. Design the desired filter and show how to do the filtering.

The design of the filter is done using the MATLAB function butter where besides the specification of
the desired order, N = 3, and half-power frequency, Q2j,, = 5 rad/sec, we also need to indicate that
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the filter is analog by including an ’s” as one of the arguments. Once the coefficients of the filter
are obtained, we could then either solve the differential equation from these coefficients or use the
Fourier transform, which we choose to do. Symbolic MATLAB is thus used to compute the Fourier
transform of the input X(£2), and after generating the frequency response function H(j2) from the
filter coefficients, we multiply these two to get Y(2), which is inversely transformed to obtain y(z).
To obtain H(j2) symbolically we multiply the coefficients of the numerator and denominator
obtained from butter by variables (j2)" where n corresponds to the order of the coefficient in
the numerator or the denominator, and then add them. The poles of the designed filter and its
magnitude response are shown in Figure 6.23, as well as the input x(t) and the output y(t). The
following script was used for the filter design and the filtering of the given signal.

cos(10t)—2cos(5t) +4sin(20t)

1 35 0 1 T T Y YO T O U T I T WY Y T |
: \N
« 0.9 £ o0
4
0.8 \ =
3 \ -5 .
2 0.7 i i
1 _ 0.6 \ 0 5 10 15 20
g o 2 05 \ t
1 L 04 \ .
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-4 i 0.1 5
-5
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6 4 2 0 2 0 10 20 30 0 5 10 15 20
o Q t
FIGURE 6.23

Filtering of an analog signal x(t) using a low-pass Butterworth filter. Notice that the output of the filter is
approximately the sinusoid of 5 rad/sec in x(t), as the other two components have been attenuated.

% % % % % % % % % % % % Y% % % % % % %o

% Example 6.8 -- Filtering with Butterworth filter

% % % % % % % % % % % % % % % % % % %

clear all; clf

symstw

X =cos(10 % t) — 2 x cos(b * t) + 4 x sin(20 x t); % input signal
X = fourier(x);

N =3; Whp =5; % filter parameters

[b, a] = butter(N, Whp, ’s’); % filter design

W = 0:0.01:30; Hm = abs(freqs(b, a, W)); % magnitude response in W
% filter output

n=N:—=1:0; U=(j*w).n

num = b — conj(U’); den = a — conj(U’);
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H = num/den; % frequency response
Y = X x H; % convolution property
y = ifourier(Y, t); % inverse Fourier [ |

m Example 6.9

In this example we will compare the performance of Butterworth and Chebyshev low-pass filters
in the filtering of an analog signal x(t) = [—2 cos(5t) 4+ cos(10t) + 4 sin(20t)]u(t) using MATLAB.
We would like the two filters to have the same half-power frequency.

The magnitude specifications for the low-pass Butterworth filter are

@max = 0.1dB, €, = 5rad/sec (6.54)
Omin = 15dB, Q; = 10 rad/sec (6.55)

and a dc loss of 0dB. Once this filter is designed, we would like the Chebyshev filter to have the
same half-power frequency. In order to obtain this, we need to change the Q, specification for the
Chebyshev filter. To do that we use the formulas for the half-power frequency of this type of filter
to find the new value for €.

The Butterworth filter is designed by first determining the minimum order N and the half-power
frequency 2y, using the function buttord, and then finding the filter coefficients by means of the
function butter. Likewise, for the design of the Chebyshev filter we use the function cheblord
to find the minimum order and the cut-off frequency (the new €, is obtained from the half-
power frequency). The filtering is implemented using the Fourier transform as before.

There are two significant differences between the designed Butterworth and Chebyshev filters.
Although both of them have the same half-power frequency, the transition band of the Cheby-
shev filter is narrower, [6.88 10|, than that of the Butterworth filter, [5 10], indicating that the
Chebyshev is a better filter. The narrower transition band is compensated by a lower minimum
order of five for the Chebyshev compared to the six-order Butterworth. Figure 6.24 displays the
poles of the Butterworth and the Chebyshev filters, their magnitude responses, as well as the input
signal x(t) and the output y(¢) for the two filters (the two perform very similarly).

% % % % % % % % % % % % % % % % % % %

% Example 6.9 -- Filtering with Butterworth and Chebyshev filters
% % % % % % % % % % % % % % % % % % %

clear all;clf

symstw

X =c0os(10 x t) — 2 % cos(b * t) + 4 x sin(20 * t); X = fourier(x);

wp = 5;ws = 10;alphamax = 0.1;alphamin = 15; % filter parameters
% butterworth filter

[N, whp] = buttord(wp, ws, alphamax, alphamin, ’s’)

[b, a] = butter(N, whp, ’s’)

% cheby1 filter

epsi = sqrt(107(alphamax/10) —1)
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FIGURE 6.24
Comparison of filtering of an analog signal x(t) using a low-pass Butterworth and Chebyshev filter with the same
half-power frequency.

wp = whp/cosh(acosh(1/epsi)/N) % recomputing wp to get same whp
[N1, wn] = cheb1ord(wp, ws, alphamax, alphamin, ’s’);

[b1, a1] = cheby1(N1, alphamax, wn, ’s’);

% frequency responses

W = 0:0.01:30;

Hm = abs(fregs(b, a, W));

Hm1 = abs(fregs(b1, a1, W));

% generation of frequency response from coefficients

n=N:—1:0; n1 =N1:-1:0;

U=(j*w).n; Ul =(j*w).nl

num = b % conj(U’); den = a * conj(U’);

numi = b1 x conj(U1’); den1 = al % conj(U1’)

H = num/den; % Butterworth LPF

H1 = num1/den; % Chebyshev LPF

% output of filter

Y =X=xH;

Y1 =XxHT1,;

y = ifourier(Y, t)

y1 = ifourier(Y1, 1) [ |

6.5.4 Frequency Transformations

As indicated before, the design of an analog filter is typically done by transforming the frequency of
a normalized prototype low-pass filter. The frequency transformations were developed by Professor
Ronald Foster [72] using the properties of reactance functions. The frequency transformations for the
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basic filters are given by:

N

Low pass-low pass : S=—
Qo
Q
Low pass-high pass : s=22
s
24+ Q2
Low pass-band pass : S = 0
s BW
s BW
Low pass-band eliminating : S=——— 6.56
where S is the normalized and s the final variables, while € is a desired cut-off frequency and BW is
a desired bandwidth.
Remarks

The low-pass to low-pass (LP-LP) and low-pass to high-pass (LP-HP) transformations are linear in the
numerator and denominator; thus the number of poles and zeros of the prototype low-pass filter is preserved.
On the other hand, the low-pass to band-pass (LP-BP) and low-pass to band-eliminating (LP-BE) trans-
formations are quadratic in either the numerator or the denominator, so that the number of poles/zeros
is doubled. Thus, to obtain a 2Nth-order band-pass or band-eliminating filter the prototype low-pass filter
should be of order N. This is an important observation useful in the design of these filters with MATLAB.
It is important to realize that only frequencies are transformed, and the magnitude of the prototype filter
is preserved. Frequency transformations will be useful also in the design of discrete filters, where these
transformations are obtained in a completely different way, as no reactance functions would be available
in that domain.

m Example 6.10

To illustrate how the above transformations can be used to convert a prototype low-pass filter
we use the following script. First a low-pass prototype filter is designed using butter, and then to
this filter we apply the lowpass to highpass transformation with Q¢ = 40 (rad/sec) to obtain a
high-pass filter. Let then Q¢ = 6.32 (rad/sec) and BW = 10 (rad/sec) to obtain a band-pass and
a band-eliminating filters using the appropriate transformations. The following is the script used.
The magnitude responses are plotted with ezplot. Figure 6.25 shows the results.

clear all; clf

syms w

N = 5; [b, a] = butter(N, 1,’s’) % low-pass prototype

omegal = 40;BW = 10; omegal=sqgrt(omega0); % transformation parameters
% low-pass prototype

n=N:—1:0;

U= (j * w).n; num = b % conj(U’); den = a x conj(U’);

H = num/den;

% low-pass to high-pass
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Frequency transformations: (a) prototype low-pass filter, (b) low-pass to high-pass transformation, (c) low-pass
to band-pass transformation, and (d) low-pass to band-eliminating transformation.

U1 = (omegal/(j * w)).n;

numi = b % conj(U1’); den1 = a * conj(U1’);
H1 = num1/dent;

% low-pass to band-pass

U2 = (—w2 + omegal2)/(BW * j * w)).n
num2 = b % conj(U2’); den2 = a x conj(U2");
H2 = num2/den2;

% low-pass to band-eliminating

U3 = (BW * j x w)/(—w2 + omegal2)).’n
num3 = b * conj(U3’); den3 = a * conj(U3");
H3 = num3/den3d
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6.5.5 Filter Design with MATLAB

The design of filters, analog and discrete, is simplified by the functions that MATLAB provides. Func-
tions to find the filter parameters from magnitude specifications, as well as functions to find the filter
poles/zeros and to plot the designed filter magnitude and phase responses, are available.

Low-Pass Filter Design
The design procedure is similar for all of the approximation methods (Butterworth, Chebyshev,
elliptic) and consists of both

= Finding the filter parameters from loss specifications.
= Obtaining the filter coefficients from these parameters.

Thus, to design an analog low-pass filter using the Butterworth approximation, the loss specifications
®max and amin, and the frequency specifications, €2, and Qy are first used by the function buttord to
determine the minimum order N and the half-power frequency 2, of the filter that satisfies the
specifications. Then the function butter uses these two values to determine the coefficients of the
numerator and the denominator of the designed filter. We can then use the function fregs to plot
the designed filter magnitude and phase. Similarly, this applies for the design of low-pass filters using
the Chebyshev or the elliptic design methods. To include the design of low-pass filters using the
Butterworth, Chebyshev (two versions), and the elliptic methods we wrote the function analodfil.

function [b, a] = analodfil(\Wp, Ws, alphamax, alphamin, Wmax, ind)
%%
%  Analog filter design
% Parameters
%  Input: loss specifications (alphamax, alphamin), corresponding
% frequencies (Wp,Ws), frequency range [0,Wmax] and indicator ind (1 for
% Butterworth, 2 for Chebyshev1, 3 for Chebyshev2 and 4 for elliptic).
% Output: coefficients of designed filter.
% Function plots magnitude, phase responses, poles and zeros of filter, and
% loss specifications
%% %
if ind == 1,% Butterworth low-pass
[N, Wn] = buttord(Wp, Ws, alphamax, alphamin, ’s’)
[b, a] = butter(N, Wn, ’s’)
elseif ind == 2, % Chebyshev low-pass
[N, Wn] = cheb1ord(Wp, Ws, alphamax, alphamin, ’s’)
[b, a] = cheby1(N, alphamax, Wn, ’s’)
elseif ind == 3, % Chebyshev2 low-pass
[N, Wn] = cheb2ord(Wp, Ws, alphamax, alphamin, ’s’)
[b, a] = cheby2(N, alphamin, Wn, ’s’)
else % Elliptic low-pass
[N, Wn] = ellipord(Wp, Ws, alphamax, alphamin, ’s’)
[b, a] = ellip(N, alphamax, alphamin, Wn, ’s’)
end



m CHAPTER 6: Application to Control and Communications

W = 0:0.001:Wmax; % frequency range for plotting

H = fregs(b, a, W); Hm = abs(H); Ha = unwrap(angle(H)) % magnitude (Hm) and phase (Ha)
N = length(W); alphal = alphamax x ones(1, N); alpha2 = alphamin * ones(1, N); % loss specs
subplot(221)

plot(W, Hm); grid; axis([0 Wmax 0 1.1 % max(Hm)])

subplot(222)

plot(W, Ha); grid; axis([0 Wmax 1.1 % min(Ha) 1.1 * max(Ha)])

subplot(223)

splane(b, a)

subplot(224)

plot(W, —20 x log10(abs(H))); hold on

plot(W, alphat, 'r’, W, alpha2, ’r’); grid; axis([0 max(W) —0.1 100])

hold off

m Example 6.11

To illustrate the use of analogfil consider the design of low-pass filters using the Chebyshev2 and
the Elliptic design methods. The specifications for the designs are

a(0) =0, oma=0.1, amip =060 dB
Qp =10, Qs =15 rad/sec
We wish to find the coefficients of the designed filters, plot their magnitude and phase, and plot

the loss function for each of the filters and verify that the specifications have been met. The results
are shown in Figure 6.26.
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FIGURE 6.26

(a) Elliptic and (b) Chebyshev2 low-pass filter designs using analogdfil function. Clockwise: magnitude, phase,
loss function, and poles and zeros are shown for each design.
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% % % % % % % % % % % % % % % % % % %

% Example 6.11 -- Filter design using analodfil
9% % % % % % % % % % % % % % % % % % %

clear all; clf

alphamax = 0.1;

alphamin = 60;

Wp =10; Ws = 15;

Wmax = 25;

ind = 4 % elliptic design

% ind =3 % chebyshev2 design

[b, a] = analodfil(Wp, Ws, alphamax, alphamin, Wmax, ind)

The elliptic design is illustrated above. To obtain the Chebyshev2 design get rid of the comment
symbol % in front of the corresponding indicator and put it in front of the one for the elliptic
design. [ |

General comments on the design of low-pass filters using Butterworth, Chebyshev (1 and 2), and
Elliptic methods are:

= The Butterworth and the Chebyshev2 designs are flat in the passband, while the others display
ripples in that band.

m For identical specifications, the obtained order of the Butterworth filter is much greater than the
order of the other filters.

= The phase of all of these filters is approximately linear in the passband, but not outside it. Because
of the rational transfer functions for these filters, it is not possible to have linear phase over all
frequencies. However, the phase response is less significant in the stopband where the magnitude
response is very small.

= The filter design functions provided by MATLAB can be used for analog or discrete filters. When
designing an analog filter there is no constrain in the values of the frequency specifications and
an’s” indicates that the filter being designed is analog.

General Filter Design

The filter design programs butter, cheby1, cheby?2, and ellip allow the design of other filters besides
low-pass filters. Conceptually, a prototype low-pass filter is designed and then transformed into the
desired filter by means of the frequency transformations given before. The filter is specified by the
order and cut-off frequencies. In the case of low-pass and high-pass filters the specified cut-off fre-
quencies are scalar, while for band-pass and stopband filters the specified cut-off frequencies are given
as a vector. Also recall that the frequency transformations double the order of the low-pass prototype
for the band-pass and band-eliminating filters, so when designing these filters half of the desired
order should be given.

m Example 6.12
To illustrate the general design consider:
(a) Using the cheby2 method, design a band-pass filter with the following specifications:

= order N =10
= «(2) = 60 dB in the stopband
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m passband frequencies [10, 20] rad/sec
® unit gain in the passband

(b) Using the elip method, design a band-stop filter with unit gain in the passbands and the
following specifications:

order N = 20

«(2) = 0.1 dB in the passband

= «(R2) =40 dB in the stopband

m passband frequencies [10, 11] rad/sec

The following script is used.

% % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Example 6.12 --- general filter design

% % % % % % % % % % % % % % % % % % % % % % % % % % % %

clear all;clf

N = 10;

[b, a] = ellip(N/2, 0.1, 40, [10 11], 'stop’, ’s’) % elliptic band-stop
%[b, a] = cheby2(N, 60, [10 20], 's’) % cheby2 bandpass

W = 0:0.01:30;

H = fregs(b, a, W);

Notice that the order given to ellip is 5 and 10 to cheby?2 since a quadratic transformation will be
used to obtain the notch and the band-pass filters from a prototype low-pass filter. The magnitude

and phase responses of the two designed filters are shown in Figure 6.27. ]
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Design of (a) a notch filter using ellip and of (b) a band-pass filter using cheby?2.
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6.6 WHAT HAVE WE ACCOMPLISHED? WHAT IS NEXT?

In this chapter we have illustrated the application of the Laplace and the Fourier analysis to the
theories of control, communications, and filtering. As you can see, the Laplace transform is very
appropriate for control problems where transients as well as steady-state responses are of interest.
On the other hand, in communications and filtering there is more interest in steady-state responses
and frequency characterizations, which are more appropriately treated using the Fourier transform.
It is important to realize that stability can only be characterized in the Laplace domain, and that it
is necessary when considering steady-state responses. The control examples show the importance of
the transfer function and transient and steady-state computations. Block diagrams help to visualize
the interconnection of the different systems. Different types of modulation systems are illustrated
in the communication examples. Finally, this chapter provides an introduction to the design of
analog filters. In all the examples, the application of MATLAB was illustrated.

Although the material in this chapter does not have sufficient depth, reserved for texts in control,
communications, and filtering, it serves to connect the theory of continuous-time signals and systems
with applications. In the next part of the book, we will consider how to process signals using comput-
ers and how to apply the resulting theory again in control, communications, and signal processing
problems.

PROBLEMS

6.1. Cascade implementation and loading

The transfer function of a filter H(s) = 1/(s 4+ 1)2 is to be implemented by cascading two first-order filters

His)=1/(s+1),i=1,2.

(a) Implement H;(s) as a series RC circuit with input v;(¢) and output v;y(t), i = 1,2. Cascade two of
these circuits and find the overall transfer function V3 (s)/V7 (s). Carefully draw the circuit.

(b) Use a voltage follower to connect the two circuits when cascaded and find the overall transfer function
V3(s)/V1(s). Carefully draw the circuit.

(c) Use the voltage follower circuit to implement a new transfer function

1

Gs)=——
(s + 1000)(s + 1)

Carefully draw your circuit.

6.2. Cascading LTI and LTV systems
The receiver of an AM system consists of a band-pass filter, a demodulator, and a low-pass filter. The
received signal is
7(t) = m(t) cos(400007t) + q(t)
where m(t) is a desired voice signal with bandwidth BW = 5KHz that modulates the carrier
cos(40, 0007 t) and q(t) is the rest of the signals available at the receiver. The low-pass filter is ideal with
magnitude 1 and bandwidth BW. Assume the band-pass filter is also ideal and that the demodulator is
cos(£2.t).
(a) What is the value of Q. in the demodulator?
(b) Suppose we input the received signal into the band-pass filter cascaded with the demodulator and
the low-pass filter. Determine the magnitude response of the band-pass filter that allows us to recover
m(t). Draw the overall system and indicate which of the components are LTI and which are LTV.



m CHAPTER 6: Application to Control and Communications

6.3.

(c) By mistake we input the received signal into the demodulator, and the resulting signal into the
cascade of the band-pass and the low-pass filters. If you use the band-pass filter obtained above,
determine the recovered signal (i.e., the output of the low-pass filter). Would you get the same result
regardless of what m(t) is? Explain.

Op-amps as feedback systems

An ideal operational amplifier circuit can be shown to be equivalent to a negative-feedback system. Con-
sider the amplifier circuit in Figure 6.28 and its two-port network equivalent circuit to obtain a feedback
system with input V;(s) and output Vi (s). What is the effect of A — oo on the above circuit?

R, Ry
WW
' v R, V.
T -Av_ V(1)
+<) . Vi R,'eoo
S W
_ - l'@

FIGURE 6.28

6.4.

6.5.

6.6.

RC circuit as feedback system

Consider a series RC circuit with input a voltage source v;(t) and output the voltage across the capacitor

Vo (t).

(a) Draw a negative-feedback system for the circuit using an integrator, a constant multiplier, and an
adder.

(b) Let the input be a battery (i.e., v;(t) = Au(t)). Find the steady-state error e(t) = v;(t) — vo(1).

RLC circuit as feedback system

A resistor R, a capacitor C, and an inductor L are connected in series with a source v;(t). Consider the

output of the voltage across the capacitor vy(t). Let R=1Q,C=1Fand L = 1 H.

(a) Use integrators and adders to implement the differential equation that relates the input v;(t) and the
output vy (t) of the circuit.

(b) Obtain a negative-feedback system block diagram with input V;(s) and output Vy(s). Determine the
feedforward transfer function G(s) and the feedback transfer function H(s) of the feedback system.

(c) Find an equation for the error E(s) = V;(s) — Vo (s)H(s) and determine its steady-state response when
the input is a unit-step signal (i.e., Vj(s) = 1/s).

Ideal and lossy integrators

An ideal integrator has a transfer function 1/s, while a lossy integrator has a transfer function 1/(s + K).

(a) Determine the feedforward transfer function G(s) and the feedback transfer function H(s) of a
negative-feedback system that implements the overall transfer function

Yo _ K
X)) K+

where X(s) and Y(s) are the Laplace transforms of the input x(¢t) and the output y(¢) of the feedback
system. Sketch the magnitude response of this system and determine the type of filter it is.
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6.8.

6.9.

6.10.

Problems a

(b) If we let G(s) = s in the previous feedback system, determine the overall transfer function Y (s)/X(s)
where X(s) and Y (s) are the Laplace transforms of the input x(¢t) and the output y(t) of this new feed-
back system. Sketch the magnitude response of the overall system and determine the type of filter
it is.

Feedback implementation of an all-pass system

Suppose you would like to obtain a feedback implementation of an all-pass filter

s2/2s + 1

e 225+ 1

(a) Determine if the T(s) is the transfer function corresponding to an all-pass filter by means of the poles
and zeros of T(s).

(b) Determine the feedforward transfer function G(s) and the feedback transfer function H(s) of a
negative-feedback system that has T'(s) as its overall transfer function.

(c) Would it be possible to implement T(s) using a positive-feedback system? If so, indicate its
feedforward transfer function G(s) and the feedback transfer function H(s).

Filter stabilization
The transfer function of a designed filter is

.
G+DE6—1)

which is unstable given that one of its poles is in the right-hand s-plane.

(a) Consider stabilizing G(s) by means of negative feedback with a gain K > 0 in the feedback. Determine
the range of values of K that would make the stabilization possible.

(b) Use the cascading of an all-pass filter H, (s) with the given G(s) to stabilize it. Give Hy(s). Would it be
possible for the resulting filter to have the same magnitude response as G(s)?

Error and feedforward transfer function

Suppose the feedforward transfer function of a negative-feedback system is G(s) = N(s)/D(s), and the
feedback transfer function is unity.

(a) Given that the Laplace transform of the error is

G(s) =

E(s) = X(5)[1 — H(s)]

where H(s) = G(s)/(1 + G(s)) is the overall transfer function of the feedback system, find an expres-
sion for the error in terms of X(s), N(s), and D(s). Use this equation to determine the conditions under
which the steady-state error is zero for x(t) = u(t).

(b) If the input is x(t) = u(t), the denominator D(s) = (s + 1)(s + 2), and the numerator N(s) = 1, find an
expression for E(s) and from it determine the initial value e(0) and the final value lim;_,  e(t) of the
erTor.

Product of polynomials in s—MATLAB

Given a transfer function
Y©) _ NG
X(s)  D(s)

where Y(s) and X(s) are the Laplace transforms of the output y(t) and of the input x(¢t) of an LTI system,
and N(s) and D(s) are polynomials in s, to find the output
N(s)

Y(s) = X(s)%
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6.11.

6.12.

we need to multiply polynomials to get Y (s) before we perform partial fraction expansion to get y(t).

(a) Find out about the MATLAB function conv and how it relates to the multiplication of polynomials.
Let P(s) = 1 4+ s+ s? and Q(s) = 2 + 3s + s2 + s3. Obtain analytically the product Z(s) = P(s)Q(s) and
then use conv to compute the coefficients of Z(s).

(b) Suppose that X(s) = 1/52, and we have N(s) =s+ 1, D(s) = (s + 1)((s + 4)2 + 9). Use conv to find
the numerator and the denominator polynomials of Y(s) = N1 (s)/D1(s). Use MATLAB to find y(t), and
to plot it.

(c) Create a function that takes as input the values of the coefficients of the numerators and denominators
of X(s) and of the transfer function H(s) of the system and provides the response of the system. Show
your function, and demonstrate its use with the X(s) and H(s) given above.

Feedback error—MATLAB

Control systems attempt to follow the reference signal at the input, but in many cases they cannot follow
particular types of inputs. Let the system we are trying to control have a transfer function G(s), and the
feedback transfer function be H(s). If X(s) is the Laplace transform of the reference input signal, and Y (s)
the Laplace transform of the output, then the close-loop transfer function is

Yo _ 6o
X(s) 1+ GEH(®)

The Laplace transform of the error signal is E(s) = X(s) — Y(s)H(s),

G(s) and H@s) =1

1
TS6+ DG +2)

(a) Find an expression for E(s) in terms of X(s), G(s), and H(s).

(b) Let x(t) = u(t) and the Laplace transform of the corresponding error be E;(s). Use the final value
property of the Laplace transform to obtain the steady-state error eqs.

(c) Let x(t) = tu(t) (i.e., a ramp signal) and E;(s) be the Laplace transform of the corresponding error
signal. Use the final value property of the Laplace transform to obtain the steady-state error ep. Is
this error value larger than the one above? Which of the two inputs u(t) and r(t) is easier to follow?

(d) Use MATLAB to find the partial fraction expansions of E; (s) and E; (s) and use them to find e (t) and
e> (t) and then plot them.

Wireless transmission—MATLAB

Consider the transmission of a sinusoid x(t) = cos(2nfpt) through a channel affected by multipath and
Doppler. Let there be two paths, and assume the sinusoid is being sent from a moving transmitter so that
a Doppler frequency shift occurs. Let the received signal be

7(t) = ag cos(2m (fo — v)(t — Lo/c)) + oy cos(2n (fg — v)(t — L1 /c))

where 0 < ¢; < 1 are attenuations, L; are the distances from the transmitter to the receiver that the signal

travels in the ith path i = 1,2, ¢ = 3 x 108 m/sec, and the frequency shift v is caused by the Doppler

effect.

(a) Letfo=2KHz v=50Hz ap =1, «; =0.9, and Ly = 10,000 meters. What would be L; if the two
sinusoids have a phase difference of /27

(b) Is the received signal r(t), with the parameters given above but L; = 10,000, periodic? If so, what
would be its period and how much does it differ from the period of the original sinusoid? If x(t) is
the input and r(t) the output of the transmission channel, considered a system, is it linear and time
invariant? Explain.

(c) Sample the signals x(t) and r(t) using a sampling frequency Fs = 10 KHz. Plot the sampled sent x(nTs)
and received r(nTs) signals for n = 0 to 2000.
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(d) Consider the situation where fy = 2 KHz, but the parameters of the paths are random, trying to
simulate real situations where these parameters are unpredictable, although somewhat related. Let

r(t) = ap cos(2r (fo — v)(t — Lo/c)) + a1 cos(2m (fo — v)(t — L1 /c))

where v = 50n Hz, Ly = 1,0007, L1 = 10,0001, g = 1 — 1, a1 = /10, and 7 is a random number
between 0 and 1 with equal probability of being any of these values (this can be realized by using the
rand MATLAB function). Generate the received signal for 10 different events, use Fs = 10,000 Hz as
the sampling rate, and plot them together to observe the effects of the multipath and Doppler.

6.13. RLC implementation of low-pass Butterworth filters
Consider the RLC circuit shown in Figure 6.29 where R = 1 Q.
(a) Determine the values of the inductor and the capacitor so that the transfer function of the circuit when
the output is the voltage across the capacitor is

Vo(s) 1
Vi) 242541

That is, it is a second-order Butterworth filter.

(b) Find the transfer function of the circuit, with the values obtained in (a) for the capacitor and the induc-
tor, when the output is the voltage across the resistor. Carefully sketch the corresponding frequency
response and determine the type of filter it is.

R=1Q

WY

780

vich i() =

FIGURE 6.29

6.14. Design of low-pass Butterworth/Chebyshev filters
The specifications for a low-pass filter are:
®m  Qp = 1500rad/sec, amax = 0.5dBs
® Qg =3500rad/sec, amin, = 30dBs
(a) Determine the minimum order of the low-pass Butteworth filter and compare it to the minimum
order of the Chebyshev filter that satisfy the specifications. Which is the smaller of the two?
(b) Determine the half-power frequencies of the designed Butterworth and Chebyshev low-pass
filters by letting «(£2p) = amax. Use the minimum orders obtained above.
(c) For the Butterworth and the Chebyshev designed filters, find the loss function values at €, and
Q. How are these values related to the amax and o, specifications? Explain.
(d) If new specifications for the passband and stopband frequencies are Qp = 750 rad/sec and Qs =
1750 rad/sec, respectively, are the minimum orders of the Butterworth and the Chebyshev filters
changed? Explain.

6.15. Low-pass Butterworth filters
The loss at a frequency € = 2000 rad/sec is «(2000) = 19.4 dBs for a fifth-order low-pass Butterworth
filter. If we let «(Qp) = amax = 0.35 dBs, determine
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6.16.

6.17.

6.18.

6.19.

m The half-power frequency Qpp of the filter.
= The passband frequency €2 of the filter.

Design of low-pass Butterworth/Chebyshev filters

The specifications for a low-pass filter are:

®  «(0) =20dBs
Qp = 15001ad/sec, 1 = 20.5dBs

m Q5 =3500rad/sec, ¢y = 50dBs

(a) Determine the minimum order of the low-pass Butterworth and Chebyshev filters, and determine
which is smaller.

(b) Give the transfer function of the designed low-pass Butterworth and Chebyshev filters (make sure the
dc loss is as specified).

(c) Determine the half-power frequency of the designed filters by letting «(2p) = amax-

(d) Find the loss function values provided by the designed filters at Qp and Q5. How are these val-
ues related to the amax and «yj, specifications? Explain. Which of the two filters provides more
attenuation in the stopband?

(e) If new specifications for the passband and stopband frequencies are €p = 750rad/sec and Qs =
1750 rad/sec, respectively, are the minimum orders of the filter changed? Explain.

Butterworth, Chebyshev, and Elliptic filters—MATLAB
Design an analog low-pass filter satisfying the following magnitude specifications:
B omax = 0.5dB; iy = 20dB
B Qp = 1000rad/sec; Qs = 2000 rad/sec
(a) Use the Butterworth method. Plot the poles and zeros and the magnitude and phase of the
designed filter. Verify that the specifications are satisfied by plotting the loss function.
(b) Use the Chebyshev method cheby1. Plot the poles and zeros and the magnitude and phase of the
designed filter. Verify that the specifications are satisfied by plotting the loss function.
(c) Use the elliptic method. Plot the poles and zeros and the magnitude and phase of the designed
filter. Verify that the specifications are satisfied by plotting the loss function.
(d) Compare the three filters and comment on their differences.

Chebyshev filter design—MATLAB
Consider the following low-pass filter specifications:
B amax = 0.1dB; opjp = 60dB
= Qp = 1000rad/sec; s = 2000 rad/sec
(a) Use MATLAB to design a Chebyshev low-pass filter that satisfies the above specifications. Plot the
poles and zeros and the magnitude and phase of the designed filter. Verify that the specifications
are satisfied by plotting the loss function.
(b) Compute the half-power frequency of the designed filter.

Getting rid of 60-Hz hum with different filters—MATLAB
A desirable signal

x(t) = cos(100mt) — 2 cos(507t)

is recorded as y(t) = x(t) + cos(120xt)—that is, as the desired signal but with a 60-Hz hum. We would

like to get rid of the hum and recover the desired signal. Use symbolic MATLAB to plot x(t) and y(t).

Consider the following three different alternatives (use symbolic MATLAB to implement the filtering and

use any method to design the filters):

(a) Design a band-eliminating filter to get rid of the 60-Hz hum in the signal. Plot the output of the
band-eliminating filter.

(b) Design a high-pass filter to get the hum signal and then subtract it from y(¢). Plot the output of the
high-pass filter.



6.20.

6.21.

Problems a

(c) Design a band-pass filter to get rid of the hum. Plot the output of the band-pass filter.
(d) Isany of these alternatives better than the others? Explain.

Demodulation of AM—MATLAB
The signal at the input of an AM receiver is

u(t) = mq (t) cos(20t) + my(t) cos(100¢t)
where the messages m;(t), i = 1, 2 are the outputs of a low-pass Butterworth filter with inputs

x1)=r@t) —2rt—1)+rt—2)
x2(t) = u(t) —u(t —2)

respectively. Suppose we are interested in recovering the message m1 (¢).

(a) Design a 10th-order low-pass Butterworth filter with half-power 10 rad/sec. Implement this filter using
MATLAB and find the two messages m;(t), i = 1,2 using the indicated inputs x;(t), i = 1,2, and
plot them.

(b) To recover the desired message m (), first use a band-pass filter to obtain the desired signal con-
taining m (t) and to suppress the other. Design a band-pass Butterworth filter with a bandwidth of
10 rad/sec, centered at 20 rad/sec and order 10 that will pass the signal mq (t) cos(20t) and reject the
other signal.

(c) Multiply the output of the band-pass filter by a sinusoid cos(20t) (exactly the carrier in the transmitter),
and low-pass filter the output of the mixer (the system that multiplies by the carrier frequency cosine).
Design a low-pass Butterworth filter of bandwidth 10 rad/sec, and order 10 to filter the output of the
mixer.

(d) Use MATLAB to display the different spectra. Compute and plot the spectrum of m1 (), u(t), the output
of the band-pass filter, the output of the mixer, and the output of the low-pass filter. Write numeric
functions to compute the analog Fourier transform and its inverse.

Quadrature AM—MATLAB

Suppose we would like to send the two messages m;(t), i = 1, 2, created in Problem 6.20 using the same
bandwidth and to recover them separately. To implement this, consider the QAM approach where the
transmitted signal is

s(t) = mq(¢t) cos(50¢t) + my (t) sin(50¢)

Suppose that at the receiver we receive s(t) and that we only need to demodulate it to obtain m;(t), i = 1, 2.

Design a low-pass Butterworth filter of order 10 and a half-power frequency 10 rad/sec (the bandwidth of

the messages).

(a) Use MATLAB to plot s(t) and its magnitude spectrum |S(£2)|. Write numeric functions to compute the
analog Fourier transform and its inverse.

(b) Multiply s(t) by cos(50t), and filter the result using the low-pass filter designed before. Use MATLAB
to plot the result and to find and plot its magnitude spectrum.

(c) Multiply s(¢) by sin(50t), and filter the result using the low-pass filter designed before. Use MATLAB
to plot the result and to find and plot its magnitude spectrum.

(d) Comment on your results.
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CHAPTER 7

Sampling Theory

The pure and simple truth

is rarely pure and never simple.
Oscar Wilde (1854-1900)

Irish writer and poet

7.1 INTRODUCTION

Since many of the signals found in applications such as communications and control are analog, if
we wish to process these signals with a computer it is necessary to sample, quantize, and code them
to obtain digital signals. Once the analog signal is sampled in time, the amplitude of the obtained
discrete-time signal is quantized and coded to give a binary sequence that can be either stored or
processed with a computer.

The main issues considered in this chapter are:

= How to sample—As we will see, it is the inverse relation between time and frequency that provides
the solution to the problem of preserving the information of an analog signal when it is sampled.
When sampling an analog signal one could choose an extremely small value for the sampling
period so that there is no significant difference between the analog and the discrete signals—
visually as well as from the information content point of view. Such a representation would,
however, give redundant values that could be spared without losing the information provided
by the analog signal. If, on the other hand, we choose a large value for the sampling period,
we achieve data compression but at the risk of losing some of the information provided by the
analog signal. So how do we choose an appropriate value for the sampling period? The answer is
not clear in the time domain. It does become clear when considering the effects of sampling in
the frequency domain: The sampling period depends on the maximum frequency present in the
analog signal. Furthermore, when using the correct sampling period the information in the analog
signal will remain in the discrete signal after sampling, thus allowing the reconstruction of the
original signal from the samples. These results, introduced by Nyquist and Shannon, constitute

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00011-9
(© 2011, Elsevier Inc. All rights reserved. 419
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the bridge between analog and discrete signals and systems and were the starting point for digital
signal processing as a technical area.

s Practical aspects of sampling—The device that samples, quantizes, and codes an analog signal is
called an analog-to-digital converter (ADC), while the device that converts digital signals into ana-
log signals is called a digital-to-analog converter (DAC). These devices are far from ideal and thus
some practical aspects of sampling and reconstruction need to be considered. Besides the pos-
sibility of losing information by choosing too large of a sampling period, the ADC also loses
information in the quantization process. The quantization error is, however, made less signifi-
cant by increasing the number of bits used to represent each sample. The DAC interpolates and
smooths out the digital signal, converting it back into an analog signal. These two devices are
essential in the processing of continuous-time signals with computers.

7.2 UNIFORM SAMPLING

The first step in converting a continuous-time signal x(t) into a digital signal is to discretize the time
variable—that is, to consider samples of x(t) at uniform times t = nT, or

x(nTs) = x(t)|t=nT, n integer (7.1)

where T is the sampling period. The sampling process can be thought of as a modulation process, in
particular connected with pulse amplitude modulation (PAM), a basic approach in digital communi-
cations. A pulse amplitude modulated signal consists of a sequence of narrow pulses with amplitudes
the values of the continuous-time signal within the pulse. Assuming that the width of the pulses is
much narrower than the sampling period T; permits a simpler analysis based on impulse sampling.

7.2.1 Pulse Amplitude Modulation

A PAM system can be visualized as a switch that closes every T; seconds for A seconds, and remains
open otherwise. The PAM signal is thus the multiplication of the continuous-time signal x(t) by a
periodic signal p(t) consisting of pulses of width A, amplitude 1/A, and period T;. Thus, xpapm(t)
consists of narrow pulses with the amplitudes of the signal within the pulse width. For a small pulse
width A, the PAM signal is approximately a train of pulses with amplitudes x(mT;)—that is,

1
xpam (1) = x(O)p(t) =~ X Zx(st)[u(t —mTs) —u(t —mTs — A)] (7.2)

Now, as a periodic signal we represent p(t) by its Fourier series
)=} Pt Qo=
k

where P}, are the Fourier series coefficients. Thus, the PAM signal can be expressed as

xpam(t) = Y Py x(t) @
k
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and its Fourier transform is

Xeam (@) = ) PeX(Q — kQ0)

showing that PAM is a modulation of the train of pulses p(t) by the signal x(t). The spectrum of
xpam (t) is the spectrum of x(f) shifted in frequency by {kQ2¢}, weighted by P}, and superposed.

7.2.2 Ideal Impulse Sampling

Given that the pulse width A is much smaller than Ty, p(t) can be replaced by a periodic sequence of
impulses of period T (see Figure 7.1) or 8r,(t). This simplifies considerably the analysis and makes
the results easier to grasp. Later in the chapter we consider the effects of having pulses instead of
impulses, a more realistic assumption.

The sampling function 8t,(t), or a periodic sequence of impulses of period Ty, is
Sr.(0) =Y 8(t—nTy) (7.3)

where §(t — nTs) is an approximation of the normalized pulse [u(t — nT;) — u(t — nTs — A)]/A when
A << T;. The sampled signal is then given by

x5(6) = x(6)37, (1)
= > x(nTo)8(t — nTy) (7.4)
n
as illustrated in Figure 7.1.
There are two equivalent ways to view the sampled signal x;(t) in the frequency domain:

m  Modulation: Since 8, (¢) is periodic, of fundamental frequency Q2; = 27 /T, its Fourier series is

o0
dr0)= ) Dy
k=—00

Y
—><x5
v
e
o
N
(n\| I

oTs(1)

FIGURE 7.1 1
|deal impulse sampling. Ts
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where the Fourier coefficients {D},} are

Ts/2 Ts/2
) 1 )
Dp= — 1. (e H Bt = — / S(0)e St gy
T; T
—Ts/2 —Ts/2
Ts/2
1 . 1
= / (e dt = —
T, T,
~Ty/2

The last equation is obtained using the sifting property of the §(t) and that the area of the impulse
is unity. Thus, the Fourier series of the sampling signal is

o]

Sry= Y. Tieimsf (7.5)
h=—00 °

and the sampled signal x;(t) = x(t)ér,(t) is then expressed as

o0

1 )
x5(0) = 7 > x(e

N

with Fourier transform

o]

X(Q) = Tl Z X(Q — k) (7.6)

S h=—o00

where we used the frequency-shift property of the Fourier transform, and let X(£2) and X;(2) be
the Fourier transforms of x(t) and x;(t), respectively.

m  Discrete-time Fourier transform: The Fourier transform of the sum representation of xs(t) in the
second equation in Equation (7.4) is
X(Q) = Zx(nTs)e*fms” (7.7)
n
where we used the Fourier transform of a shifted impulse. This equation is equivalent to Equa-
tion (7.6) and will be used later in deriving the Fourier transform of discrete-time signals.
Remarks
m  The spectrum X;(2) of the sampled signal, according to Equation (7.6), is a superposition of shifted
analog spectra {X(2 — kS2)} multiplied by 1/T; (i.e., the modulation process involved in the sampling).
m  Considering that the output of the sampler displays frequencies that are not present in the input, according

to the eigenfunction property the sampler is not LTI It is a time-varying system. Indeed, if sampling
x(t) gives xs(t), sampling x(t — t) where T # kT for an integer k will not be xs(t — 7). The sampler is,
however, a linear system.



7.2 Uniform Sampling a

= Equation (7.7) provides the relation between the continuous frequency 2 (rad/sec) of x(t) and the discrete
frequency w (rad) of the discrete-time signal x(nT;) or x[n]’:

w = QT [rad/sec] x [sec] = [rad]

Sampling a continuous-time signal x(t) at uniform times {nTs} gives a sampled signal

xs(t) = Y x(nTs)8(t — nTy) (7.8)

n

or a sequence of samples {x(nTs)}. Sampling is equivalent to modulating the sampling signal

S1.(t) = Z 8(t — nTy) (7.9)
n

periodic of period Ts (the sampling period) with x(t).
If X(R) is the Fourier transform of x(t), the Fourier transform of the sampled signal x(t) is given by the
equivalent expressions

1
Xs(9) = = D X(2 — k)
N
k

_27r

- Zx(nTs)e*J'QTs” Q= - (7.10)
n N

Depending on the maximum frequency present in the spectrum of x(t) and on the chosen sampling frequency
Qg (or the sampling period T;) it is possible to have overlaps when the spectrum of x(t) is shifted and added
to obtain the spectrum of the sampled signal. We have three possible situations:

m If the signal has a low-pass spectrum of finite support—that is, X(2) =0 for |Q| > Qmax (see
Figure 7.2(a)) where Qmax is the maximum frequency present in the signal—such a signal is called
band limited. As shown in Figure 7.2(b), for band-limited signals it is possible to choose Qs so that the
spectrum of the sampled signal consists of shifted nonoverlapping versions of (1/T15)X(2). Graphically (see
Figure 7.2(b)), this can be accomplished by letting Qs — Qmax > Qmax, OF

Qs > 2Qmax

which is called the Nyquist sampling rate condition. As we will see later, in this case we are able
to recover X(2), or x(t), from Xs(2) or from the sampled signal xs(t). Thus, the information in x(t) is

preserved in the sampled signal x;(t).
= On the other hand, if the signal x(t) is band limited but we let Q5 < 2Qmax, then when creating Xs(2)

the shifted spectra of x(t) overlap (see Figure 7.2(c)). In this case, due to the overlap it will not be

ITo help the reader visualize the difference between a continuous-time signal, which depends on a continuous variable ¢, or a real
number, and a discrete-time signal, which depends on the integer variable n, we will use square brackets for these. Thus, n(t) is a
continuous-time signal, while p[n] is a discrete-time signal.
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FIGURE 7.2

Sampling Theory
X(Q)
1
Qmax | Qmax Q
(a)
Xs(Q)
1/Tg
| Qmax Q\ o Qs Q
(b) S max
X (Q
s( ) A 1/7_S
Y A % » >
Q=€ pay Q

(©

Q=22 Qo

No aliasing

Q<2 Qax

Aliasing

(@) Spectrum of band-limited signal, (b) spectrum of sampled signal when satisfying the Nyquist sampling rate
condition, and (c) spectrum of sampled signal with aliasing (superposition of spectra, shown in dashed lines,
gives a constant shown by continuous line).

possible to recover the original continuous-time signal from the sampled signal, and thus the sampled
signal does not share the same information with the original continuous-time signal. This phenomenon is
called frequency aliasing since due to the overlapping of the spectra some frequency components of the

original continuous-time signal acquire a different frequency value or an “alias.”

m  When the spectrum of x(t) does not have a finite support (i.e., the signal is not band limited) sampling
using any sampling period T generates a spectrum of the sampled signal consisting of overlapped shifted
spectra of x(t). Thus, when sampling non-band-limited signals frequency aliasing is always present. The
only way to sample a non-band-limited signal x(t) without aliasing—at the cost of losing information
provided by the high-frequency components of x(t) — is by obtaining an approximate signal x,(t) that
lacks the high-frequency components of x(t), thus permitting us to determine a maximum frequency for it.

This is accomplished by antialiasing filtering commonly used in samplers.

A band-limited signal x(t)—that is, its low-pass spectrum X(£2) is such that

IX(Q2)] = 0 for || > Qmax

(7.11)
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where Qmax is the maximum frequency in x(t)—can be sampled uniformly and without frequency aliasing
using a sampling frequency

2
Qs = ?ﬂ > 2Qmax (7.12)

N

This is called the Nyquist sampling rate condition.

m Example 7.1
Consider the signal x(t) = 2 cos(2nt + 7/4), —00 < t < co. Determine if it is band limited or not.
Use T; = 0.4, 0.5, and 1 sec/sample as sampling periods, and for each of these find out whether
the Nyquist sampling rate condition is satisfied and if the sampled signal looks like the original
signal or not.

Solution

Since x(t) only has the frequency 27, it is band limited with Qp,x = 27 rad/sec. For any T the
sampled signal is given as
o
xs(t) = Z x(nTs)8(t — nTs) Ts sec/sample (7.13)
n=—0oo

with x(nTs) = x(t)|=nT,.

Using T; = 0.4 sec/sample the sampling frequency in rad/sec is Qs = 27/Ts = 57 > 2Qmax = 47,
satisfying the Nyquist sampling rate condition. The samples in Equation (7.13) are then

x(nTs) = 2cos(2mw 0.4n + m/4) = 2 cos (4?”11 + %) —0 <N <
The sampled signal x,(t) repeats periodically every five samples. Indeed, for Ty = 0.4,
o0
xs(t + 5T5) = Z x(nT)8(t — (n — 5)Ts) letting m=n—>5
n=—oo
o
= D x((m+5)TY3(t —mTy) = x,()
m=—oQ

since x((m 4 5)Ts) = x(mTs). Looking at Figure 7.3(b), we see that there are three samples in each
period of the analog sinusoid, and it is not obvious that the information of the continuous-time
signal is preserved. We will show in the next section that it is actually possible to recover x(t) from
this sampled signal x,(t), which allows us to say that x,(t) has the same information as x(t).

When T; = 0.5 the sampling frequency is Qs = 27 /Ts = 4w = 2Qmax, barely satisfying the Nyquist
sampling rate condition. The samples in Equation (7.13) are now

2 T
x(nTs) = 2 cos(2xn0.5 + 7 /4) = 2 cos (771 + Z) —00 <N <00
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Sampling of x(t) = 2 cos(2xt + 7 /4) with sampling periods (a) T
sec/sample.

In this case it can be shown that the sampled signal repeats periodically every two samples, since
x((n + 2)Ts) = x(nTs), which can be easily checked. According to the Nyquist sampling rate condi-
tion, this is the minimum number of samples per period allowed before we start having aliasing.
In fact, if we let Qs = Qmax = 27 corresponding to the sampling period Ts = 1, the samples in

Equation (7.13) are
x(nTs) = 2cos(2nn+ m/4) = 2 cos(m/4) = V2

and the sampled signal is \/ESTS(t). With Ts = 1, the sampled signal cannot be possibly con-
verted back into an analog sinusoid. Thus, we have lost the information provided by the sinusoid.
Undersampling (getting too few samples per unit time) has changed the nature of the original

signal.
We use MATLAB to plot the continuous signal and four sampled signals (see Figure 7.3) for differ-

ent values of Ts. Clearly, when T; = 1 sec/sample there is no similarity between the analog and the
[ |

discrete signals due to frequency aliasing.
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m Example 7.2

Consider the following signals:
(@) x1(t) =u(t+0.5) —u(t—0.5)
(b) x2(t) = e "u(t)

Determine if they are band limited or not. If not, determine the frequency for which the energy
of the non-band-limited signal corresponds to 99% of its total energy and use this result to
approximate its maximum frequency.

Solution

(a) Thesignal x;(t) = u(t + 0.5) — u(t — 0.5) is a unit pulse signal. Clearly, this signal can be easily
sampled by choosing any value of T; << 1. For instance, T; = 0.01 sec would be a good value,
giving a discrete-time signal x1 (nTs) = 1, for0 < nTs = 0.01n < 1 0or 0 < n < 100. There seems
to be no problem in sampling this signal; however, we have that the Fourier transform of x; (¢),

052 — 052 in(0.5Q)
jQ T 05Q

X1(Q) =

does not have a maximum frequency and so x; (t) is not band limited. Thus, any chosen value
of Ts will cause aliasing. Fortunately, the values of the sinc function go fast to zero, so that
one could compute an approximate maximum frequency that covers 99% of the energy of
the signal.

Using Parseval’s energy relation we have that the energy of x; (t) (the area under xf(t)) is 1
and if we wish to find a value ), such that 99% of this energy is in the frequency band
[—2m, ©2m], we need to look for the limits of the following integral so it equals 0.99:

QM

1 in(0.5Q)7?
0.99 = — [ sin(05%) 1 4
27 0.5Q

—QMm
Since this integral is difficult to find analytically, we use the following script in MATLAB to
approximate it.

% % % % % % % % % % % % % % % % % % % % %
% Example 7.2 --- Parseval’s relation and sampling
% % % % % % % % % % % % % % % % % % % % %
syms W
for k = 1:23;
E(k) = int((sin(0.5*W)/(0.5*W))2,0,k*pi)/pi
if E(k)> = 0.9900,
k
return
end
end
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We found that for ) = 207 rad/sec 98.9% of the energy of the signal is included, and thus
it could be used to determine that Ts < 7/ Qp = 0.05 sec/sample.
(b) For the causal exponential

x(t) = e tu(r)

its Fourier transform is

X(Q) = so that |X(Q)| =

1 1
1 +jS2 V1+Q2
which does not go to zero for any finite 2, then x(t) is not band limited. To find a frequency
Qs so that 99% of the energy is in —Qpy < Q < Quy, we let

i 0.99 [
1 .
— / |X(Q)|2dQ=—/|X(§2)|2d§2
2w 2
—QuM —00

which gives

0.997
2tan Q)M =2 x 0.99tan 1 (Q)[F  or Q= tan( > ) = 63.66

If we choose Qs = 27 /Ts = 5Qp or T = 2w /(5 x 63.66) ~ 0.02, there will be hardly any
aliasing or loss of information. [ |

7.2.3 Reconstruction of the Original Continuous-Time Signal

If the signal x(t) to be sampled is band limited with Fourier transform X(£2) and maximum frequency
Qmax, by choosing the sampling frequency € to satisfy the Nyquist sampling rate condition, or
Q; > 2Qmax, the spectrum of the sampled signal x;(t) displays a superposition of shifted versions
of the spectrum of x(t), multiplied by 1/Ts, but with no overlaps. In such a case, it is possible to
recover the original analog signal from the sampled signal by filtering. Indeed, if we consider an
ideal low-pass analog filter H,(j$2) with magnitude T in the pass-band —2;/2 < Q < /2, and zero
elsewhere—that is,

Ty —Q5/2 < Q < Q/2

7.14
0 elsewhere ( )

Hlp(jg) = {

the Fourier transform of the output of the filter is X;(€2) = Hj, (j)X;(£2) or

X(Q) —Q/2 < Q< Q)2
0 elsewhere

Xr(Q) = {

which coincides with the Fourier transform of the original signal x(t). So that when sampling a band-
limited signal, using a sampling period T; that satisfies the Nyquist sampling rate, the signal can be
recovered exactly from the sampled signal by means of an ideal low-pass filter.
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Bandlimited or Not?

The following, taken from David Slepian’s paper “On Bandwidth” [66], clearly describes the uncertainty about bandlimited
signals:
The Dilemma—Are signals really bandlimited? They seem to be, and yet they seem not to be.
On the one hand, a pair of solid copper wires will not propagate electromagnetic waves at optical frequencies and
so the signals I receive over such a pair must be bandlimited. In fact, it makes little physical sense to talk of energy
received over wires at frequencies higher than some finite cutoff W, say 10%° Hz. It would seem, then, that signals
must be bandlimited.
On the other hand, however, signals of limited bandwith W are finite Fourier transforms,

w
5(t) = / et §(f)df
-w

and irrefutable mathematical arguments show them to be extremely smooth. They possess derivatives of all orders.
Indeed, such integrals are entire functions of t, completely predictable from any little piece, and they cannot vanish
on any t interval unless they vanish everywhere. Such signals cannot start or stop, but must go on forever. Surely
real signals start and stop, and they cannot be bandlimited!

Thus we have a dilemma: to assume that real signals must go on forever in time (a consequence of bandlimit-
edness) seems just as unreasonable as to assume that real signals have energy at arbitrary high frequencies (no
bandlimitation). Yet one of these alternatives must hold if we are to avoid mathematical contradiction, for either
signals are bandlimited or they are not: there is no other choice. Which do you think they are?

Remarks

m In practice, the exact recovery of the original signal may not be possible for several reasons. One could be
that the continuous-time signal is not exactly band limited, so that it is not possible to obtain a maximum
frequency causing frequency aliasing in the sampling. Second, the sampling is not done exactly at uniform
times—random variation of the sampling times may occur. Third, the filter required for the exact recovery
is an ideal low-pass filter, which in practice cannot be realized; only an approximation is possible. Although
this indicates the limitations of sampling, in most cases where: (1) the signal is band limited or approx-
imately band limited, (2) the Nyquist sampling rate condition is satisfied in the sampling, and (3) the
reconstruction filter approximates well the ideal low-pass filter, the recovered signal closely approximates
the original signal.

m  For signals that do not satisfy the band-limitedness condition, one can obtain an approximate signal that
satisfies that condition. This is done by passing the non-band-limited signal through an ideal low-pass
filter. The filter output is guaranteed to have as maximum frequency the cut-off frequency of the filter
(see Figure 7.4). Because of the low-pass filtering, the filtered signal is a smoothed version of the original
signal—high frequencies of the signal have been removed. The low-pass filter is called an antialiasing
filter, since it makes the approximate signal band limited, thus avoiding aliasing in the frequency domain.

= In applications, the cut-off frequency of the antialiasing filter is set according to prior knowledge. For
instance, when sampling speech, it is known that speech has frequencies ranging from about 100 Hz to
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about 5 KHz (this range of frequencies provides understandable speech in phone conversations). Thus,
when sampling speech an anti-aliasing filter with a cut-off frequency of 5 KHz is chosen and the sampling
rate is then set to 10,000 samples/sec. Likewise, it is also known that an acceptable range of frequencies
from 0 to 22 KHz provides music with good fidelity, so that when sampling music signals the anti-aliasing
filter cut-off frequency is set to 22 KHz and the sampling rate to 44 K samples/sec or higher to provide
good-quality music.

Origins of the Sampling Theory—Part 1

The sampling theory has been attributed to many engineers and mathematicians. It seems as if mathematicians and
researchers in communications engineering came across these results from different perspectives. In the engineering com-
munity, the sampling theory has been attributed traditionally to Harry Nyquist and Claude Shannon, although other famous
researchers such as V. A. Kotelnikov, E. T. Whittaker, and D. Gabor came out with similar results. Nyquist's work did not deal
directly with sampling and reconstruction of sampled signals but it contributed to advances by Shannon in those areas.
Harry Nyquist was bom in Sweden in 1889 and died in 1976 in the United States. He attended the University of North
Dakota at Grand Forks and received his Ph.D. from Yale University in 1917. He worked for the American Telephone and
Telegraph (AT&T) Company and the Bell Telephone Laboratories, Inc. He received 138 patents and published 12 technical
articles. Nyquist's contributions range from the fields of thermal noise, stability of feedback amplifiers, telegraphy, and
television, to other important communications problems. His theoretical work on determining the bandwidth requirements
for transmitting information provided the foundations for Claude Shannon's work on sampling theory [33].

As Hans D. Luke [44] concludes in his paper “The Origins of the Sampling Theorem,” regarding the attribution of the
sampling theorem to many authors:

This history also reveals a process which is often apparent in theoretical problem in technology or physics: first
the practicians put forward a rule of thumb, then theoreticians develop the general solution, and finally someone
discovers that the mathematicians have long since solved the mathematical problem which it contains, but in
“splendid isolation.”

m Example 7.3

Consider the two sinusoids
x1(t) = cos(R2pt) —0<t<o

x2(t) = cos((20 + 25)1) —o00 <t<o0
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Show that if we sample these signals using Ty = 277/ €25, we cannot differentiate the sampled signals
(i-e., x1(nTs) = x2(nT;)). Use MATLAB to show the above graphically when Q¢ =1 and Q; = 7.
Explain the significance of this.

Solution

Sampling the two signals using Ty = 27/ €2, we have

x1(nTs) = cos(QonTs) —o0o<n<oo

x2(nTs) = cos((§20 + 2o)nTs) —00<n=<o00
but since Q,T; = 2, the sinusoid x; (nT;) can be written as

xy(nTs) = cos((RpTs + 2m)n)
= cos(R20Tsn) = x1(nTs)

The following script shows the aliasing effect when Q¢ = 1 and Q; = 7 rad/sec. Notice that x; (¢) is
sampled satisfying the Nyquist sampling rate condition (25 = 7 > 2Q¢ = 2 rad/sec), while x, (t) is
not (25 =7 < 2(o + ;) = 16 rad/sec).

%% % % % % % % % % % % % % % % % % % % % %6 % % % % % % Y% % Y% Y% % %o % % % % % % %
% Example 7.3 ---Two sinusoids of different frequencies being sampled
% with same sampling period -- aliasing for signal with higher frequency
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
clear all; clf
% sinusoids
omega. 0 = 1;0mega.s = 7;
T =2 % pi/omega_0; t = 0:0.001:T; % a period of x1
x1 = cos(omega_0 * t); x2 = cos((omega_0 + omega_s) * 1);
N = length(t); Ts = 2 x pi/omega_s; % sampling period
M = fix(Ts/0.001); imp = zeros(1,N);
fork =1:M:N — 1.
imp(k) = 1; % sequence of impulses
end
xs =imp. x x1; % sampled signal
plot(t,x1,’b’,t,x2,’k’); hold on
stem(t,imp. * x1,’r’,"filled’);axis([0 max(t) — 1.1 1.1]); xlabel(’t’); grid

Figure 7.5 shows the two sinusoids and the sampled signal that coincides for the two signals. The
result in the frequency domain is shown in Figure 7.6: The spectra of the two sinusoids are different
but the spectra of the sampled signals are identical. |
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7.2.4 Signal Reconstruction from Sinc Interpolation
The analog signal reconstruction from the samples can be shown to be an interpolation using sinc
signals. First, the ideal low-pass filter Hjy(s) in Equation (7.14) has as impulse response

Q)2
T, o sin(rt/Ts)
= — Q= — 1
hiy (1) I / &*d T (7.15)
—Q,/2

which is a sinc function that has an infinite time support and decays symmetrically with respect to the
origin ¢t = 0. The reconstructed signal x;(t) is the convolution of the sampled signal x;(t) and hy, (1),
which is found to be

[e,¢]

xe(0) = [xs % | (1) = f xo(Dhyp(t — T)de

—00
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o8]

- / [Z x(nTy)8(t — nTs)] hyp(t — 7)dt
_ Zx(nTS)sin(rr(t —nTy)/Ts) (7.16)
. 7 (t — nTy) /T

after replacing x;(r) and applying the sifting property of the delta function. The recovered signal is
thus an interpolation in terms of time-shifted sinc signals with amplitudes the samples {x(nTs)}. In
fact, if we let t = kT, we can see that

7 (k —n))

Bt = Y wnty ™ o =)

since
sin(n(k—n))_ 1 k—n=0o0rk=n
nk—n) |0 k#n

This is because the above sinc function by L'Hopital’s rule is shown to be unity when k = n, and it is
0 when k& # n since the sine is zero at multiples of 7. Thus, the values at t = kT; are recovered exactly,
and the rest are interpolated by a sum of sinc signals.

7.2.5 Sampling Simulation with MATLAB

The simulation of sampling with MATLAB is complicated by the representation of analog signals
and the numerical computation of the analog Fourier transform. Two sampling rates are needed:
one being the sampling rate under study, f;, and the other being the one used to simulate the analog
signal, fiim >> f;. The computation of the analog Fourier transform of x(t) can be done approximately
using the fast Fourier transform (FFT) multiplied by the sampling period. For now, think of the FFT
as an algorithm to compute the Fourier transform of a discretized signal.

To illustrate the sampling procedure consider sampling a sinusoid x(t) = cos(27fpt) where fo = 1
KHz. To simulate this as an analog signal we choose a sampling period Ty;;;, = 0.5 x 10~% sec/sample
or a sampling frequency fsi = 20, 000 samples/sec.

No aliasing sampling—If we sample x(t) with a sampling frequency f; = 6000 > 2 f, = 2000 Hz, the
sampled signal y(t) will not display aliasing in its frequency representation, as we are satisfying the
Nyquist sampling rate condition. Figure 7.7(a) displays the signal x(t) and its sampled version y(t),
as well as their approximate Fourier transforms. The magnitude spectrum |X(£2)| corresponds to the
sinusoid x(t), while |Y(2)]| is the first period of the spectrum of the sampled signal (recall the spec-
trum of the sampled signal is periodic of period Qs = 2xf;). In this case, when no aliasing occurs, the
first period of the spectrum of y(t) coincides with the spectrum of x(¢) (notice that as a sinusoid, the
magnitude spectrum |X(€2)| is zero except at the frequency of the sinusoid or +1 KHz; likewise |Y (2)]
is zero except at =1 KHz and the range of frequencies is [—f;/2, fs/2] = [—3, 3] KHz). In Figure 7.7(b)
we show the sinc interpolation of three samples of y(t); the solid line is the interpolated values or the
sum of sincs centered at the three samples. At the bottom of that figure we show the sinc interpola-
tion, for all the samples, obtained using our function sincinterp. The sampling is implemented using
our function sampling.
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No aliasing: sampling simulation of x(t) = cos(2000xrt) using fs = 6000 samples/sec. (a) Plots are of the signal
x(t) and the sampled signal y(t), and their spectra (|Y(2)] is periodic and so a period is shown). (b) The top plot
illustrates the sinc interpolation of three samples, and the bottom plot is the sinc-interpolated signal x,(t) and the
sampled signal. In this case x;(t) is very close to the original signal.

Sampling with aliasing—In Figure 7.8 we show the case when the sampling frequency is f; = 800 <
2f; = 2000, so that in this case we have aliasing. This can be seen in the sampled signal y(¢) in the
top plot of Figure 7.8(a), which appears as if we were sampling a sinusoid of lower frequency. It can
also be seen in the spectra of x(t) and y(t): |X(2)| is the same as in the previous case, but now |Y(€2)|,
which is a period of the spectrum of the sampled signal y(t), displays a frequency of 200 Hz, lower
than that of x(t), within the frequency range [—400, 400] Hz or [—f;/2, f;/2]. Aliasing has occurred.
Finally, the sinc interpolation gives a sinusoid of frequency 0.2 KHz, different from x(t).

Similar situations occur when a more complex signal is sampled. If the signal to be sampled is
x(t) = 2 — cos(fot) — sin(27 fyt) where fo = 500 Hz, if we use a sampling frequency of f; = 6000 > 2
fmax = 2 fo = 1000 Hz, there will be no aliasing. On the other hand, if the sampling frequency is
fs = 800 < 2fmax = 2fo = 1000 Hz, frequency aliasing will occur. In the no aliasing sampling, the
spectrum |Y(€2)| (in a frequency range [—3000, 3000] = [—f;/2, fs/2]) corresponding to a period of
the Fourier transform of the sampled signal y(t) shows the same frequencies as |X(€2)|. The recon-
structed signal equals the original signal. See Figure 7.9(a). When we use f; = 800 Hz, the given
signal x(t) is undersampled and aliasing occurs. The spectrum |Y(£2)| corresponding to a period of
the Fourier transform of the undersampled signal y(t) does not show the same frequencies as |X(£2)|.
The reconstructed signal shown in the bottom right plot of Figure 7.9(b) does not resemble the
original signal.
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Aliasing: sampling simulation of x(t) = cos(20007t) using fs = 800 samples/sec. (a) Plots display the original
signal x(t) and the sampled signal y(¢) (it looks like a lower-frequency signal being sampled). The sprectra of x(t)
and y(t) are shown below (]Y(2)] is periodic and displays a lower frequency than |X(€2)]). (b) Sinc interpolation
for three samples and the whole signal. The reconstructed signal x,(t) is a sinusoid of period 0.5 x 1072 or
200-Hz frequency due to aliasing.

The following function implements the sampling and computes the Fourier transform of the analog
signal and of the sampled signal using the fast Fourier transform. It gives the range of frequencies for
each of the spectra.

function [y,y1,X,fx,Y,fy] = sampling(x,L,fs)
%

% Sampling

% x analog signal

% L length of simulated x

% fs sampling rate

% y sampled signal

% XY magnitude spectra of x,y

% fx,fy frequency ranges for X,Y

%

fsim = 20000; % analog signal sampling frequency
% sampling with rate fsim/fs

delta = fsim/fs;

y1 = zeros(1,L);
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Sampling of x(t) = 2 — cos(500xt) — sin(10007t) with (a) no aliasing (fs = 6000 samples/sec) and (b) with

aliasing (fs = 800 samples/sec).

y1(1:delta:L) = x(1:delta:L);
y = x(1:delta:L);

% analog FT and DTFT of signals

dtx = 1/fsim;
X = fftshift(abs(fft(x))) * dtx;

N = length(X); k = 0:(N — 1); x = 1/N.”k; fx = fx * fsim/1000 — fsim/2000;

dty = 1/fs;
Y = fftshift(abs(fft(y))) * dty;

N = length(Y); k = 0:(N — 1); fy = 1/N.*k; fy = fy * fs/1000 — s/2000;

The following function computes the sinc interpolation of the samples.

function [t,xx,xr] = sincinterp(x,Ts)

%

% Sinc interpolation

% x sampled signal

% Ts sampling period of x

% xx,xr original samples and reconstructed in range t

%
N = length(x)
t = 0:dT:N;

xr = zeros(1,N % 100 + 1);
for k = 1:N,
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xr=xr 4+ X(K) * sinc(t — (k — 1));
end
xx(1:100:N * 100) = x(1:N);
xx = [xx zeros(1,99)];
NN = length(xx)
t=0:NN — 1;t =t % Ts/100;

7.3 THE NYQUIST-SHANNON SAMPLING THEOREM

If a low-pass continuous-time signal x(t) is band limited (i.e., it has a spectrum X(£2) such that X(£2) = 0 for

|| > Qmax, Where Qmax is the maximum frequency in x(t)), we then have:

= x(t) is uniquely determined by its samples x(nTs) = x(t)|;=nT,, 1 =0, £1,£2,---, provided that the
sampling frequency Qs (rad/sec) is such that

Qs > 2Qmax Nyquist sampling rate condition (7.17)

or equivalently if the sampling rate f; (samples/sec) or the sampling period Ts (sec/sample) are given by

= — 7.18
T, - =« ( )

fs
= When the Nyquist sampling rate condition is satisfied, the original signal x(t) can be reconstructed by
passing the sampled signal x,(¢) through an ideal low-pass filter with the following frequency response:
Qs

Ts %QS<Q<7

H(Q) =
) 0 elsewhere

The reconstructed signal is given by the following sinc interpolation from the samples:

sin(z (t — nTs)/Ts)

7 (t —nTs)/Ts (7.19)

xr(t) = Y x(nTy)
n

Remarks

The value 2Qmax is called the Nyquist sampling rate. The value $2;/2 is called the folding rate.

The units of the sampling frequency f; are samples/sec and as such the units of T; are sec/sample.
Considering the number of samples available, every second or the time at which each sample is available
we can get a better understanding of the data storage requirements, the speed limitations imposed by
real-time processing, and the need for data compression algorithms. For instance, music being sampled at
44,000 samples/sec, with each sample represented by 8 bits/sample, for every second of music we would
need to store 44 x 8 = 352 Kbits/sec, and in an hour of sampling we would have 3600 x 44 x 8 Kbits.
If you want better quality, let’s say 16 bits/sample, then double that quantity, and if you want more fidelity
increase the sampling rate but be ready to provide more storage or to come up with some data compression
algorithm. Likewise, if you were to process the signal you would have a new sample every T, = 0.0227
msec, so that any real-time processing would have to be done very fast.
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Origins of the Sampling Theory — Part 2

As mentioned in Chapter 0, the theoretical foundations of digital communications theory were given in the paper “A Math-
ematical Theory of Communication” by Claude E. Shannon in 1948 [51]. His results on sampling theory made possible the
new areas of digital communications and digital signal processing.

Shannon was born in 1916 in Petoskey, Michigan. He studied electrical engineering and mathematics at the University
of Michigan, pursued graduate studies in electrical engineering and mathematics at MIT, and then joined Bell Telephone
Laboratories. In 1956, he returned to MIT to teach.

Besides being a celebrated researcher, Shannon was an avid chess player. He developed a juggling machine, rocket-powered
frisbees, motorized Pogo sticks, a mind-reading machine, a mechanical mouse that could navigate a maze, and a device that
could solve the Rubik's Cube™ puzzle. At Bell Labs, he was remembered for riding the halls on a unicycle while juggling
three balls [23, 52].

7.3.1 Sampling of Modulated Signals

The given Nyquist sampling rate condition applies to low-pass or baseband signals. Sampling of
band-pass signals is used for simulation of communication systems and in the implementation of
modulation systems in software radio. For modulated signals it can be shown that the sampling rate
depends on the bandwidth of the message or modulating signal, not on the absolute frequencies
involved. This result provides a significant savings in the sampling, as it is independent of the car-
rier. A voice message transmitted via a satellite communication system with a carrier of 6 GHz, for
instance, would only need to be sampled at about a 10-KHz rate, rather than at 12 GHz as determined
by the Nyquist sampling rate condition when we consider the frequencies involved.

Consider a modulated signal x(t) = m(t) cos(€2.t) where m(t) is the message and cos(€2.t) is the carrier
with carrier frequency

Q; >> Qmax

where Qnax is the maximum frequency present in the message. The sampling of x(t) with a sampling
period T; generates in the frequency domain a superposition of the spectrum of x(t) shifted in fre-
quency by Q; and multiplied by 1/T;. Intuitively, to avoid aliasing the shifting in frequency should
be such that there is no overlapping of the shifted spectra, which would require that

b4
Q4+ Qmax — s < 2 — Cmax = Qs > 2Qmax or Ty < ——

max
Thus, the sampling period depends on the bandwidth Q. of the message m(t) rather than on the
maximum frequency present in the modulated signal x(t). A formal proof of this result requires the
quadrature representation of band-pass signals typically considered in communication theory [16].

If the message m(t) of a modulated signal x(t) = m(t) cos(£2;) has a bandwidth BHz, x(t) can be reconstructed
from samples taken at a sampling rate

fs > 2B

independent of the frequency . of the carrier cos(£2;).
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m Example 7.4

Consider the development of an AM transmitter that uses a computer to generate the modulated
signal and is capable of transmitting music and speech signals. Indicate how to implement the
transmitter.

Solution

Let the message be m(t) = x(t) + y(t) where x(t) is a speech signal and y(¢) is a music signal. Since
music signals display larger frequencies than speech signals, the maximum frequency of m(t) is
that of the music signals, or fmax = 22 KHz. To transmit m(t) using AM, we modulate it with a
sinusoid of frequency f; > fmax, say fc = 3fmax = 66 KHz.

To satisfy the Nyquist sampling rate condition, the maximum frequency of the modulated sig-
nal would be f; + fmax = (66 + 22) KHz = 88 KHz, and so we would choose T, = 1073/176
sec/sample as the sampling period. However, according to the above results we can also choose
T; = 1/(2B) where B is the bandwidth of m(t) in hertz or B = fnax = 22 KHz, which gives
Ts = 1073 /44 — four times larger than the previous sampling period, so we choose this as the
sampling period.

The analog signal m(t) to be transmitted is inputted into an ADC in the computer, capable of
sampling at 44, 000 samples/sec. The output of the converter is then multiplied by a computer-
generated sinusoid

cos(2rfnTs) = cos(2m x 66 X 10° x (1073/44)11) = cos(3wn) = (—1)"

to obtain the AM signal. The AM digital signal can then be inputted into a DAC and its output sent
to an antenna for broadcasting. |

7.4 PRACTICAL ASPECTS OF SAMPLING

To process analog signals with computers it is necessary to convert analog into digital signals and
digital into analog signals. The analog-to-digital and digital-to-analog conversions are done by ADCs
and DAGCs. In practice, these converters differ from the ideal versions we have discussed so far where
the sampling is done with impulses, the discrete-time samples are assumed representable with infi-
nite precision, and the reconstruction is performed by an ideal low-pass filter. Pulses rather than
impulses are needed, and the discrete-time signals need to be discretized also in amplitude and the
reconstruction filter needs to be reconsidered.

7.4.1 Sample-and-Hold Sampling

In an actual ADC the time required to do the sampling, quantization, and coding needs to be con-
sidered. Therefore, the width A of the sampling pulses cannot be zero as assumed. A sample-and-hold
sampling system takes the sample and holds it long enough for quantization and coding to be done
before the next sample is acquired. The question is then how does this affect the sampling process
and how does it differ from the ideal results obtained before? We hinted at the effects when we
considered the PAM before, except that now the resulting pulses are flat.
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The system shown in Figure 7.10 generates the desired signal. Basically, we are modulating the ideal
sampling signal é7,(t) with the analog input x(t), giving an ideally sampled signal x,(t). This signal
is then passed through a zero-order hold filter, an LTI system having as impulse response h(t) a pulse
of the desired width A < Ts. The output of the sample-and-hold system is a weighted sequence of
shifted versions of the impulse response. In fact, the output of the ideal sampler is x;(t) = x(t)d7,(¢),
and using the linearity and time invariance of the zero-order hold system its output is

Ys(O) = (x5 * h) (1) (7.20)
with a Fourier transform of

Ys(€2) = X (S)H(j2)
- [Tl ZX(Q - st)} H(jQ) (7.21)
Sk

where the term in the brackets is the spectrum of the ideally sampled signal and

- e 2 As/2 _ —As)2
H(j) = T(G —e )s=js2

_ sin(A2/2) 242

= —an (7.22)

is the frequency response of the LTI system.
Remarks

m  Equation (7.20) can be written as

ys(t) = Y x(nToh(t — nTy)

That is, ys(t) is a train of pulses h(t) = u(t) — u(t — A) shifted and weighted by the sample values x(nTs),
a more realistic representation of the sampled signal.
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= Two significant changes due to considering the pulses of width A > 0 in the sampling are:

The spectrum of the ideal sampled signal x(t) is now weighted by the sinc function of the frequency
response H(j2) of the zero-order hold filter. Thus, the spectrum of the sampled signal using the sample-
and-hold system will not be periodic and will decay as Q2 increases.

The reconstruction of the original signal x(t) requires a more complex filter than the one used in the
ideal sampling. Indeed, the concatenation of the zero-order hold filter with the reconstruction filter
should be such that H(s)H(s) = 1, or that H,(s) = 1/H(s).

m A circuit used for implementing the sample-and-hold system is shown in Figure 7.11. In this circuit the
switch closes every T seconds and remains closed for a short time A. If the time constant 1C << A, the
capacitor charges very fast to the value of the sample attained when the switch closes at some nTs, and by
setting the time constant RC >> T, when the switch opens A seconds later, the capacitor slowly discharges.
The cycle repeats providing a signal that approximates the output of the sample-and-hold system explained
before.

m  The DAC also uses a holder to generate an analog signal from the discrete signal coming out of the decoder
into the DAC. There are different possible types of holders, providing an interpolation that will make the
final smoothing of the signal a lot easier. The so-called zero-order hold basically expands the sample
value in between samples, providing a rough approximation of the discrete signal, which is then smoothed
out by a low-pass filter to provide the analog signal.

7.4.2 Quantization and Coding

Amplitude discretization of the sampled signal x(t) is accomplished by a quantizer consisting of a
number of fixed amplitude levels against which the sample amplitudes {x(nTs)} are compared. The
output of the quantizer is one of the fixed amplitude levels that best represents x(nTs) according to
some approximation scheme. The quantizer is a nonlinear system.

Independent of how many levels, or equivalently of how many bits are allocated to represent each
level of the quantizer, there is a possible error in the representation of each sample. This is called
the quantization error. To illustrate this, consider a 2-bit or 22-level quantizer shown in Figure 7.12.
The input of the quantizer are the samples x(nT;), which are compared with the values in the bins
[-2A, —A], [—A,0], [0, A], and [A, 2A], and depending on which of these bins the sample falls in
it is replaced by the corresponding levels —2A, —A, 0, or A. The value of the quantization step A for
the four-level quantizer is

2 max|x(t
A x(0)|

> (7.23)
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Four-level quantizer and coder.

That is, A is assigned so as to cover the possible peak-to-peak range of values of the signal, or its
dynamic range. To each of the levels a binary code is assigned. The code assigned to each of the
levels uniquely represents the different levels [-2A, —A, 0, A]. As to the way to approximate the
given sample to one of these levels, it can be done by rounding or by truncating. The quantizer shown
in Figure 7.12 approximates by truncation—that is, if the sample kA < x(nTs) < (k+ DA, for k=
—2,—1,0, 1, then it is approximated by the level kA.

To see the quantization, coding, and quantization error, let the sampled signal be
x(nTy) = x(O)|i=ny
The given four-level quantizer is such that
kA < x(nTy) < (k+1)A =  &@nT) =kA  k=-2,-1,0,1 (7.24)
where the sampled signal x(nT) is the input and the quantized signal X(nT) is the output. Therefore,

—2A <x(nTy) < —A = x(nTs) = —2A
—A<x(nTy) <0 = XxnTly) =-—-A
0=<x(nTy) <A = x(nTy) =0
A <x(nTy) <2A = x(nTy) = A

To transform the quantized values into unique binary 2-bit values, one could use a code such as

inTy) = —2A = 10
x(nTy) = —A = 1
i(nT) = O0A = 00
inTy) = A = 01

which assigns a unique 2-bit binary number to each of the four quantization levels.

If we define the quantization error as

e(nTy) = x(nTy) — X(nTy)



7.4 Practical Aspects of Sampling a

and use the characterization of the quantizer given in Equation (7.24), we have then that the error
e(nT;) is obtained from

x(nTy) < x(nTs) < x(nTs) + A by subtracting x(nT;) = 0 <enTy) <A (7.25)

indicating that one way to decrease the quantization error is to make the quantization step A very
small. That clearly depends on the quality of the ADC. Increasing the number of bits of the ADC
makes A smaller (see Equation (7.23) where the denominator is 2 raised to the number of bits),
which will make the quantization error smaller.

In practice, the quantization error is considered random, and so it needs to be characterized proba-
bilistically. This characterization becomes meaningful only when the number of bits is large, and the
input signal is not a deterministic signal. Otherwise, the error is predictable and thus not random.
Comparing the energy of the input signal to the energy of the error, by means of the so-called signal-
to-noise ratio (SNR), it is possible to determine the number of bits that are needed in a quantizer to
get a reasonable quantization error.

m Example 7.5

Suppose we are trying to decide between an 8- and a 9-bit ADC for a certain application. The
signals in this application are known to have frequencies that do not exceed 5 KHz. The amplitude
of the signals is never more than 5 volts (i.e., the dynamic range of the signals is 10 volts, so that
the signal is bounded as —5 < x(t) < 5). Determine an appropriate sampling period and compare
the percentage of error for the two ADCs of interest.

Solution

The first consideration in choosing the ADC is the sampling period, so we need to get an ADC
capable of sampling at f; = 1/Ts > 2fmax samples/sec. Choosing f; = 4fmax = 20 K samples/sec,
then T; = 1/20 msec/sample. Suppose then we look at an 8-bit ADC, which means that the quan-
tizer would have 28 = 256 levels so that the quantization step is A = 10/256 volts. If we use the
truncation quantizer given above the quantization error would be

0 < e(nTs) < 10/256

If we find that objectionable we can then consider a 9-bit ADC, with a quantizer of 2° = 512 levels
and the quantization step is A = 10/512 or half that of the 8-bit ADC

0 < e(nTs) <10/512

So that by increasing 1 bit we cut the quantization error in half from the previous quantizer (in
practice, one of the 8 or 9 bits is used to determine the sign of the sampled value). Inputting a signal
of constant amplitude 5 into the 9-bit ADC gives a quantization error of [(10/512)/5] x 100% =
(100/256)% =~ 0.4% in representing the input signal. For the 8-bit ADC it would correspond to a
0.8% error. |
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7.4.3 Sampling, Quantizing, and Coding with MATLAB

The conversion of an analog signal into a digital signal consists of three steps: sampling, quantization,
and coding. These are the three operations an ADC does. To illustrate them consider a sinusoid
x(t) = 4 cos(2xt). Its sampling period, according to the Nyquist sampling rate condition, is

Ts </ Qmax = 0.5 sec/sample

as the maximum frequency of x(t) is Qmax = 2. We let T; = 0.01 (sec/sample) to obtain a sam-
pled signal x;(nTs) = 4 cos(27nTs) = 4 cos(2mn/100), a discrete sinusoid of period 100. The following

script is used to get the sampled x[n] and the quantized x,[n] signals and the quantization error &[n]
(see Figure 7.13).

Sampled signal
4 4
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(a) Sinusoid, (b) sampled sinusoid using Ts = 0.01, (c) quantized sinusoid using four levels, and (d) quantization
error.
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% % % % % % % % % % % % % % % % % % % % % % % % % % %
% Sampling, quantization and coding

9% % % % % % % % % % % % % % % % % % % % % % % % % % %
clear all; clf

% analog signal

t=0:0.01:1; x =4 % sin(2 * pi * 1);

% sampled signal

Ts =0.01; N=length(t); n=0:N — 1;

XS =4 % sin(2 * pi x n * Ts);

% quantized signal

Q=2; % quantization levels is 2Q

[d,y,e] = quantizer(x,Q);

% binary signal

z = coder(y,d)

The quantization of the sampled signal is implemented with the function quantizer which compares
each of the samples x;(nT;) with four levels and assigns to each the corresponding level. Notice the
appproximation of the values given by the quantized signal samples to the actual values of the signal.
The difference between the original and the quantized signal, or the quantization error, &(nTs), is also
computed and shown in Figure 7.13.

function [d,y,e] = quantizer(x,Q)
% Input: x, signal to be quantized at 2Q levels
% Outputs: y quantized signal
% €, quantization error
% d quantum
% USE [d,y,e] = quantizer(x,Q)
%
N = length(x);
d = max(abs(x))/Q;
for k = 1:N,
if X(K)> =0,
y(k) = floor(x(k)/d)*d;
else
if x(K) == min(x),
y(K) = (x(k)/abs(x(k))) * (floor(abs(x(k))/d) * d);
else
y(k) = (x(k)/abs(x(k))) * (floor(abs(x(k))/d) * d + d);
end
end
if y(k) == 2 * d,
yK) =d;
end
end
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The binary signal corresponding to the quantized signal is computed using the function coder which
assigns the binary codes '10’/11°,00’, and ‘01’ to the four possible levels of the quantizer. The result is
a sequence of Os and 1s, each pair of digits sequentially corresponding to each of the samples of the
quantized signal. The following is the function used to effect this coding.

function z1 = coder(y,delta)
% Coder for 4-level quantizer
% input: y quantized signal
% output: z1 binary sequence
% USE z1 = coder(y)
%
z1 ="00’; % starting code
N = length(y);
forn=1:N,
y(n)
if y(n) == delta
z="01;
elseif y(n) == 0
z="00%
elseif y(n) == -delta
z="11%
else
z="10;
end
z1=[z1Zz;
end
M = length(z1);
z1 = z1(3:M) % get rid of starting code

7.5 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO
FROM HERE?

The material in this chapter is the bridge between analog and digital signal processing. The sampling
theory provides the necessary information to convert a continuous-time signal into a discrete-time
signal and then into a digital signal with minimum error. It is the frequency representation of an
analog signal that determines the way in which it can be sampled and reconstructed. Analog-to-
digital and digital-to-analog converters are the devices that in practice convert an analog signal into
a digital signal and back. Two parameters characterizing these devices are the sampling rate and the
number of bits each sample is coded into. The rate of change of a signal determines the sampling
rate, while the precision in representing the samples determines the number of levels of the quantizer
and the number of bits assigned to each sample.

In the following chapters we will consider the analysis of discrete-time signals, as well as the analysis
and synthesis of discrete systems. The effect of quantization in the processing and design of systems
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is an important problem that is left for texts in digital signal processing. We will, however, develop
the theory of discrete-time signals.

PROBLEMS

7.1. Sampling actual signals

Consider the sampling of real signals.

(a) Typically, a speech signal that can be understood over a telephone shows frequencies from about
100 Hz to about 5 KHz. What would be the sampling frequency f; (samples/sec) that would be used
to sample speech without aliasing? How many samples would you need to save when storing an hour
of speech? If each sample is represented by 8 bits, how many bits would you have to save for the hour
of speech?

(b) A music signal typically displays frequencies from 0 up to 22 KHz. What would be the sampling
frequency f; that would be used in a CD player?

(c) If you have a signal that combines voice and musical instruments, what sampling frequency would
you use to sample this signal? How would the signal sound if played at a frequency lower than the
Nyquist sampling frequency?

7.2. Sampling of band-limited signals

Consider the sampling of a sinc signal and related signals.

(a) For the signal x(t) = sin(t)/t, find its magnitude spectrum |X(£2)| and determine if this signal is band
limited or not.

(b) Suppose you want to sample x(t)). What would be the sampling period Ts you would use for the
sampling without aliasing?

(c) For a signal y(t) = x2(t), what sampling frequency f; would you use to sample it without aliasing?
How does this frequency relate to the sampling frequency used to sample x(t)?

(d) Find the sampling period Ts to sample x(t) so that the sampled signal x5(0) = 1, otherwise xs(nTs) = 0
forn # 0.

7.3. Sampling of time-limited signals—MATLAB

Consider the signals x(t) = u(t) — u(t — 1) and y(t) = r(t) — 2r(t — 1) +r(t — 2).

(a) Are either of these signals band limited? Explain.

(b) Use Parseval's theorem to determine a reasonable value for a maximum frequency for these signals
(choose a frequency that would give 90% of the energy of the signals). Use MATLAB.

(c) If we use the sampling period corresponding to y(t) to sample x(t), would aliasing occur? Explain.

(d) Determine a sampling period that can be used to sample both x(t) and y(t) without causing aliasing
in either signal.

7.4. Uncertainty in time and frequency—MATLAB

Signals of finite time support have infinite support in the frequency domain, and a band-limited signal has

infinite time support. A signal cannot have finite support in both domains.

(a) Consider x(t) = (u(t + 0.5) — u(t — 0.5))(1 + cos(2xt)). Find its Fourier transform X(€2). Compute the
energy of the signal, and determine the maximum frequency of a band-limited approximation signal
X(t) that would give 95% of the energy of the original signal.

(b) The fact that a signal cannot be of finite support in both domains is expressed well by the uncertainty
principle, which says that

1
AWMAE) = yr



CHAPTER 7: Sampling Theory

7.5.

7.6.

7.7.

where
0o 0.5
[ 2 |x)|? dt
—0oQ
At) = I

measures the duration of the signal for which the signal is significant in time, and

00 0.5
[ Q2 1X(Q)? dQ

—00

A(Q) =

Ex

measures the frequency support for which the Fourier representation is significant. The energy of
the signal is represented by Ex. Compute A(t) and A(S) for the given signal x(t) and verify that the
uncertainty principle is satisfied.

Nyquist sampling rate condition and aliasing
Consider the signal

x(0) = sin(0.5¢)
0.5t
(a) Find the Fourier transform X(£2) of x(t).
(b) Isx(t) band limited? If so, find its maximum frequency Qmax.
(c) Suppose that Ts = 2. How does Qs relate to the Nyquist frequency 2Qmax? Explain.
(d) What is the sampled signal x(nTs) equal to? Carefully plot it and explain if x(t) can be reconstructed.
Anti-aliasing
Suppose you want to find a reasonable sampling period T; for the noncausal exponential

x(t) = el

(a) Find the Fourier transform of x(t), and plot |X(£2)|. Is x(t) band limited?

(b) Find a frequency Qg so that 99% of the energy of the signal is in —2, < Q < ,.

(c) Ifwelet Q5 =27/Ts = 50, what would be T;?

(d) Determine the magnitude and bandwidth of an anti-aliasing filter that would change the original
signal into the band-limited signal with 99% of the signal energy.

Sampling of modulated signals
Assume you wish to sample an amplitude modulated signal

x(t) = m(t) cos(L2:t)

where m(t) is the message signal and Q. = 27 10% rad/sec is the carrier frequency.

(a) If the message is an acoustic signal with frequencies in a band of [0, 22] KHz, what would be the
maximum frequency present in x(t)?

(b) Determine the range of possible values of the sampling period Ts that would allow us to sample x(t)
satisfying the Nyquist sampling rate condition.

(c) Given that x(t) is a band-pass signal, compare the above sampling period with the one that can be
used to sample band-pass signals.
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7.8. Sampling output of nonlinear system
The input-output relation of a nonlinear system is

y() = x%(t)

where x(¢) is the input and y(t) is the output.

(a) The signal x(t) is band limited with a maximum frequency ), = 2000x rad/sec. Determine if y(¢) is
also band limited, and if so, what is its maximum frequency Qmax?

(b) Suppose that the signal y(t) is low-pass filtered. The magnitude of the low-pass filter is unity and the
cut-off frequency is . = 50007 rad/sec. Determine the value of the sampling period Ts according to
the given information.

(c) Is there a different value for T, that would satisfy the Nyquist sampling rate condition for both x(t)
and y(¢) and that is larger than the one obtained above? Explain.

7.9. Signal reconstruction

You wish to recover the original analog signal x(t) from its sampled form x(nTs).

(a) If the sampling period is chosen to be Ty = 1 so that the Nyquist sampling rate condition is satis-
fied, determine the magnitude and cut-off frequency of an ideal low-pass filter H(jS2) to recover the

original signal and plot them.
(b) What would be a possible maximum frequency of the signal? Consider an ideal and a nonideal low-

pass filter to reconstruct x(t). Explain.
7.10. CD player versus record player
Explain why a CD player cannot produce the same fidelity of music signals as a conventional record player.
(If you do not know what these are, ignore this problem, or get one to find out what they do or ask your
grandparents about LPs and record players!)
7.11. Two-bit analog-to-digital converter—MATLAB
Let x(t) = 0.8 cos(2xt) +0.15, 0 <t < 1, and zero otherwise, be the input to a 2-bit analog-to-digital

converter.
(a) For a sampling period Ts = 0.025 sec determine and plot using MATLAB the sampled signal,

x(nTs) = x(O)|t=nTs
(b) The four-level quantizer (see Figure 1.2) corresponding to the 2-bit ADC is defined as
kA < x(nTs) < (k+ 1A — iZmTs) =kA  k=-2,-1,0,1 (7.26)

where x(nTs), found above, is the input and x(nTs) is the output of the quantizer. Let the quantization
step be A = 0.5. Plot the input-output characterization of the quantizer, and find the quantized output
for each of the sample values of the sampled signal x(nTs).

(c) To transform the quantized values into unique binary 2-bit values, consider the following code:

x(nTs) = —2A — 10
x(nTs) = —-A — 11
x(nTs) = 0A — 00

x(nT)=A — 01

Obtain the digital signal corresponding to x(t).
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CHAPTER 8

Discrete-Time Signals and Systems

It’s like déja-vu,

all over again.

Lawrence “Yogi” Berra (1925)
Yankees baseball player

8.1 INTRODUCTION

As you will see in this chapter, the basic theory of discrete-time signals and systems is very much like
that for continuous-time signals and systems. However, there are significant differences that need to
be understood. Specifically in this chapter we will consider the following contrasting issues:

= Discrete-time signals resulting from sampling of continuous-time signals are only available at
uniform times determined by the sampling period; they are not defined in-between sampling
periods. It is important to emphasize the significance of sampling according to the Nyquist sam-
pling rate condition since the characteristics of discrete-time signals will depend on it. Given the
knowledge of the sampling period, discrete-time signals depend on an integer variable n, which
unifies the treatment of discrete-time signals obtained from analog signals by sampling and those
that are naturally discrete. It will also be seen that the frequency in the discrete domain differs
from the analog frequency. The radian discrete frequency cannot be measured, and depends on
the sampling period used whenever the discrete-time signals result from sampling.

= Although the concept of periodicity of discrete-time signals coincides with that for continuous-
time signals, there are significant differences. As functions of an integer variable, discrete-time
periodic signals must have integer periods. This imposes some restrictions that do not exist in
continuous-time periodic signals. For instance, continuous-time sinusoids are always periodic as
their period can be a positive real number; however, that will not be the case for discrete-time
sinusoids. It is possible to have discrete-time sinusoids that are not periodic, even if they resulted
from the uniform sampling of continuous-time sinusoids.

= Characteristics such as energy, power, and symmetry of continuous-time signals are conceptually
the same for discrete-time signals. Integrals are replaced by sums, derivatives by finite differences,
and differential equations by difference equations. Likewise, one can define a set of basic signals

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00012-0
(© 2011, Elsevier Inc. All rights reserved. 451
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just like those for continuous-time signals. However, some of these basic signals do not display
the mathematical complications of their continuous-time counterparts. For instance, the discrete-
impulse signal is defined at every integer value in contrast with the continuous-impulse response,
which is not defined at zero.

m The discrete approximation of derivatives and integrals provides an approximation of diffe-
rential equations, representing dynamic continuous-time systems by difference equations.
Extending the concept of linear time invariance to discrete-time systems, we obtain a convo-
lution sum to represent LTI systems. Thus, dynamic discrete-time systems can be represented
by difference equations and convolution sums. A computationally significant difference with
continuous-time systems is that the solution of difference equations can be recursively obtained,
and that the convolution sum provides a class of systems that do not have a counterpart in the
analog domain.

8.2 DISCRETE-TIME SIGNALS

A discrete-time signal x[n] can be thought of as a real- or complex-valued function of the integer sample
index n:

A]:T— R ©
n  x[n] (8.1)

The above means that for discrete-time signals the independent variable is an integer n, the sample
index, and that the value of the signal at n, x[n], is either a real- or a complex-value function. Thus,
the signal is only defined at integer values n—no definition exists for values between the integers.

Remarks

m It should be understood that a sampled signal x(nTs) = x(t)|i=nT, is a discrete-time signal x[n] that is a
function of n only. Once the value of T; is known, the sampled signal only depends on n, the sample index.
However, this should not prevent us in some situations from considering a discrete-time signal obtained
through sampling as a function of time t where the signal values only exist at discrete times {nTs}.

m  Although in many situations discrete-time signals are obtained from continuous-time signals by sampling,
that is not always the case. There are many signals that are inherently discrete—think, for instance, of a
signal consisting of the final values attained daily by the shares of a company in the stock market. Such
a signal would consist of the values reached by the share in the days when the stock market opens. This
signal is naturally discrete. A signal generated by a random number generator in a computer would be
a sequence of real values and can be considered a discrete-time signal. Telemetry signals, consisting of
measurements—for example, voltages, temperatures, pressures—from a certain process, taken at certain
times, are also naturally discrete.

m Example 8.1
Consider a sinusoidal signal

x(t) = 3cos2nt+m/4) —00<t< o0
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Determine an appropriate sampling period T according to the Nyquist sampling rate condition,
and obtain the discrete-time signal x[n] corresponding to the largest allowed sampling period.

Solution

To sample x(t) so that no information is lost, the Nyquist sampling rate condition indicates that
the sampling period should be

For the largest allowed sampling period T; = 0.5, we obtain
x[n] = 3 cos2nt+ 7w /4)|=0.5n = 3 cos(mn + m/4) —00 <N <00

which is a function of the integer n. [

m Example 8.2

To generate the celebrated Fibonacci sequence of numbers, {x[n]}, we use the recursive equation

x[n] = x[n — 1] +x[n — 2] n>2
x[0] =0
x[1] =1

which is a difference equation with zero input and two initial conditions. The Fibonacci sequence
has been used to model different biological systems.! Find the Fibonacci sequence.

Solution

The given equation allows us to compute the Fibonacci sequence recursively. For n > 2, we find

x2]=1+0=1
X3 =1+1=2
x[4]=2+1=3
x[5]=3+2=>5

where we are simply adding the previous two numbers in the sequence. The sequence is purely
discrete as it is not related to a continuous-time signal. |

Leonardo of Pisa (also known as Fibonacci) in his book Liber Abaci described how his sequence could be used to model the
reproduction of rabbits over a number of months assuming bunnies begin breeding when they are a few months old.
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8.2.1 Periodic and Aperiodic Signals

A discrete-time signal x[n] is periodic if
m It is defined for all possible values of n, —oo < n < 0.
= There is a positive integer N, the period of x[n], such that

x[n + kN] = x[n] (8.2)

for any integer k.
Periodic discrete-time sinusoids, of period N, are of the form

2nm
x[n]:Acos< N n+9) -0 <N < o0 (8.3)

where the discrete frequency is wg = 2rm/N 1ad, for positive integers m and N, which are not divisible by
each other, and 6 is the phase angle.

The definition of a discrete-time periodic signal is similar to that of continuous-time periodic signals,
except for the period being an integer. That discrete-time sinusoids are of the given form can be easily
shown: Shifting the sinusoid in Equation (8.3) by a multiple k of the period N, we have

x[n + kN =Acos(2nTm(n + EkN) + 9)

2rm
:Acos( N n+2nmk+9>=x[n]

since we add to the original angle a multiple mk (an integer) of 27, which does not change the angle.

Remarks

m  The units of the discrete frequency w is radians. Moreover, discrete frequencies repeat every 2 (i.e.,
® = w ~+ 2wk for any integer k), and as such we only need to consider the range —m < w < w. This is

in contrast with the analog frequency 2, which has rad/sec as units, and its range is from —oo to oo.
m  If the frequency of a periodic sinusoid is

2
w=—m

N

for nondivisible integers m and N > 0, the period is N. If the frequency of the sinusoid cannot be written
like this, the discrete sinusoid is not periodic.

m Example 8.3

Consider the sinusoids
x1[n] = 2 cos(mn — 7 /3)

x2[n] = 3sin(3rn + 7/2) —00 <N < 00
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From their frequencies determine if these signals are periodic, and if so, determine their
corresponding periods.

Solution
The frequency of x; [n] can be written as

2
wl =] = —
2
where m = 1 and N = 2, so that x; [n] is periodic of period N; = 2. Likewise, the frequency of x; [n]
can be written as

=37 =213
w) T 5
where m = 3 and N = 2, so that x;[n] is also periodic of period N, = 2, which can be verified as
follows:

x2[n+ 2] =3sin(3n(n+2) +7/2) = 3sin(3nn + 67 + 7/2) = x[n]|

m Example 8.4

What is true for continuous-time sinusoids—that they are always periodic—is not true for discrete-
time sinusoids. These sinusoids can be nonperiodic even if they result from uniformly sampling a
continuous-time sinusoid. Consider the discrete signal x[n] = cos(n + 7 /4), which is obtained by
sampling the analog sinusoid x(t) = cos(t + 7 /4) with a sampling period Ts = 1 sec/sample. Is x[n]
periodic? If so, indicate its period. Otherwise, determine values of the sampling period, satisfying
the Nyquist sampling rate condition, that when used in sampling x(t) result in periodic signals.

Solution

The sampled signal x[n] = x(t)|;=nT, = cos(n + 7/4) has a discrete frequency w = 1 rad that cannot
be expressed as 2zrm/N for any integers m and N because 7 is an irrational number. So x[n] is not
periodic.

Since the frequency of the continuous-time signal x(¢) is 2 = 1 (rad/sec), then the sampling period,
according to the Nyquist sampling rate condition, should be

Ts < =7

Qs

and for the sampled signal x(t)|=1, = cos(nT;s + 7 /4) to be periodic of period N or
cos((n+ N)Ts + /4) = cos(nTs + /4) is necessary that NT; = 2kx

for an integer k (i.e., a multiple of 2x). Thus, Ts = 2kx /N < 7 satisfies the Nyquist sampling con-
dition at the same time that it ensures the periodicity of the sampled signal. For instance, if we
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wish to have a sinusoid with period N = 10, then Ts = 0.2kx for k chosen so the Nyquist sampling
rate condition is satisfied—that is,

0<Tsy=hkn/5<m sothat 0 <k <5.
From these possible values for k we choose k = 1 and 3 so that N and k are not divisible by each
other and we get the desired period N = 10 (the values k = 2 and 4 would give 5 as the period,
and k = 5 would give a period of 2 instead of 10). Indeed, if we let k = 1, then T; = 0.2 satisfies
the Nyquist sampling rate condition, and we obtain the sampled signal

x[n] = cos(0.2nzw + 7 /4) = cos 27 n+ z
= 2nm +w/4) = — —
10 4

which according to its frequency is periodic of period 10. This is the same for k = 3. |

When sampling an analog sinusoid
x(t) = Acos(Qot + 0) —00o<t< o0 (8.4)

of period Ty = 27/, 2o > 0, we obtain a periodic discrete sinusoid,

2x T,
x[n] = A cos(QpTsn + 0) =Acos< ; 5n+9> (8.5)
0
provided that
T m
S _ 8.6
To - N (8.6)

for positive integers N and m, which are not divisible by each other. To avoid frequency aliasing the sampling
period should also satisfy
b TO

Indeed, sampling a continuous-time signal x(t) using as sampling period Ts, we obtain

x[n] = A cos(RTsn + 6)

2T,
=Acos< " 5n+9>
To

where the discrete frequency is wp = 27 Ts/Ty. For this signal to be periodic we should be able to
express this frequency as 2w m/N for nondivisible positive integers m and N. This requires that

T, N

T, m
be a rational number, or that

mTy = NT; (8.8)
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which says that a period (m = 1) or several periods (m > 1) should be divided into N > 0 segments of
duration T; seconds. If the condition in Equation (8.6) is not satisfied, then the discretized sinusoid
is not periodic. To avoid frequency aliasing the sampling period should be chosen so that

The sum z[n]| = x[n] + y[n] of periodic signals x[n] with period N1, and y[n] with period N is periodic if the
ratio of periods of the summands is rational—that is,

Na_»p

N1 ¢

where p and ¢ are integers not divisible by each other. If so, the period of z[n] is gN; = pN7.

If gN; = pN;, we then have that
z[n+ pN1] = x[n + pN1] + y[n + pNi ]
= x[n] +y[n +qN]
= x[n] +y[n] = z[n]

since pN1 and gN, are multiples of the periods of x[n] and y[n].

m Example 8.5
The signal

z[n] = v[n] + w[n] +y[n]
is the sum of three periodic signals v[n], w[n], and y[n] of periods N; =2, N, =3, and N3 = 4,
respectively. Determine if z|n] is periodic, and if so, determine its period.
Solution

Let x[n] = v[n] + w[n], so that z[n] = x[n] + y[n]. The signal x[n] is periodic since N, /N1 = 3/2isa
rational number and 3 and 2 are non-divisible by each other, and its period is Ny =3N; = 2N, = 6.
The signal z[n] is also periodic since

Ny 6

3
N3 4 2

Its period is N = 2N4 = 3N3 = 12. Thus, z[n] is periodic of period 12, indeed

z[n+ 12] = v[n + 6N1] + w[n + 4N, ]| + y[n 4+ 3N3] = v[n] + w[n] + y[n] = z[n]
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m Example 8.6

Determine if the signal

2T

o0
x[n] = Z X cos(mawgn) wo
m=0

is periodic, and if so, determine its period.

Solution

The signal x[n] consists of the sum of a constant Xy and cosines of frequency

2mm
No

The periodicity of x[n] depends on the periodicity of the cosines. According to the frequency of the

cosines, they are periodic of period Ny. Thus, x[n] is periodic of period Ny. Indeed

Mmwg = m=1,2,...

x[n+ No| = Z X cos(mwo(n + Nop))

m=0

o
= Z X cos(mwon + 2mm) = x[n]
m=0 m

8.2.2 Finite-Energy and Finite-Power Discrete-Time signals
For discrete-time signals, we obtain definitions for energy and power similar to those for continuous-
time signals by replacing integrals by summations.

For a discrete-time signal x[n], we have the following definitions:

o0

Energy: &x = Z |x[n]|2 (8.9)
n=—00
N
Power: Py = lim > lxln]l? (8.10)

N—oo 2N + 1 N

= x|n]is said to have finite energy or to be square summable if ex < co.

x[n] is called absolutely summable if

Z lx[n]| < o0 (8.11)

n=—0oo

= x|n]is said to have finite power if Py < o0.
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m Example 8.7

A “causal” sinusoid, obtained from a signal generator after it is switched on, is

2cos(Qot—m/4) t=>0
x(t) = .
otherwise

The signal x(t) is sampled using a sampling period of Ty = 0.1 sec to obtain a discrete-time signal
x[n] = x()|t=0.1n = 2c0s(0.1Qn —7/4)  n >0

and zero otherwise. Determine if this discrete-time signal has finite energy and finite power and
compare these characteristics with those of the continuous-time signal x(t) when Q¢ = 7 and when
Qo = 3.2 rad/sec (an upper approximation of ).

Solution

The continuous-time signal x(t) has infinite energy, and so does the discrete-time signal x[n], for
both values of €. Indeed, its energy is

o]

&y = Z x[n]2 = Z4cosz(0.190n —7/4) > o0

n=—o0o n=0

Although the continuous-time and the discrete-time signals have infinite energy, they have finite
power. That the continuous-time signal has finite power can be shown as indicated in Chapter 1.
For the discrete-time signal x[n], we have for the two frequencies:

1. For Qo =m, x1[n] = 2cos(zn/10 — 7 /4) = 2 cos(2xn/20 — w/4) for n > 0 and zero other-
wise. Thus, x[n| repeats every Ny = 20 samples for n > 0, and its power is

1 N 1
P, = lim x1[n])? = lim x1[n]/?
T Nooo 2N+ 1 ZN| il N%ozN+1n£_;)| il

1 1 No—1 1 No—1
= lim N|— xi[n])? | = — x1[n])? < oo
N—oo 2N + 1 No ’;) | l[ ]| 2Np n—ZO | 1[ ]| =

power of period, n>0

where we used the causality of the signal (x1[n] = 0 for n < 0), and considered N periods of
x1[n] for n > 0, and for each computed its power to get the final result. Thus, for Q¢ = 7
the discrete-time signal x;[n] has finite power and can be computed using a period for n > 0.
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To find the power we use the trigonometric identity (or Euler’s equation) cos?(9) = 0.5(1 +
cos(20)), and so replacing x1[n], we have

4 No—1  No-1
Py = 2—NOO.5 Z 1+ Z cos(0.27n — 1/2) No =20

n=0 n=0

= 220+0]=1
== =

where the sum of the cosine is zero, as we are adding the values of the periodic cosine over a
period.

For Qo = 3.2, xp[n] = 2 cos(3.2n/10 — 7 /4) for n > 0 and zero otherwise. The signal now does
not repeat periodically after n = 0, as the frequency 3.2/10 (which equals the rational 32/100)
cannot be expressed as 2zm/N (which due to & is an irrational value) for integers m and N.
Thus, in this case we do not have a close form for the power, so we can simply say that the
power is

N
Y 1 2
I%_JE&2N+JHE%VMM|

and conjecture that because the corresponding analog signal has finite power, so would x;[n].
Thus, we use MATLAB to compute the power for both cases.
%9%%%%%%%%% %% %% %% %% % %% %%
% Example 8.7 --- Power
%% % % % % % % % % % % % % % % % % % % % % %

clear all;clf

n = 0:100000;

x2 = 2%c0s(0.1xnx3.2 — pi/4); % non-periodic for positive n
x1 = 2xcos(0.1xnxpi — pi/4); % periodic for positive n

N = length(x1)

Px1 = sum(x1.2)/(2«N+1) % power of x1

Px2 = sum(x2.2)/(2«N+1) % power of x2

P1 = sum(x1(1:20)."2)/(20); %power in period of x1

The signal x;[n] in the script has unit power and so does the signal x,[n] when we consider
100,001 samples. The two signals and their squared magnitudes are shown in Figure 8.1. H

m Example 8.8

Determine if a discrete-time exponential
x[n] = 2(0.5)" n>0

and zero otherwise, has finite energy, finite power, or both.
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Solution
The energy is given by
o o
4 16
gx=Y 4(052"=4) (025" = ——— = —
* '; 0.5 n;( ) 1-025 3

thus, x[n] is a finite-energy signal. Just as with continuous-time signals, a finite-energy signal is a
finite-power (actually zero power) signal. |

8.2.3 Even and Odd Signals
Time shifting and scaling of discrete-time signals are very similar to the continuous-time cases, the
only difference being that the operations are now done using integers.

A discrete-time signal x[n] is said to be

m  Delayed by N (an integer) samples if x[n — N] is x[n] shifted to the right N samples.
m Advanced by M (an integer) samples if x[n + M] is x[n] shifted to the left M samples.
m  Reflected if the variable n in x[n] is negated (i.e., x[—n]).

The shifting to the right or the left can be readily seen by considering where x[0] is attained. For x[n —
N], this is when n = N (i.e., N samples to the right of the origin), or x[n] is delayed by N samples.
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Likewise, for x[n 4+ M| the x[0] appears advanced by M samples, or shifted to the left (i.e., when
n = —M). Negating the variable n flips over the signal with respect to the origin.

m Example 8.9

A triangular discrete pulse is defined as

n 0<n<10
0 otherwise

x[n] = {

Find an expression for y[n] = x[n+ 3] 4+ x[n — 3] and z[n] = x[—n] + x[n] in terms of n and
carefully plot them.

Solution

Replacing n by n 4+ 3 and n — 3 in the definition of x|n|, we get the advanced and delayed signals

n+3 —-3<n<7?

xn+3] = {O otherwise

and
n—3 3<n<13
0 otherwise

so that when added, we get

n+3 —-3<n<2

2n 3<n<7
yIn] =x[n+3]+xn—-3]= H-3 8<n<13
0 otherwise

Likewise, we have that

n 1<n<10
n=20
-n —-10<n<-1
0 otherwise

z[n] = x[n] + x[—n] =

The results are shown in Figure 8.2. |

m Example 8.10

We will see that in the convolution sum we need to figure out how a signal x[n — k] behaves as a
function of k for different values of n. Consider the signal

E 0<k<3
0 otherwise

x[k] = {



FIGURE 8.2

Generation of (a) y[n] = x[n + 3] + x[n — 3] and (b) z[n]| = x[n]| + x[—n].
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Obtain an expression for x[n — k] for —2 < n < 2 and determine in which direction it shifts as n
increases from —2 to 2.

Solution

Although x[n — k], as a function of k, is reflected it is not clear if it is advanced or delayed as n
increases from —2to 2. If n =0,

-k -3<k<0
x| =] = {O otherwise

For n # 0, we have that
n—k n—3<k<n

x[n — k| = {0 otherwise

As n increases from —2 to 2 the supports of x[n — k] move to the right. For n = —2 the support of
x[—2 — k] is =5 < k < —2, while for n = 0 the support of x| —k] is —3 < k < 0, and for n = 2 the
support of x[2 — k] is —1 < k < 2, each shifted to the right. [ |

We can thus use the above to define even and odd signals and obtain a general decomposition of any
signal in terms of even and odd signals.

Even and odd discrete-time signals are defined as

x[n] iseven: <& x[n] = x[—n] (8.12)
x[n] isodd: <  x[n] = —x[—n] (8.13)

Any discrete-time signal x[n] can be represented as the sum of an even and an odd component,

] = 3 (<l +x{=n) + 3 (sln] —x{-nl)

Xe[n] Xo[n]

= Xe[n] + xo[n] (8.14)

The even and odd decomposition can be easily seen. The even component x.[n] = 0.5(x[n] 4+ x[—n])
is even since x,[—n| = 0.5(x[—n] + x[n]) equals x.[n], and the odd component x,[n] = 0.5(x[n] —
x[—n]) is odd since x,[—n] = 0.5(x[—n] — x[n]) = —xo[n].

m Example 8.11
Find the even and the odd components of the discrete-time signal

4—-n 0<n<4
0 otherwise

x[n] = {
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Solution
The even component of x[n] is given by
Xe[n] = 0.5(x[n] + x[—n])

When n = 0 then x,[0] = 0.5 x 2x[0] = 4, when n > 0 then x,[n] = 0.5x[n], and when n < 0 then
Xe[n] = 0.5x[—n], giving
2405n -4<n<-1

)4 n=20
Y[ =97 o050 1<n<a4
0 otherwise

The odd component
Xo[n] = 0.5(x[n] — x[—n])
gives 0 when n = 0, 0.5x[n] for n > 0, and —0.5x[—n] when n < 0, or

—-2—-05n —-4<n=<-1

xoln] = 0 n=20
T 2-05n 1<n<4
0 otherwise
The sum of these two components gives x|n]. |

Remarks Expansion and compression of discrete-time signals is more complicated than in the continuous-
time signals. In the discrete domain, expansion and compression can be related to the change of the sampling
period in the sampling. Thus, if a continuous-time signal x(t) is sampled using a sampling period Ts, by chang-
ing the sampling period to MT; for an integer M > 1, we obtain fewer samples, and by changing the sampling
period to Ts/L for an integer L > 1, we increase the number of samples. For the corresponding discrete-time
signal x[n], increasing the sampling period would give x|Mn], which is called the downsampling of x[n] by
M. Unfortunately, because the argument of discrete-time signals must be integers, it is not clear what x|n/L]
is unless the values for n are multiples of L (i.e., n = £0, £L, 2L, ...) without a clear definition when n
takes other values. This leads to the definition of the upsampled signal

x[n/L] n==40,%L, +2L,...

xu[n] = {O otherwise (8.15)

To replace the zero entries with the values obtained by decreasing the sampling period we need to low-pass filter
the upsampled signal. MATLAB provides the functions decimate and interp to implement the downsampling
and upsampling without losing information due to possible frequency aliasing. In Chapter 10, we will continue
the discussion of these operations including their frequency characterization.

8.2.4 Basic Discrete-Time Signals

The representation of discrete-time signals via basic signals is simpler than in the continuous-time
domain. This is due to the lack of ambiguity in the definition of the impulse and the unit-step
discrete-time signals. The definitions of impulses and unit-step signals in the continuous-time
domain are more abstract.
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Discrete-Time Complex Exponential

Given complex numbers A = |Alé? and « = |a|éf®0, a discrete-time complex exponential is a signal of
the form

x[n] = Aa"
— |A||a|nej(a)0n+9)

= |A||e|" [cos(wgn + 0) + jsin(wgn + 6)] (8.16)

where wq is a discrete frequency in radians.

Remarks

m  The discrete-time complex exponential looks different from the continuous-time complex exponential. This
can be explained by sampling the continuous-time complex exponential

x(t) = Ael TR0
or simplicity we let A be real) using as sampling period Ts. The sampled signal is
plicity 4 piing p p gn
x[n] — x(nTS) — Ae(—anTs—&-onnTs) — A(e—aTs)nej(QoTs)n
= Ag" 0"

where we let o = e~ and wy = Qo Ts.
m  Just as with the continuous-time complex exponential, we obtain different signals depending on the chosen
parameters A and «. For instance, the real part of x[n] in Equation (8.16) is a real signal

8[n] = Relx[n]] = |Alle|" cos(won + 6)

where when || < 1 it is a damped sinusoid, and when |«| > 1 it is a growing sinusoid (see Figure 8.3).
If « = 1 then the above signal is a sinusoid.
m It is important to realize that for « > 0 the real exponential

x[n] = (—a)" = (=1)"a" = a" cos(zn)

m Example 8.12

Given the analog signal
x(t) = e~ cos(Qot)u(t)

determine the values of a > 0, o, and T; that permit us to obtain a discrete-time signal

y[n] = a" cos(won) n>0
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(a) Real exponential x1 [n] = 0.8",x3[n] = 1.25", and (b) modulated exponential y1 [n] = x1[n] cos(rn) and
y2lnl = x2[n] cos(n).

and zero otherwise. Consider the case when « = 0.9 and wy = 7 /2. Find a, ¢, and T that will
permit us to obtain y[n] from x(t) by sampling. Plot x[n] and y[n] using MATLAB.

Solution

Comparing the sampled continuous-time signal x(nTs) = (e~%T%)" cos((oTs)n)u[n] with y[n] we
obtain the following two equations:

o = e—aTS

wo = QLoT;

with three unknowns (g, Qo, and T5), so there is no unique solution. According to the Nyquist
sampling rate condition,

Is < —
max
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Assuming the maximum frequency is Qmax = NQo for N > 2 (since the signal is not band limited
the maximum frequency is not known; to estimate it we could use Parseval’s result as indicated in
Chapter 7, instead we are assuming that it is a multiple of Q¢), if we let T; = 7 /NQ after replacing
it in the above equations, we get

o = e—an/NQg

wo = Q()JT/NQO = TL’/N
If we want @ = 0.9 and wy = 7/2, we have that N = 2 and
2Q
a= ——010g0.9
i1

for any frequency Q¢ > 0. For instance, if Q¢ = 27, then a = —410g 0.9 and Ts = 0.25. Figure 8.4
displays the continuous- and the discrete-time signals generated using the above parameters. The
following script is used. The continuous-time and the discrete-time signals coincide at the sample
times.

%%9%%%%%%% % %% % %% %%% % %%

% Example 8.12

%% % % % % % % % % % % % % % % % % % % %

a = —4x%l0g(0.9);Ts = 0.25; % parameters

alpha = exp(—axTs);

n = 0:30; y = alpha.n.xcos(pixn/2); % discrete-time signal

t = 0:0.001:max(n)*Ts; X = exp(—axt).xcos(2*pixt); % analog signal

stem(n, y, 'r’); hold on

plot(t/Ts, x); grid; legend('y[n]’, 'x(t)’); hold off

—o y[n]
0.8 — x(0|]

o -

ozll 1A

= f

s T f

v

-0.4 \ / u

FIGURE 8.4 0.6 \
Determination of parameters for a -0.8
continuous-time signal x(t) that ]
when sampled gives a desired 0 5 10 15 20 25 30
discrete-time signal y[n]. t/Tg
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m Example 8.13

Show how to obtain the discrete-time exponential x[n] = (—1)" for n > 0 and zero otherwise, by
sampling a continuous-time signal x(t).

Solution

Because the values of x[n] are 1 and —1, x[n] cannot be generated by sampling a real exponential
signal e~%u(t); indeed, e* > 0 for any values of a and t. The discrete signal can be written as

x[n] = (=1)" = cos(n)
forn > 0. If we sample an analog signal x(t) = cos(€pt)u(t) with a sampling period Ts, we get
x[n] = x(nTs) = cos(QonTs) = cos(mrn) n>0
and zero otherwise. Thus, QT =7, giving Ts = 71/ Q. For instance, for Qo = 27, then Ty =0.5. B

Discrete-Time Sinusoids
Discrete-time sinusoids are a special case of the complex exponential. Letting o = ¢° and A = |A|e/?,
we have according to Equation (8.16),

x[n] = Aa" = |A| @D = |A| cos(won + 0) + jIA| sin(won + 6) (8.17)

so the real part of x[n] is a cosine, while the imaginary part is a sine. As indicated before, discrete
sinusoids of amplitude A and phase shift 6 are periodic if they can be expressed as

A cos(won + 0) = Asin(won + 6 + 7 /2) —00 <N <00 (8.18)

where wy = 27rm/N rad is the discrete frequency for integers m and N > 0, which are not divisible
by each other. Otherwise, discrete-time sinusoids are not periodic.

Because w is given in radians, it repeats periodically with 27 as the period—that is,
w=w+2nrk k integer (8.19)

To avoid this ambiguity, we will let —7 < @ < 7 as the possible range of discrete frequencies. This is
possible since

_ {a) — 2wk when o > 27, forsomek > 0 integer (8.20)

T lo-2r 0<w<27

See Figure 8.5. Thus, sin(37n) equals sin(rrn), and sin(1.57n) equals sin(—0.57n) = —sin(0.57n).
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w=r/2,57/2,97/2 - - - =7/2

w=nr,3n,51--=n1=-1 <> w=0, 2r, 4r, --- =0

FIGURE 8.5
Discrete frequencies . w=37/2, Tnl2, N 7/2, - = -7/2

m Example 8.14

Consider the following four sinusoids:

() x1[n] = sin(0.17n)
(b) x2[n] = sin(0.27n)
(c) x3[n] = sin(0.67rn)
(d) x4[n] = sin(0.77n)
Find if they are periodic, and if so, determine their periods. Are these signals harmonically

related? Use MATLAB to plot these signals from n = 0, ..., 40. Comment on which of these signals
resemble sampled analog sinusoids.

Solution

To find if they are periodic, rewrite the given signals as follows indicating that the signals are
periodic of periods 20, 10, 10, and 20:

= sin(0.1xn) = sin | 2
(a) x1[n] = sin(0.1wn) = sin (%n>

(b) x2[n] = sin(0.27rn) = sin (%n)

. . 2w
(c) x3[n] = sin(0.6rn) = sin (1—0311)

d =sin(0.7 = si 27-[7
(d) x4[n] = sin(0.77rn) = sin (% n)

If we let w; = 277/20, the frequencies of x;[n], x3[n], and x4[n] are 2w;, 6w, and 7w, respectively;
thus they are harmonically related. Also, one could consider the frequencies of x1[n] and x4[n]
harmonically related (i.e., the frequency of x4[n] is seven times that of x1[n]), and likewise the
frequencies of x,[n] and x3|n] are also harmonically related, with the frequency of x3[n] being
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FIGURE 8.6
Periodic signals xj[n], (@) i=1,(b) i=2,(c) i = 3, and (d) i = 4, given in Example 8.14.

three times that of x;[n]. When plotting these signals using MATLAB, the first two resemble analog
sinusoids but not the other two. See Figure 8.6. |

Remarks

m  The discrete-time sine and cosine signals, as in the continuous-time case, are out of phase 7 /2 radians.

= The discrete frequency w is given in radians since n, the sample index, does not have units. This can also
be seen when we sample a sinusoid using a sampling period T so that

cos(Q20t) |i=n1s = c0s(29Tsn) = cos(won)

where we defined wo = QoTs, and since Qo has rad/sec as units and T has seconds as units, then wo has
radians as units.

m  The frequency Q2 of analog sinusoids can vary from 0 (dc frequency) to co. Discrete frequencies w as
radian frequencies can only vary from 0 to w. Negative frequencies are needed in the analysis of real-
valued signals; thus —oo < Q < oo and — < w < 7. A discrete-time cosine of frequency 0 is constant

for all n, and a discrete-time cosine of frequency w varies from —1 to 1 from sample to sample, giving the
largest variation possible for the discrete-time signal.
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Discrete-Time Unit-Step and Unit-Sample Signals

The unit-step u[n] and the unit-sample §[n] discrete-time signals are defined as

1 n>0

uln] = {0 5 <0 (8.21)
1 n=0

olnl = {0 otherwise (8.22)

These two signals are related as follows:

8[n] = u[n] —u[n — 1] (8.23)
uln] =Y sln—kl= > &m] (8.24)
k=0 m=—00

It is easy to see the relation between the two signals u[n] and §[n]:

8[n] = u[n] —u[n — 1]
uln] =8[n]+d8n—1]+---

n

=Y 8[n—kl= > 8m|
k=0

m=—oQ

where the last expression is obtained by a change of variable, m = n — k. These two equations should
be contrasted with the ones for u(t) and §(t). Instead of the derivative relation §(t) = du(t)/dt, we
have a difference relation, and instead of the integral connection

t

u(t) = f S(r)dr

—00
we now have a summation relation between u[n] and §[n].

Remarks Notice that there is no ambiguity in the definition of u[n] or 8[n] as there is for their continuous-
time counterparts u(t) and 8(t). Moreover, the definitions of these functions do not depend on u(t) or §(t),
and u[n] and §|n] are not sampled versions of u(t) and 5(t).

Generic Representation of Discrete-Time Signals

Any discrete-time signal x[n] is represented using unit-sample signals as

]

xnl= D" x[k]s[n — k] (8.25)

k=—o00
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The representation of any signal x[n] in terms of §[n] results from the sifting property of the unit-sample
signal:

x[n]é[n — no] = x[no]8[n — no|
which is due to

1 n=ng

8[n —no] ={

0 otherwise
Thus, considering x[n] a sequence of samples

. x[—1] x[0] x[1] ...

attimes... —1, 0, 1,..., we can write x[n] as
x[n] = -+ x[-1]8[n + 1] + x[0]8[n] + x[1]8[n — 1] + - - -
= i x[k]8[n — k]

The generic representation (Eq. 8.25) of any signal x[n] will be useful in finding the output of a
discrete-time linear time-invariant system.

m Example 8.15

Use the generic representations in terms of unit-sample signals to represent the ramp signal r[n]
defined as

r[n] = nu[n]

and from it show that

rn) =Y (n—m)— Y (n—m)
m=0 m=1
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Solution

Using the unit-sample signal generic representation, we have

r[n] = i (kulk])S[n — k] = ik(S[ﬂ —kl=08[n]+18[n—1]+28[n—2]+---
k=—00 k=0

Letting m = n — k, we write the above equation as

n

rlnl= ) (n—m)s[m| =

(n — m)(u[m] — u[m —1])

=Z(n—m)—Z(n—m):n—i—Z(n—m)—Z(n—m):n n>0
m=0 m=1 m=1 m=1

Forn < 0, r[n] = 0. ]

m Example 8.16

Consider a discrete pulse

1 0<n<N-1
0 otherwise

ihnl = |
Obtain representations of x[n] using unit-sample and unit-step signals.
Solution
The signal x[n] can be represented as
N—-1
xn] = 8[n—kl
k=0

and using §[n] = u[n] — u[n — 1], we obtain a representation of the discrete pulse in terms of unit-
step signals,

N-1

x[n] = Z(u[n —kl—uln—k—1]) = ([n] —u[n—1]) + (u[n — 1] —u[n — 2])
k=0
+---—u[n—N]

=u[n] —u[n — N]J

because of the cancellation of consecutive terms. [ |
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m Example 8.17

Consider how to generate a train of triangular, discrete-time pulses t[n], which is periodic of period
N = 11. A period of t|n] is

n 0<n<5
t[n]=3-n+10 6<n<10
0 otherwise

Find then an expression for its finite difference d[n] = t[n] — t[n — 1].

Solution
The periodic signal can be generated by adding shifted versions of t[n], or

tl]=---+tn+ U]+ n]+cn-1]+--- = i t[n — 11k

k=—00

The finite difference d[n] is then

d[n] = t[n] — t[n — 1]
= i (t[n — 11k] — z[n — 1 — 11k])
k=—00

The signal d[n] is also periodic of the same period N = 11 as t[n]. If we let

1 0<n<5
silnl =t[n]—t[n—-1]=13-1 6<n<10
0 otherwise
then

[e.e]

dln] = Z s[n — 11k]|

k=—o00

When sampled, these two signals look very much like the continuous-time train of triangular
pulses, and its derivative. [ |

m Example 8.18

Consider the discrete-time signal

y[n] =3r(t+3) —6r(t+ 1) + 3r(t) — 3u(t — 3)|1=0.15n
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obtained by sampling a continuous-time signal formed by ramp and unit-step signals with a
sampling period Ty = 0.15. Write MATLAB functions to generate the ramp and the unit-step signals
and obtain y[n]. Then write a MATLAB function that provides the even and the odd decomposition
of y[n].

Solution

The real-valued signal is obtained by sequentially adding the different signals as we go from —oco

to oo:
0 t< -3
3rt+3)=3t+9 —3<t<-1
y@O) =13t+9—-06r¢t+1)=-3t+3 —-1<t<0
—3t+3+4+3r(t)=3 0<t<3
3—-3=0 t>3

The three functions ramp, ustep, and evenodd for this example are shown below. The following
script shows how they can be used to generate the ramp signals, with the appropriate slopes and
time shifts, as well as the unit-step signals with the desired delay, and then how to compute the
even and the odd decomposition of y[n].

% % % % % % % % % % % % % % % % % % % %

% Example 8.18

9% % % % % % % % % % % % % % % % % % % %

Ts = 0.15; % sampling period

t = —5:Ts:5; % time support

y1 =ramp(t, 3, 3); y2 = ramp(t, —6, 1); y3 = ramp(t, 3, 0); % ramp signals
y4 = —3xustep(t, —3); % unit-step signal

y=y1 +y2 +y3 +vy4,

[ze, zo] = evenodd(t, y);

We choose as support —5 < t < 5 for the continuous-time signal y(t), which translates into a sup-
port =5 < 0.15n < 50r —5/0.15 < n < 5/0.15 for the discrete-time signal. Since the limits are not
integers, to make them integers (as required because n is an integer) we use the MATLAB function
ceil to find integers larger than —5/0.15 and 5/0.15 giving a range [—33, 33]. This is used when
plotting y[n].

The following function generates a ramp signal for a range of time values, for different slopes and
time shifts.

function y = ramp(t, m, ad)

% ramp generation

% t: time support

% m: slope of ramp

% ad : advance (positive), delay (negative) factor
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N = length(t);
y = zeros(1, N);
fori=1:N,
if t()> = —ad,
y(i) = mx(t() + ad);
end
end

Likewise, the following function generates unit-step signals with different time shifts (notice the
similarities with the ramp function).

function y = ustep(t, ad)

% generation of unit step

% t: time support

% ad : advance (positive), delay (negative)

N = length(t);
y = zeros(1, N);
fori=1:N,
if t() >= —ad,
() =1;
end
end

Finally, the following function can be used to compute the even and the odd decomposition of a
discrete-time signal. The MATLAB function flliplr reflects the signal as needed in the generation of
the even and the odd components.

function [ye, yo] = evenodd(y)

% even/odd decomposition

% NOTE: the support of the signal should be
% symmetric about the origin

% y: analog signal

% ye, yo: even and odd components

yr = fliplr(y);

ye = 0.5x(y + yr);

yo = 0.5y — yn);

The results are shown in Figure 8.7. The discrete-time signal is given as

0 n<-21

0.45n+9 -20<n<-6
y[n]=1-045n+3 —-7<n<0

3 1<n<19

0 n> 20
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yln]

FIGURE 8.7
(a) Discrete-time signal, and (b) even and (c) odd components.

8.3 DISCRETE-TIME SYSTEMS

Ze[n)]
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Just as with continuous-time systems, a discrete-time system is a transformation of a discrete-time
input signal x[n] into a discrete-time output signal y[n]—that is,

yInl = S{x[n]}

(8.26)

Just as we were when we studied the continuous-time systems, we are interested in dynamic systems

S{.} having the following properties:

Linearity
Time invariance

Stability

Causality

A discrete-time system S is said to be

Linear: If for inputs x[n] and v[n] and constants a and b, it satisfies the following

Scaling: S{ax[n]} = aS{x|n]}
Additivity: S{x[n] + v[n]} = S{x[n]} + S{v[n]}

or equivalently if superposition applies—that is,

Time-invariant: If for an input x[n] with a corresponding output y[n] = S{x[n]}, the output corresponding

Stax|n] + bv[n]} = aS{x{n]} + bS{v[n]}

to a delayed or advanced version of x[n], x[n & M], is y[n + M| = S{x[n £ M|} for an integer M.

(8.27)
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m Example 8.19

A square-root computation system. The input-output relation characterizing a discrete-time sys-
tem is nonlinear if there are nonlinear terms that include the input x|n], the output y[n], or both
(e.g., a square root of x[n], products of x[n] and y[n], etc.). Consider the development of an iterative
algorithm to compute the square root of a positive real number «. If the result of the algorithm
is y[n] as n — oo, then y?[n] = « and likewise y*[n — 1] = «, thus y[n] = 0.5(y[n — 1] +y[n — 1]).
Replacing y[n — 1] = «/y[n — 1] in this equation, the following difference equation, with some
initial condition y[0], can be used to find the square root of «:

y[n] = 0.5 [Y[n_1]+y[n()[— 1]} n>0

Find recursively the solution of this difference equation. Use the results of finding the square roots
of 4 and 2 to show the system is nonlinear. Solve the difference equation and plot the results for
o = 4, 2 with MATLAB.

Solution

The given difference equation is first order, nonlinear (expanding it you get the product of y[n]
with y[n — 1] and y?[n — 1], which are nonlinear terms) with constant coefficients. This equation
can be solved recursively for n > 0 by replacing y[0] to get y[1], and use this to get y[2] and so
on—that is,

y[1]=0.5 y[0]+ [O]
y[2] =0.5 y[ I+ — [1]

y[3]=0.5 y[ |+ ==

[2]

For instance, let y[0] = 1 and « = 4 (i.e., we wish to find the square root of 4),
y[0] =1

y[1]=0.5 [1 + ﬂ =25

4
y[2] =05 [2.5 + 2—] =2.05

]
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which is converging to 2, the square root of 4 (see Figure 8.8). Thus, as indicated before, when
n — oo, then y[n] = y[n — 1] =Y, for some value Y, which according to the difference equation
satisfies the relation Y = 0.5Y 4+ 0.5(4/Y) or Y = /4 = 2.

Suppose then that the input is @ = 2, half of what it was before. If the system is linear, we should
get half the previous output according to the scaling property. That is not the case, however. For
the same initial condition y[0] = 1, we obtain recursively for «[n] = 2u[n — 1]:

y[o] =1
y[1]=05[1+2] =15

2
y[2] = 0.5 [1.5 + E] = 1.4167

This solution is clearly not half of the previous one. Moreover, as n — oo, we expect y[n] =
y[n — 1] =Y, for Y that satisfies the relation Y = 0.5Y 4 0.5(2/Y) or Y = +/2 = 1.4142, so that
the solution is tending to +/2 and not to 2 as it would if the system were linear. Finally, if we add



8.3 Discrete-Time Systems a

the signals in the above two cases and compare the resulting signal with the one we obtain when
finding the square root of the previous two values of «, 2 and 4, they do not coincide. The additive
condition is not satisfied either, so the system is not linear. |

8.3.1 Recursive and Nonrecursive Discrete-Time Systems

Depending on the relation between the input x[n| and the output y[n] two types of discrete-time systems of
interest are:
m  Recursive system:

N-1 M—1
y[n]:—Zaky[n—k]—i— mex[n—m] n>0
k=1 m=0

initial conditions y[—-k], k=1,...,N—1 (8.28)

This system is also called infinite-impulse response (1IR).
m  Nonrecursive system:

M—-1
ylnl =Y bmx[n — m] (8.29)
m=0

This system is also called finite-impulse response (FIR).

The recursive system is analogous to a continuous-time system represented by a differential equation.
For this type of system the discrete-time input x[n] and the discrete-time output y[n] are related by an
(N — 1)th-order difference equation. If such a difference equation is linear, with constant coefficients,
zero initial conditions, and the input is zero for n < 0, then it represents a linear and time-invariant
system. For these systems the output at a present time n, y[n], depends or recurs on previous values
of the output {y[n — k], k=1,...,N — 1}, and thus they are called recursive. We will see that these
systems are also called infinite-impulse response or IIR because their impulse responses are typically of
infinite length.

On the other hand, if the output y[n] does not depend on previous values of the output, but only
on weighted and shifted inputs {b,x[n — m|], m =0,..., M — 1}, the system is called nonrecursive. We
will see that the impulse response of nonrecursive systems is of finite length; as such, these systems
are also called finite impulse response or FIR.

m Example 8.20

Moving-average discrete filter: A third-order moving-average filter (also called a smoother since
it smooths out the input signal) is an FIR filter for which the input x[n] and the output y[n] are
related by

ylnl = S ln] +xn = 1] +xln — 2]

Show that this system is linear time invariant.
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Solution

This is a nonrecursive system that uses a present sample, x[n], and two past values, x[n — 1] and
x[n — 2], of the input to get an average, y[n], at every n. Thus, its name, moving-average filter.

Linearity: If we let the input be ax;[n] + bx,[n], and assume that {y;[n], i = 1, 2} are the correspond-
ing outputs to {x;[n], i = 1,2}, the filter output is

%[(axl [n] + bxa[n])+(ax1[n — 1] + bxa[n — 1])+(ax1[n — 2] + bxa[n — 2])] = ay1[n] + by [n]

That is, the system is linear.

Time invariance: If the input is x1 [n] = x[n — N], the corresponding output to it is

%(xl[n] +x1[n—1]4+x1[n-2]) = %(x[n—N] +x[n—N—-1]4+x[n—N—-2])
=y[n—NI

That is, the system is time invariant. |

m Example 8.21

Autoregressive discrete filter: The recursive discrete-time system represented by the first-order
difference equation (with initial condition y[—1])

Vinl =ayln = 1] +bx[n] ~ nx=0, y[-1]
is also called an autoregressive (AR) filter. “Autoregressive” refers to the feedback in the output—that
is, the present value of the output y[n] depends on its previous value y[n — 1].
Find recursively the solution of the difference equation and determine under what conditions the
system represented by this difference equation is linear and time invariant.
Solution
Let’s first discuss why the initial condition is y[—1]. The initial condition is the value needed to
compute y[0], which according to the difference equation

V0] = ay[—=1] + bx[0]

is y[—1] since x[0] is known.

Assume that the initial condition is y[—1] = 0, and that the input is x[n] =0 for n < 0 (i.e,
the system is not energized for n < 0). The solution of the difference equation when the input
x[n] is not defined can be found by a repetitive substitution of the input-output relationship.
Thus, replacing y[n — 1] = ay[n — 2] + bx[n — 1] in the difference equation, and then replacing
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y[n — 2] = ay[n — 3] + bx[n — 2], and so on, we obtain

y[n] = a(ay[n — 2] + bx[n — 1]) + bx[n]
= a(a(ay[n — 3] + bx[n — 2])) + abx[n — 1] + bx[n]

= ...a’bx[n — 3] + a’bx[n — 2] + abx[n — 1] + bx[n]

until we reach x[0]. The solution can be written as
n
yInl = bax[n — k] (8.30)
k=0

which we will see in the next section is the convolution sum of the impulse response of the system
and the input.

To see that Equation (8.30) is actually the solution of the given difference equation, we need to
show that when replacing the above expression for y[n] in the right term of the difference equation
we obtain the left term y[n]. Indeed, we have that

n—1

M1

ay[n— 1]+ bx[n] =a |: bakx[n — 1 — k]:| + bx[n]

k

Il
o

= i ba™x[n — m] + bx[n] = 2": ba"x[n —m] = y[n]
m=1

m=0

where the dummy variable in the sum was changed to m = k + 1, so that the limits of the sum-
mation became m = 1 when k=0, and m = n when k =n — 1. The final equation is identical
to y[n].

To establish if the system represented by the difference equation is linear, we use the solution
Eq. (8.30) with input x[n] = axi[n] 4+ Bx2[n], where the outputs {y;[n], i = 1,2} correspond to
inputs {x;j[n], i = 1,2}, and « and B are constants. The output for x[n] is

i ba'x[n — k] = Z ba (ax1[n — k] + Bxa[n — k)
k=0 k=0

=« Z ba'x1[n— k] + B Z ba"xz[n — k] = ayi[n] + By2[n]
k=0 k=0

So the system is linear.
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The time invariance is shown by letting the input be v[n] = x[n — N], n > N, and zero otherwise.
The corresponding output according to Equation (8.30) is

> ba'v[n—k] =) " bd'x{n — N — k]
k=0

k=0
n—N n
=Y ba'%%n—N—kl+ Y ba'x[n—N—k]=y[n—N]

k=0 k=n—N+1

since the summation
n
> ba'x[n—N -k =0
k=n—N+1

given that x| —-N] = --- = x[—1] = 0 is assumed. Thus, the system represented by the above differ-

ence equation is linear and time invariant. As in the continuous-time case, however, if the initial
condition y[—1] is not zero, or if x[n] # 0 for n < 0, the system characterized by the difference
equation is not LTI. [ ]

m Example 8.22

Autoregressive moving average filter: The recursive system represented by the first-order difference
equation

y[n] = 0.5y[n — 1] + x[n] + x[n — 1] n>0, y[—1]
is called the autoregressive moving average given that it is the combination of the two systems

discussed before. Consider two cases:

m Let the initial condition be y[—1] = —2, and the input be x[n] = u[n] first and then x[n] =
2u[n].
= Let the initial condition be y[—1] = 0, and the input be x[n] = u[n] first and then x[n] = 2u[n].

Determine in each of these cases if the system is linear.

Find the steady-state response—that is,

Jim
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Solution

For an initial condition y[—1] = —2 and x[n] = u[n], we get recursively

y[0] = 0.5y[—1] +x[0] +x[-1] =0
1] = 0.5y[0] + x[1] + x[0] = 2
y[2] = 0.5y[1] + x[2] + x[1] =3

Let us then double the input (i.e., x[n] = 2u[n]) and call the response y; [n]. As the initial condition
remains the same (i.e., y1[—1] = —2), we get

y1[0] = 0.5y1[—1] +x[0] +x[-1] =1

y1[1] = 0.5y1[0] +x[1] + x[0] = 4.5

y1[2] = 0.5p1[1] +x[2] +x[1] = 6.25

It is clear that the y;[n] is not 2y[n]. Due to the initial condition not being zero, the system is
nonlinear.

If the initial condition is set to zero, and the input x[n] = u[n], the response is
y[0] = 0.5y[—=1] +x[0] +x[-1] =1

1] = 0.5y[0] +x[1] +x[0] = 2.5
v[2] = 0.5y[1] + x[2] + x[1] =3.25

If we double the input (i.e.,, x[n] = 2u[n]) and call the response y1[n], y1[—1] = 0, we obtain

y1[0] = 0.5y1[—1] +x[0] +x[—1] = 2
y1[1] = 0.5y1[0] + x[1] +x[0] =5

y1[2] = 0.5y1[1] + x[2] + x[1] = 6.5
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For the zero initial condition, it is clear that y;[n] = 2y[n] when we double the input. One can
also show that superposition holds for this system. For instance, if we let the input be the sum of
the previous inputs, x[n] = u[n] 4+ 2u[n] = 3u[n], and let y;12[n] be the response when the initial
condition is zero, y12[0] = 0, we get

¥12]0] = 0.5y12[—1] + x[0] + x[-1] =3
y12[1] = 0.5y12[0] +x[1] + x[0] = 7.5

y12[2] = 0.5y12[1] + x[2] + x[1] = 9.75

showing that y;,[n] is the sum of the responses when the inputs are u[n| and 2u|n]. Thus, the
system represented by the given difference equation with a zero initial condition is linear.

Although when the initial condition is —2 or 0, and x[n] = u[n] we cannot find a closed form
for the response, we can see that the response is going toward a final value or a steady-state
response. Assuming that as n — oo we have that Y = y[n] = y[n — 1], and since x[n] = x[n — 1] =
1, according to the difference equation the steady-state value Y is found from

Y=05Y4+2 or Y=4
independent of the initial condition. Likewise, when x[n] = 2u[n], the steady-state solution Y is
obtained from Y = 0.5Y + 4 or Y = 8, independent of the initial condition. |
Remarks

m Like in the continuous-time system, to show that a discrete-time system is linear and time invariant an
explicit expression relating the input and the output is needed.

m  Although the solution of linear difference equations can be obtained in the time domain, just like with
differential equations, we will see in the next chapter that their solution can also be obtained using the
Z-transform, just like the Laplace transform being used to solve linear differential equations.

8.3.2 Discrete-Time Systems Represented by Difference Equations
As we saw before, a recursive discrete-time system is represented by a difference equation

N-1 M—1
y[n]:—Zaky[n—k]+mex[n—m] n=>0

k=1 m=0
initial conditions y[—k|, k=1,...,N—1 (8.31)

If the system is discrete-time, the difference equation naturally characterizes the dynamics of the
system. On the other hand, the difference equation could be the approximation of a differential
equation representing a continuous-time system that is being processed discretely. For instance, to
approximate a second-order differential equation by a difference equation, we could approximate
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the first derivative of a continuous-time function v.(t) as

dve (1) ~ ve(t) — ve(t — Ty)
dt T

and its second derivative as

v _ AP dwe® — vt = T))/T)
a2 dt dt

o ve(®) = 2ve(t = Ts) + ve(t — 27T5)
T3

to obtain a second-order difference equation when t = nT;. Choosing a small value for T; provides an
accurate approximation to the differential equation. Other transformations can be used. In Chapter 0
we indicated that approximating integrals by the trapezoidal rule gives the bilinear transformation,
which can also be used to change differential into difference equations.

Just as in the continuous-time case, the system being represented by the difference equation is not LTI
unless the initial conditions are zero and the input is causal. The Z-transform will, however, allow us
to find the complete response of the system even when the initial conditions are not zero. When the
initial conditions are not zero, just like in the continuous case, these systems are incrementally linear.

The complete response of a system represented by the difference equation can be shown to be
composed of a zero-input and a zero-state responses—that is, if y[n] is the solution of the difference
Equation (8.31) with initial conditions not necessarily equal to zero, then

yn] = yzln] + yz(nl (8:32)

The component y,;[n] is the response when the input x[n] is set to zero, thus it is completely due to the
initial conditions. The response ys[n] is due to the input, as we set the initial conditions equal to zero.
The complete response y[n] is thus seen as the superposition of these two responses. The Z-transform
provides an algebraic way to obtain the complete response, whether the initial conditions are zero or
not.

It is important, as in the continuous-time system, to differentiate the zero-input and the zero-state
responses from the transient and the steady-state responses.

8.3.3 The Convolution Sum

Let h[n] be the impulse response of an LTI discrete-time system, or the output of the system corresponding
to an impulse §[n] as input and initial conditions (if needed) equal to zero. Using the generic representation of
the input x[n] of the LTI system,

[e.0]

dnl= > «x[k]s[n —k] (8.33)

k=—00
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the output of the system is given by either of the following two equivalent forms of the convolution sum:
o
ylnl = Y x[klhln —k]
k=—00
o
= > x[n—m]h[m] (8.34)
m=—00

The impulse response h|n] of a discrete-time system is due exclusively to an input §[n]; as such,
the initial conditions are set to zero. In some cases there are no initial conditions, as in the case of
nonrecursive systems.

Now, if h|n] is the response due to §[n], by time invariance the response to §[n — k| is h|n — k]. By
superposition, the response due to x[n] with the generic representation

x[n] =) x[k]s[n — k|

k

is the sum of responses due to x[k]8[n — k|, which is x[k]h[n — k] (x[k] is not a function of n), or

ylnl =) xlklh[n — k]
k

i.e., the convolution sum of the input x[n] with the impulse response h[n] of the system. The second
expression of the convolution sum in Equation (8.34) is obtained by a change of variable m =n — k.

Remarks

m  The output of nonrecursive or FIR systems is the convolution sum of the input and the impulse response of
the system. The input—output expression of an FIR system is

N-1
ylnl = bix[n — k] (8.35)
k=0

and its impulse response is found by letting x[n] = 8|n], which gives

N-1
h[n] = > bd[n — k] = bod[n] +b18[n— 1] + - - +by_18[n — (N — 1)]
k=0

so that h[n]=b, for n=0,...,N—1, and zero otherwise. Replacing the by coefficients in
Equaiton (8.35) by h|k| we find that the output can be written as

N-1
ylnl = hlklx[n — k]

k=0
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or the convolution sum of the input and the impulse response. This is a very important result, indicating
that the output of FIR systems is obtained by means of the convolution sum rather than difference
equations, which gives great significance to the efficient computation of the convolution sum.
Considering the convolution sum as an operator—that is,

o0

ylnl = [hxalln] = Y xlklhln — k]

k=—00

it is easily shown to be linear. Indeed, whenever the input is axi[n] + bxa[n], and {yi[n]} are the outputs
corresponding to {x;i|n]} for i = 1, 2, then we have that

[hx (ax1 + bxp)[n] = Y (axi[k] + bxy[k])h[n — k] =a Y xi[klh[n — k| + b " xy[k]h[n — k]
k k k

= alh xx1][n] + b[h * x2][n] = ay1[n] + by2[n]

as expected, since the system was assumed to be linear when the expression for the convolution sum was
obtained. We will then have that if the output corresponding to x[n] is y[n], given by the convolution
sum, then the output corresponding to a shifted version of the input, x[n — N|, should be y[n — N]. In
fact, if we let x1[n] = x[n — N, the corresponding output is

[hxxi][n] =) xi[n—klh[k] = > x[n — N — k]h[k]
k

k
= [h*x][n — N] =y[n — N]

Again, this result is expected given that the system was considered time invariant when the convolution
sum was obtained.
From the equivalent representations for the convolution sum we have that

[hxx][n] = xl[klh[n — k| =) x[n — k]h[k]

k k
=[x h][n]

indicating that the convolution commutes with respect to the input x[n] and the impulse response h|n].
Just as with continuous-time systems, when conecting two LTI discrete-time systems (with impulse
responses hi[n] and hy[n]) in cascade or in parallel, their respective impulse responses are given by
[h1 * ha][n] and hy[n] + ha[n]. See Figure 8.9 for block diagrams.

There are situations when instead of giving the input and the impulse response to compute the output, the
information that it is available is, for instance, the input and the output and we wish to find the impulse
response of the system, or we have the output and the impulse response and wish to find the input. This
type of problem is called deconvolution. We consider this problem later in this chapter after considering
causality, and in Chapter 9 where we show that it can be easily solved using the Z-transform.

The computation of the convolution sum is typically difficult. It is made easier when the Z-transform is
used, as we will see. MATLAB provides the function conv which greatly simplifies the computation.
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X[n] ———»|

hyln]

ho[n]

FIGURE 8.9
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m Example 8.23

v

holn]

yln]

x[n] yin]
——» (hyxhy) [n]

[n]
Xin) bl + ot |

Consider a moving-averaging filter where the input is x[n] and the output is y[n]:

ylnl = Sl + 2l — 1]+ xln - 2]

Find the impulse response h|n| of this filter. Then,

(a) Let x[n] = u[n]. Find the output of the filter y[n] using the input-output relation and the

convolution sum.

(b) If the input of the filter is x[n] = A cos(27n/N)u[n], determine the values of A and N, so that

the steady-state response of the filter is zero. Explain. Use MATLAB to verify your results.

Solution

(a) If the input is x[n] = §[n], the output of the filter is y[n] = h|n], or the impulse response of the

system. No initial conditions are needed. We thus have that

h[n] = %(8[n] +é[n—1]+68[n—-2)]

so that h[0] = 1/3 as §[0] =1 but §[—1] = §[—2] = 0; likewise, h[1] = h[2] = 1/3 so that the

coefficients of the filter equal the impulse response of the filter atn = 0, 1, and 2.
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Now if x[n] is the input to the filter according to the convolution sum, its output is

y[n] = Zx[n — k]h[k] = h[O]x[n] + h[1]x[n — 1] + h[2]x[n — 2]
k=0

= % (x[n] + x[n — 1] + x[n — 2])

Notice that the lower bound of the sum is set by the impulse response being zero for n < 0,
while the upper bound is set by the input being zero for n < 0 (i.e., if k > n, then n — k < 0 and
x[n — k] = 0). The convolution sum coincides with the input-output equation. This holds for any
FIR filter.

For any input x[n], let us then find a few values of the convolution sum to see what happens as n
grows. If n < 0, the arguments of x[n], x[n — 1], and x[n — 2] are negative giving zero values, and
so the output is also zero (i.e., y[n] = 0, n < 0). For n > 0, we have

0] = 5 (+{0] + 1 -1] + x[~2]) = 3x{0]
1T = 5 ({11 + #10] 4 -11) = o] +x11]

121 = 5 (sf21+ 2{1] + x10]) = 5 (o10] + 1] +x{2)

1

Y[3] = 3 (x[3] +x[2] + x[1]) = %(x[l] +x[2] + x[3])

Thus, if x|n] = u|[n], then we have that y[0] = 1/3, y[1] = 2/3, and y[n] = 1 forn > 2.

(b) Notice that for n > 2, the output is the average of the present and past two values of the input.
Thus, when the input is x[n] = A cos(2rn/N), if we let N = 3 and A be any real value, the input
repeats every three samples and the local average of three of its values is zero, giving y[n] = 0 for
n > 2; thus the steady-state response will be zero.

The following MATLAB script uses the function conv to compute the convolution sum when the
input is either x[n] = u[n] or x[n] = cos(2wn/3)u[n].

% % % % % % % % % % % % % % % % % %

% Example 8.23 -- Convolution sum

% % % % % % % % % % % % % % % % % %
x1 =[0 0 ones(1, 20)] % unit-step input
n=-2:19;n1 =0:19;

x2 = [0 0 cos(2xpixn1/3)]; % cosine input

h = (1/3)xones(1, 3); % impulse response
y = conv(x1, h); y1 = y(1:length(n)); % convolution sums
y = conv(x2, h); y2 = y(1:length(n));
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Notice that each of the input sequences has two zeros at the beginning so that the response can
be found at n > —2. Also, when the input is of infinite support, like when x[n| = u[n], we can
only approximate it as a finite sequence in MATLAB, and as such the final values of the convolu-
tion obtained from conv are not correct and should not be considered. In this case, the final two
values of the convolution results are not correct and are not considered. The results are shown in
Figure 8.10. ]

m Example 8.24

Consider an autoregressive system represented by a first-order difference equation
y[n] = 0.5y[n — 1] + x[n] n>0
Find the impulse response h[n] of the system and then compute the response of the system to
x[n] = u|n] — u[n — 3] using the convolution sum. Verify results with MATLAB.
Solution

The impulse response h[n] can be found recursively. Letting x[n] = 8[n], y[n] = h|n], and initial
condition y[—1] = h[—1] = 0, we have

h[0] = 0.5h[—1] +58[0] = 1
h[1] = 0.5h[0] + 8[1] = 0.5

h[2] = 0.5h[1] + 8[2] = 0.5%
h[3] = 0.5h[2] + 8[3] = 0.5°



8.3 Discrete-Time Systems a

from which a general expression for the impulse response is obtained as h[n] = 0.5"u[n].

The response to x[n] = u[n] — u[n — 3] using the convolution sum is then given by

oo o0

yinl= > xlklhln—kl = > (u[k] — ulk — 3])0.5" *u[n — k|

k=—00 k:—oo

Since as functions of k, u[k|u[n — k] = 1 for 0 < k < n, zero otherwise, and u[k — 3Ju[n — k] =1
for 3 < k < n, zero otherwise (in the two cases, draw the two signals as functions of k and verify
this is true), y[n] can be expressed as

yIn] = 0.5" |:Zn: 0.57F — XH:O.S_k:| u[n]
k=0 k=3

0 n<0
={05"Y 7 05 n=0,1,2
0.5"Y 7 ,05% n>3.
Another way to solve this problem is to notice that the input can be rewritten as
x[n] = 8[n] + 8[n — 1] + 8[n — 2]
and since the system is LTI, the output can be written as
yIn] = h[n] + h[n — 1] + h[n — 2] = 0.5"u[n] + 0.5 tu[n — 1] + 0.5" 2u[n — 2]
which gives
y[0] =05 =1

3
y[1] =05 4+0.5° = 5

y[2] = 0.5 4+0.5" +0.5° =

S NN

y[3] =0.5% +0.52+0.5 =

which coincides with the above more general solution. It should be noticed that even in a simple
example like this the computation required by the convolution sum is quite high. We will see
that the Z-transform simplifies these types of problems, just like the Laplace transform does in the
computation of the convolution integral.

The following MATLAB script is used to verify the above results. The MATLAB function filter is
used to compute the impulse response and the response of the filter to the pulse. The output
obtained then with filter coincided with the output computed using conv, as it should. Figure 8.11
displays the results.
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% % % % % % % % % % % % % % % % % % % % %
% Example 8.24
% % % % % % % % % % % % % % % % % % % % %
a=[1-0.5]; b=1; % coefficients of the difference equation
d =[1 zeros(1, 99)]; % approximate delta function
h = filter(b, a, d); % impulse response
x = [ones(1, 3) zeros(1, 10)]; % input
y = filter(b, a, X); % output from filter function
y1 = conv(h, x); y1 = y1(1:length(y)) % output from conv .

8.3.4 Linear and Nonlinear Filtering with MATLAB

One is not always able to get rid of undesirable components of a signal by means of linear filtering.
In this section we will illustrate the possible advantages of using nonlinear filters.

Linear Filtering

To illustrate the way a linear filter works, consider getting rid of a random disturbance n[n], which we
model as Gaussian noise (this is one of the possible noise signals MATLAB provides) that has been
added to a sinusoid x[n] = cos(wn/16). Let y[n] = x[n] + n[n]. We will use an averaging filter having
an input-output equation

1 M—-1
alnl = > vin—1kl
k=0
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This M-order filter averages M past input values {y[n — k],k =0, ..., M — 1} and assigns this average
to the output z[n]. The effect is to smooth out the input signal by attenuating the high-frequency
components of the signal due to the noise. The larger the value of M the better the results, but at the
expense of more complexity and a larger delay in the output signal (this is due to the linear-phase
frequency response of the filter, as we will see later).

We use a third-order and a fifteenth-order filter, implemented by our function averager given below.
The denoising is done by means of the following script.

% % % % % % % % % % % % % % % % %

% Linear filtering

% % % % % % % % % % % % % % % % %

N =200;n=0:N — 1;

X = cos(pixn/16); % input signal

noise = 0.2x«randn(1, N); % noise

y = X + noise; % noisy signal

z = averager(3, y); % averaging linear filter with M = 3

z1 = averager(15, y); % averaging linear filter with M = 15

Our function averager defines the coefficients of the averaging filter and then uses the MATLAB func-
tion filter to compute the filter response. The inputs of fiter are the vector b = (1/M)[1--- 1], the
coefficients connected with the input, the unit coefficient connected with the output, and x is a vector
with the entries the signal samples we wish to filter. The results of filtering using these two filters are
shown in Figure 8.12. As expected, the performance of the filter with M = 15 is a lot better, but a
delay of 8 samples (or the integer larger than M/2) is shown in the filter output.

function y = averager(M,x)

% Moving average of signal x

%  M: order of averager

%  x:input signal

%

b = (1/M)xones(1, M);

y = filter(b, 1, X);

Nonlinear Filtering

Is linear filtering always capable of getting rid of noise? The answer is: It depends on the type of noise.
In the previous example we showed that a high-order averaging filter, which is linear, performs well
for Gaussian noise. Let us now consider an impulsive noise that is either zero or a certain value at
random. This is the type of noise occurring in communications whenever cracking sounds are heard
in the transmission, or the “salt-and-pepper” noise that appears in images.

It will be shown that even the 15th-order averager—that did well before—is not capable of denoising
the signal with impulsive noise. A median filter considers a certain number of samples (the example
shows the case of a 5th-order median filter), orders them according to their amplitudes, and chooses
the one in the middle value (i.e., the median) as the output of the filter. Such a filter is nonlinear as it
does not satisfy superposition. The following script is used to filter the noisy signal using a linear and
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FIGURE 8.12
Averaging filtering with filters of order (a) M = 3 and of order (b) M = 15 result used to get rid of Gaussian noise

added to a sinusoid x[n] = cos(rn/16). Solid line corresponds to the noisy signal, while the dashed line is for the
filtered signal. The filtered signal is very much like the noisy signal (a) when M = 3 is the order of the filter, while
the filtered signal looks like the sinusoid, but shifted, (b) when M = 15. The plotting in this figure is done using
plot instead of stem to allow a better visualization of the filtering results.

a nonlinear filter, and a comparison of the results is shown in Figure 8.13. In this case the nonlinear
filter is able to denoise the signal much better than the linear filter.

9% % % % % % % % % % % % % % % % % % %
% Nonlinear filtering
%% % % % % % % % % % % % % % % % % %
Clear all; clf
N =200;n=0:N — 1;
% impulsive noise
form = 1:N,
d=rand(1, 1);
if d >=0.95,
noise(m) = —1.5;
else
noise(m) = 0;
end
end
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Top figure (a): noisy signal (dashed blue line) and clean signal (solid line). The clean signal (dashed line) is
superposed on the denoised signal (solid blue line) in the bottom plots. The solid line in plot (b) is the result of
median filtering, and the solid line in plot (c) is the result of the averager.

x = [2xcos(pixn(1:100)/256) zeros(1, 100)];

y1 =X + noise;

% linear filtering

z2 = averager(15, y1);

% nonlinear filtering -- median filtering

z1(1) = median([0 0 y1(1) y1(2) y1(3)]);

z1(2) = median([0 y1(1) y1(2) y1(3) y1(4));

z1(N — 1) = median(fy1(N — 3) y1(N — 2) y1(N — 1) y1(N) O]);
z1(N) = median([y1(N — 2) y1(N — 1) y1(N) 0 O]);

fork =3:N — 2,
z1(k) = median(y1(k — 2) y1(k — 1) y1(k) y1(k + 1) y1(k + 2)]);
end

Although the theory of nonlinear filtering is beyond the scope of this book, it is good to remember
that in cases like this when linear filters do not seem to do well, there are other methods to use.

8.3.b Causality and Stability of Discrete-Time Systems

As with continuous-time systems, two additional independent properties of discrete-time systems are
causality and stability. Causality relates to the conditions under which computation can be performed
in real time, while stability relates to the usefulness of the system.

Causality
In many situations signals need to be processed in real time—that is, the processing must be done
as the signal comes into the system. In those situations, the system must be causal. In many other
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situations, real-time processing is not required as the data can be stored and processed without the
requirements of real time. Under such circumstances causality is not necessary.

A discrete-time system S is causal if:
m  Whenever the input x[n] = 0, and there are no initial conditions, the output is y[n] = 0.
m  The output y[n] does not depend on future inputs.

Causality is independent of the linearity and time-invariance properties of a system. For instance, the
system represented by the input-output equation

yln] = [n]

where x[n] is the input and y[n] is the output is nonlinear but time invariant. According to the above
definition it is a causal system: The output is zero whenever the input is zero, and the output depends
on the present value of the input. Likewise, an LTI system can be noncausal, as can be seen in the
following discrete-time system that computes the moving average of the input:

ylnl = Sl -+ 11+ aln] +xln — 1)),

The input-output equation indicates that at the present time n to compute y[n] we need a present
value x[n], a past value x[n — 1], and a future value x[n + 1]. Thus, the system is LTI but noncausal
since it requires future values of the input.

m An LTI discrete-time system is causal if the impulse response of the system is such that

hln] =0 n<0 (8.36)
m A signal x[n] is said to be causal if

x[n]=0 n<0 (8.37)

m  For a causal LTI discrete-time system with a causal input x[n] its output y[n] is given by

y[n] = ix[k]h[n — k] n>0 (8.38)
k=0

where the lower limit of the sum depends on the input causality, x[k] = 0 for k < 0, and the upper limit
depends on the causality of the system, hjn —k] =0forn—k <O0ork > n.

That h[n] = 0 for n < 0 is the condition for an LTI discrete-time system to be causal is understood by
considering that when computing the impulse response, the input §[n] only occurs at n = 0 and there
are no initial conditions, so the response for n < 0 should be zero. Extending the notion of causality
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to signals we can then see that the output of a causal LTI discrete-time system can be written in terms
of the convolution sum as

ylnl= Y xlklh[n— k] = x[klh[n — k| = ) x[k]h[n — k]
k=—00 k=0 k=0

where we first used the causality of the input (x[k] = 0 for k < 0) and then that of the system (i.e,,
h[n — k] = 0 whenever n — k < 0 or k > n). According to this equation the output depends on inputs
{x[0], ..., x[n]}, which are past and present values of the input.

m Example 8.25

So far we have considered the convolution sum as a way of computing the output y[n] of an LTI
system with impulse response h[n] for a given input x[n]. But it actually can be used to find either
of these three variables given the other two. The problem is then called deconvolution. Assume
the input x[n] and the output y[n] of a causal LTI system are given. Find equations to compute
recursively the impulse response h[n] of the system. Consider finding the impulse response h[n]
of a causal LTI system with input x[n] = u[n] and output y[n] = §[n]. Use the MATLAB function
deconv to find h[n].

Solution

If the system is causal and LTI, the input x[n] and the output y[n] are connected by the convolu-
tion sum

y[n] = Z h[n — m]x[m] = h[n]x[0] + Z h{n — m]x[m]
m=0 m=1

To find h[n] from given x[n] and y[n], under the condition that x[0] # 0, the above equation can
be rewritten as

1 n
h[n] = 0] |:V["] =) _hin— m]x[m]j|
m=1
so that the impulse response of the causal LTI can be found recursively as follows:
1
x[0]

n1] = ,ﬁ(ym ~ h{ol1])

h[2] = Jﬁ (v[2] = h{0]x[2] — h[1]x[1])

h[0] = ——=¥[0]
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For the given case where y[n| = §[n] and x[n] = u[n], we get, according to the above,

h[0] = —=[0] =

[ I

h = ,ﬁ (1] — HOJ{1]) =0 — 1= —1
hi2] = [0] (v[2] = h[0]x[2] = A[1]x[1]) =0—-1+1=0
h3] = [0] ([3] — h[0]x[3] — h[1]x[2] — h[2]x[3]) =0 — 1+ 1—-0=0

and, in general, h[n] = §[n] — §[n — 1].

The length of the convolution y[n] is the sum of the lengths of the input x[n] and of the impulse
response h[n] minus one. Thus,

length of h[n| = length of y|n] — length of x|n] + 1

When using deconv we need to make sure that the length of y[n] is always larger than that of x[n]. If
x[n] is of infinite length, like when x[n] = u[n], this would require an even longer y[n], which is not
possible. However, MATLAB can only provide a finite-support input, so we make the support of
y|n] larger. In this example we have found analytically that the impulse response h[n] is of length
2, so if the length of y[n] is chosen so that length y[n] is larger than the length of x[n] by one, we
get the correct answer (case (a) in the script below); otherwise we do not (case (b)). Run the two
cases to verify this (get rid of % symbol to run case (b)).

% % % % % % % % % % % % % % % % % % % % % %
% Example 8.25 --- Deconvolution
% % % % % % % % % % % % % % % % % % % % % %
Clear all
x = ones(1, 100);
= [1 zeros(1, 100)]; % (a) correct h
%y = [1 zeros(1, 99)]; % (b) incorrect h
[h, r] = deconvly, X)

Bounded-Input Bounded-Output Stability

Stability characterizes useful systems. A stable system provides well-behaved outputs for well-behaved
inputs. Bounded-input bounded-output (BIBO) stability establishes that for a bounded (that is what
is meant by well-behaved) input x[n] the output of a BIBO-stable system y|n] is also bounded. This
means that if there is a finite bound M < oo such that |x[n]| < M for all n (you can think of it as
an envelope [—M, M] inside which the input is in for all time), the output is also bounded (i.e.,
lyn]l < Lfor L < oo and all n).
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An LTI discrete-time system is said to be BIBO stable if its impulse response h[n] is absolutely summable,

> k]| < o0 (8.39)
k

Assuming that the input x[n] of the system is bounded, or that there is a value M < oo such
that |x[n]| < M for all n, the output y[n] of the system represented by a convolution sum is also
bounded, or

o]

yinll < | Y xln—klhlk]| < > |x[n— K[[h[k]

k=—o00 k=—00

o0
<M Z Ih[k]] < MN < oo

k=—00

provided that > 72 |h[k]| < N < oo, or that the impulse response be absolutely summable.
Remarks

m  Nonrecursive or FIR systems are BIBO stable. Indeed, the impulse response of such a system is of finite
length and thus absolutely summable.

m  For a recursive or IIR system represented by a difference equation, to establish stability we need to find the
system impulse response h|n| and determine whether it is absolutely summable or not.

= A much simpler way to test the stability of an IIR system will be based on the location of the poles of the
Z-transform of h|n|, as we will see in Chapter 9.

m Example 8.26
Consider an autoregressive system
yln] = 0.5y[n — 1] + x[n]
Determine if the system is BIBO stable.

Solution

As shown in Example 8.24, the impulse response of the system is h[n] = 0.5"u[n]. Checking the
BIBO stability condition, we have

ad 1

> Ihln]] =n§o.5" =55 =2

n=—0oo

Thus, the system is BIBO stable. [ |
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8.4 WHAT HAVE WE ACCOMPLISHED? WHERE DO WE GO
FROM HERE?

As you saw in this chapter the theory of discrete-time signals and systems is very similar to the the-
ory of continuous-time signals and systems. Many of the results in the continuous-time theory are
changed by swapping integrals for sums and differential equations for difference equations. However,
there are significant differences imposed by the way the discrete-time signals and systems are gener-
ated. For instance, the discrete frequency can be considered finite but circular, and it depends on the
sampling time. Discrete sinusoids, as another example, are not necessarily periodic. Thus, despite the
similarities there are also significant differences between the continuous-time and the discrete-time
signals and systems.

Now that we have a basic structure for discrete-time signals and systems, we will continue developing
the theory of linear time-invariant discrete-time systems using transforms. Again, you will find a great
deal of similarity but also some very significant differences. In the next chapters, carefully notice the
relation that exists between the Z-transform and the Fourier representations of discrete-time signals
and systems, not only with each other but with the Laplace and Fourier transforms. There is a great
deal of connection among all of these transforms, and a clear understanding of this would help you
with the analysis and synthesis of discrete-time signals and systems.

PROBLEMS

8.1. Discrete sequence—MATLAB
Consider the following formula

x[n] =x[n— 1]+ x[n — 3] n>3

x[0] =0
x[1] =1
x[2] =2

Find the rest of the sequence for 0 < n < 50 and plot it using the MATLAB function stem.

8.2. Finite-energy signals—MATLAB
Given the discrete signal x[n] = 0.5™u[n]:
(a) Use MATLAB to plot the signal x[n] for n = —5 to 200.
(b) Isthis a finite-energy discrete-time signal? That is compute the infinite sum

> Knl”?

n=—0oo

Hint: Show that
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8.4.

8.5.
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or equivalently that

o
(1—04)20{”:1
n=0

provided || < 1.
(c) Verify your results by using symbolic MATLAB to find an expression for the above sum.

Periodicity of sampled signals—MATLAB

Consider an analog periodic sinusoid x(t) = cos(3xt + 7/4) being sampled using a sampling period Ts to

obtain the discrete-time signal x[n] = x(t)|;=n1, = cos(3nTsn + m/4).

(a) Determine the discrete frequency of x[n].

(b) Choose a value of Ts for which the discrete-time signal x[n] is periodic. Use MATLAB to plot a few
periods of x[n], and verify its periodicity.

(c) Choose a value of Ts for which the discrete-time signal x[n] is not periodic. Use MATLAB to plot x[n]
and choose an appropriate length to show the signal is not periodic.

(d) Determine under what condition the value of Ts makes x[n] periodic.

Even and odd decomposition and energy—MATLAB
Suppose you sample the analog signal

wo_ [t osi=1
o otherwise

with a sampling period Ts = 0.25 to generate x[n] = x(t)|¢=nT, .

(a) Use MATLAB to plot x[—n] for an appropriate interval.

(b) Find x[n] = 0.5[x[n] 4+ x[—n]] and plot it carefully using MATLAB.

(c) Find x,[n] = 0.5[x[n] — x[—n]] and plot it carefully using MATLAB.

(d) Verify that xe[n] 4+ xo[n] = x[n] graphically.

(e) Compute the energy of x[n] and compare it to the sum of the energies of x.[n] and xo[n].

Signal representation in terms of u[n]—MATLAB

We have shown how any discrete-time signal can be represented as a sum of weighted and shifted versions
of §[n]. Given that

8[n] = u[n] —u[n —1]

it should be possible to represent any signal as a combination of unit-step functions. Consider a discrete-
time ramp r[n] = nu[n], which in terms of §[n] is written as

o]

rln] = " rlkls[n — k|

k=—00
Replace r[k] = ku[k] and use §[n] = u[n] — u[n — 1] to show that r[n] can be expressed in terms of u[n] as
o
rln] =Y uln—k|

k=1

Does this equation make sense? Use MATLAB to plot the obtained r[n] to help you answer this.
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8.6.

8.7.

8.8.

8.9.

Generation of periodic discrete-time signals—MATLAB
Periodic signals can be generated by obtaining a period and adding shifted versions of this period. Suppose
we wish to generate a train of triangular pulses. A period of the signal is

x[n] =r[n] —2r[n — 1] 4+ r[n — 2]

where r[n] = nu[n] is the discrete-time ramp signal.
(a) Carefully plot x[n].
(b) Let

]

yinl= Y x[n—2k]

k=—00

and carefully plot it. Indicate the period N of y[n].
(c) Write a MATLAB script to generate and plot the periodic signal y[n].

Expansion and compression of discrete-time signals—MATLAB

Consider the discrete-time signal x[n] = cos(27n/7).

(a) The discrete-time signal can be compressed by getting rid of some of its samples (downsampling).
Consider the downsampling by 2. Write a MATLAB script to obtain and plot z[n] = x[2n]. Plot also
x[n] and compare it with z[n]. What happended? Explain.

(b) The expansion for discrete-time signals requires interpolation, and we will see it later. However, a first
step of this process is the so-called upsampling. Upsampling by 2 consists in defining a new signal
y[n] such that y[n] = x[n/2] for n even, and y[n] = 0 otherwise. Write a MATLAB script to perform
upsampling on x[n]. Plot the resulting signal y[n] and explain its relation with x[n].

(c) If x[n] resulted from sampling a continuous-time signal x(t) = cos(2xt) using a sampling period Ts
and with no frequency aliasing, determine Ts. How would you sample the analog signal x(t) to get the
downsampled signals z[n]? That is, choose a value for the sampling period T; to get z[n] directly from
x(t). Can you choose T;s to get y[n] from x(t) directly? Explain.

Absolutely summable and finite-energy discrete-time signals—MATLAB

Suppose we sample the analog signal x(t) = e~2u(t) using a sample period T = 1.

(a) Expressing the sampled signal as x(nTs) = x[n] = «™u[n], what is the corresponding value of «? Use
MATLARB to plot x[n].

(b) Show that x[n] is absolutely summable—that is, show the following sum is finite:

e¢]

> lxlnll

n=—oo

(c) If you know that x[n] is absolutely summable, could you say that x[n] is a finite-energy signal? Use
MATLAB to plot |x[n]| and x%[n] in the same plot to help you decide.
(d) In general, for what values of « are signals y[n] = «"u[n] finite energy? Explain.

Discrete-time periodic signals
Determine whether the following discrete-time sinusoids are periodic or not. If periodic, determine its
period Ng.

x[n] = 2cos(zn —m/2)

y[n] = sin(n — 7 /2)

z[n] = x[n] + y[n]

v[n] = sin(37n/2)



Problems m

8.10. Periodicity of discrete-time signals
Consider periodic signals x[n], of period N = 4, and y[n], of period N, = 6. What would be the period of

z[n] = x[n] +y[n]
vin] = x[n]y[n]
w[n] = x[2n]

8.11. Periodicity of sum and product of periodic signals—MATLAB
If x[n] is periodic of period N1 > 0 and y[n] is periodic of period N, > 0:
(a) What should be the condition for the sum of x[n] and y[n] to be periodic?
(b) What would be the period of the product x[n]y[n]?
(c) Would the formula

NN
gcd(N1,N2)

(gcd (N1, N») stands for the greatest common divisor of Ny and N) give the period of the sum and the
product of the two signals x[n] and y[n]?
(d) Use MATLAB to plot the signals x[n] = cos(2mn/3)u[n], and y[n] = (1 + sin(67n/7))u[n], their sum
and product, and to find their periods and to verify your analytic results.
8.12. Echoing of music—MATLAB
An effect similar to multipath in acoustics is echoing or reverberation. To see the effects of an echo in an
acoustic signal consider the simulation of echoes on the “handel. mat” signal y[n]. Pretend that this piece is
being played in a round theater where the orchestra is in the middle of two concentric circles and the walls
on one half side are at a radial distances of 17.15 meters (corresponding to the inner circle) and 34.3 meters
(corresponding to the outer circle) on the other side (yes, an usual theater!) from the orchestra. The speed
of sound is 343 meters/sec. Assume that the recorded signal is the sum of the original signal y[n] and
attenuated echoes from the two walls so that the recorded signal is given by

r[n] = y[n] + 0.8y[n — N1] + 0.6y[n — N3]

where N; is the delay caused by the closest wall and N, is the delay caused by the farther wall. The
recorder is at the center of the auditorium where the orchestra is and we record for 1.5 seconds.
(a) Find the values of the two delays N1 and N5 . Give the expression for the discrete-time recorded signal
r[n]. The sampling frequency Fs of “handel. mat” is given when you load it in MATLAB.

(b) Simulate the echo signal. Plot r[n]. Use sound to listen to the original and the echoed signals.

8.13. Envelope modulation—MATLAB
In the generation of music by computer, the process of modulation is extremely important. When playing
an instrument, the player typically does it in three stages: (1) rise time or attack, (2) sustained time, and
(3) decay time. Suppose we model these three stages as an envelope continuous-time signal given by

_ ! 3 ! 20 30
e(t) = 5 [r(®) = 1t = 3)] = 5= [r(t = 20) +1(1 = 30)]

where r(t) is the ramp signal.

(a) For a simple tone x(t) = cos(2m/Tpt), the modulated signal is y(t) = x(t)e(t). Find the period Ty so that
100 cycles of the sinusoid occur for the duration of the envelope signal.

(b) Simulate in MATLAB the modulated signal using the value of Tg = 1 and a simulation sampling time
of 0.1Ty. Plot y(t) and e(t) (discretized with the sampling period 0.1T) and listen to the modulated
signal using sound.
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8.14.

8.15.

8.16.

8.17.

LTI of ADCs

An ADC can be thought of as composed of three subsystems: a sampler, a quantizer, and a coder.

(a) The sampler, as a system, has as input an analog signal x(t) and as output a discrete-time signal
x(nTs) = x(t)|;=nT, Where Ts is the sampling period. Determine whether the sampler is a linear system
or not.

(b) Sample x(t) = cos(0.57t)u(t) and x(t — 0.5) using Ts = 1 to get y(nTs) and z(nTs), respectively. Plot
x(t), x(t — 0.5), and y(nTs) and z(nTs). Is z(nTs) a shifted version of y(nTs) so that you can say the
sampler is time invariant? Explain.

LTI of ADCs (part 2)
A two-bit quantizer of an ADC has as input x(nTs) and as output x(nTs), such that if

kA <x(nTs) < (kR+1)A —  x(nTs) =kA k=-2,-1,0,1

(a) Isthis system time invariant? Explain.

(b) Suppose that the value of A in the quantizer is 0.25, and the sampled signal is x(nTs) = nTs, Ts = 0.1
and —5 < n < 5. Use the sampled signal to determine whether the quantizer is a linear system or not.
Explain.

(c) From the results in this and the previous problem, would you say that the ADC is an LTI system?
Explain.

Rectangular windowing system—MATLAB
A window is a signal w|n] that is used to highlight part of another signal. The windowing process consists
in multiplying an input signal x|n] by the window signal w(n], so that the output is

yn] = x[n]w[n]

There are different types of windows used in signal processing. One of them is the so-called rectangular
window, which is given by

w[n] = u[n] — u[n — N]J

(a) Determine whether the rectangular windowing system is linear. Explain.

(b) Suppose x[n] = nu[n]. Plot the output y[n] of the windowing system (with N = 6).

(c) Let the input be x[n — 6]. Plot the corresponding output of the rectangular windowing system, and
indicate whether the rectangular windowing system is time invariant.

Impulse response of an IIR system—MATLAB
A discrete-time IIR system is represented by the difference equation

y[n] =0.15y[n — 2] +x[n] n=>0

where x[n] is the input and y[n] is the output.

(a) To find the impulse response h|n| of the system, let x[n] = §[n], y[n] = h[n], and the initial conditions
be zero, y[n] = h|n] = 0, n < 0. Find recursively the values of h[n] for values of n > 0.

(b) Asasecond way to doit, replace the relation between the input and the output given by the difference
equation to obtain a convolution sum representation that will give the impulse response h[n]. What
is h[n]?

(c) Use the MATLAB function filter to get the impulse response h[n] (use help to learn about the function
filter).
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8.19.

8.20.

8.21.

Problems

FIR filter—MATLAB
An FIR filter has a nonrecursive input—output relation

5
inl = Y el — k]
k=0

(a) Find and plot using MATLAB the impulse response h[n] of this filter.

(b) Is this a causal and stable filter? Explain.

(c) Find and plot the unit-step response s[n] for this filter.

(d) If the input x[n] for this filter is bounded, i.e., |x[n]| < 3, what would be a minimum bound M for the
output (i.e, [y[n]| < M)?

(e) Use the MATLAB function filter to compute the impulse response h|n] and the unit-step response s[n]
for the given filter and plot them.

LTI and convolution sum—MATLAB

The impulse response of a discrete-time system is h[n] = (—0.5)"u[n].

(a) If the input of the system is x[n] = 8[n] + §[n — 1] + §[n — 2], use the linearity and time invariance of
the system to find the corresponding output y[n].

(b) Find the convolution sum corresponding to the above input, and show that your solution coincides
with the output y[n] obtained above.

(c) Use the MATLAB function conv to find the output y[n] due to the given input x[n]. Plot x[n], h[n], and
y|n] using MATLAB.

Steady state of IIR systems—MATLAB
Suppose an IIR system is represented by a difference equation

yin] = ay[n — 1] + x[n]

where x[n] is the input and y[n] is the output.

(a) If the input x[n] = u[n] and it is known that the steady-state response is y[n| = 2, what would be a for
that to be possible (in steady state x[n] = 1 and y[n] = y[n — 1] = 2 since n — o0).

(b) Writing the system input as x[n] = u[n] = §[n] + §[n — 1] + §[n — 2] + --- then according to the
linearity and time invariance, the output should be

y[n] = h[n] + h[n — 1]+ hn = 2]+ ---

Use the value for a found above, that the initial condition is zero (i.e,, y|—1] = 0) and that the input is
x[n] = u|n], to find the values of the impulse response h[n] for n > 0 using the above equation. The
system is causal.

(c) Use the MATLAB function filter to compute the impulse response h|n] and compare it with the one
obtained above.

Causal systems and real-time processing
Systems that operate under real-time conditions need to be causal—that is, they can only process present
and past inputs. When no real-time processing is needed the system can be noncausal.
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8.22.

8.23.

8.24.

8.25.

(a) Consider the case of averaging an input signal x[n] under real-time conditions. Suppose you are given
two different filters,

1 N-1
o Vnl=5 Y aln—k
k=0
1 N-1
o Vnl=5 > xn—k
k=—N+1

Which one of these would you use and why?
(b) If you are given a tape with the data, which of the two filters would you use? Why? Would you use
either? Explain.

IIR versus FIR systems
A significant difference between IIR and FIR discrete-time systems is stability. Consider an IIR filter with
the difference equation

yi[n] = x[n] = 0.5y1[n — 1]
where x[n] is the input and y; [n] is the output. Then consider an FIR filter
y2[n] = x[n] + 0.5x[n — 1] 4 3x[n — 2] + x[n — 5]

where x[n] is the input and y, [n] is the output.

(a) Since to check the stability of these filters we need their impulse responses, find the impulse responses
h1[n] corresponding to the IIR filter by recursion, and h;[n] corresponding to the FIR filter.

(b) Use the impulse response h1[n] to check the stability of the IIR filter.

(c) Use the impulse response hy[n] to check the stability of the FIR filter.

(d) Since the impulse response of a FIR filter has a finite number of nonzero terms, would it be correct to
say that FIR filters are always stable? Explain.

Unit-step versus impulse response—MATLAB
The unit-step response of a discrete-time LTI system is

s[n] = 2[(=0.5)" — 1]u[n]

Use this information to find

(a) The impulse response h[n] of the discrete-time LTI system.

(b) The response of the LTI system to a ramp signal x[n] = nu[n]. Use the MATLAB function filter and
superposition to find it.

Convolution sum—MATLAB

A discrete-time system has a unit-impulse response h[n].

(a) Let the input to the discrete-time system be a pulse x[n] = u[n] — u[n — 4]. Compute the output of the
system in terms of the impulse response.

(b) Let h|n] = 0.5"u[n]. What would be the response of the system y[n] to x[n] = u[n] — u[n — 4]? Plot the
output y[n].

(c) Use the convolution sum to verify your response y[n|.

(d) Use the MATLAB function conv to compute the response y[n] to x[n] = u[n] — u[n — 4]. Plot both the
input and output.

Discrete envelope detector—MATLAB

Consider an envelope detector that would be used to detect the message sent in an AM system. Consider
the envelope detector as a system composed of the cascading of two systems: one which computes the
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absolute value of the input, and a second one that low-pass filters its input. A circuit that is used as an
envelope detector consists of a diode circuit that does the absolute value operation, and an RC circuit that
does the low-pass filtering. The following is an implementation of these operations in the discrete-time
system.

Let the input to the envelope detector be a sampled signal,
x(nTs) = p(nTs) cos(2000rnTs)
where
p(nTs) = u(nTs) — u(nTs — 20Ts) + u(nTs — 40Ts) — u(nTs — 60Ts)

where two pulses of duration 20T and amplitude equal to one.

(a) Choose Ts = 0.01, and generate 100 samples of the input signal x(nTs) and plot it.

(b) Consider then the subsystem that computes the absolute value of the input x(nTs) and compute and
plot 100 samples of y(nTs) = |x(nTs)|.

(c) Let the low-pass filtering be done by a moving averager of order 15—that is, if y(nTy) is the input, then
the output of the filter is

14

1
2nTy) = == 3 y(nTs = KTy)
k=0

Implement this filter using the MATLAB function filter, and plot the result. Explain your results.
(d) Is this alinear system? Come up with an example using the script developed above to show that the
system is linear or not.



This page intentionally left blank



CHAPTER 9

The Z-Transform

I was born not knowing and have had

only a little time to change that here and there.
Richard P. Feynman, (1918-1988)

Professor and Nobel Prize physicist

9.1 INTRODUCTION

Just as with the Laplace transform for continuous-time signals and systems, the Z-transform provides
a way to represent discrete-time signals and systems, and to process discrete-time signals.

Although the Z-transform can be related to the Laplace transform, the relation is operationally not
very useful. However, it can be used to show that the complex z-plane is in a polar form where the
radius is a damping factor and the angle corresponds to the discrete frequency w in radians. Thus,
the unit circle in the z-plane is analogous to the jQ axis in the Laplace plane, and the inside of the
unit circle is analogous to the left-hand s-plane. We will see that once the connection between the
Laplace plane and the z-plane is established, the significance of poles and zeros in the z-plane can be
obtained like in the Laplace plane.

The representation of discrete-time signals by the Z-transform is very intuitive—it converts a sequence
of samples into a polynomial. The inverse Z-transform can be achieved by many more methods than
the inverse Laplace transform, but the partial fraction expansion is still the most commonly used
method. Using the one-sided Z-transform, for solving difference equations that could result from
the discretization of differential equations, but not exclusively, is an important application of the
Z-transform.

As it was the case with the Laplace transform and the convolution integral, the most important
property of the Z-transform is the implementation of the convolution sum as a multiplication of
polynomials. This is not only important as a computational tool but also as a way to represent a
discrete system by its transfer function. Filtering is again an important application, and as before, the

Signals and Systems Using MATLAB®. DOI: 10.1016/B978-0-12-374716-7.00013-2
(© 2011, Elsevier Inc. All rights reserved. 511
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localization of poles and zeros determines the type of filter. However, in the discrete domain there is
a greater variety of filters than in the analog domain.

9.2 LAPLACE TRANSFORM OF SAMPLED SIGNALS

The Laplace transform of a sampled signal
x(t) = Y x(nT5)8(t — nTy) (9.1)
n
is given by
X(s) =Y x(nTy)L[5(t — nTy)]
n
= x(nTye ™% (92)
n
By letting z = 575, we can rewrite Equation (9.2) as
Z[x(nTy)] = LIxsO]] o,
= Z x(nTg)z " (9:3)
n

which is called the Z-transform of the sampled signal.

Remarks The function X(s) in Equation (9.2) is different from the Laplace transforms we considered
before:

m  Letting s = jQ, X(R2) is periodic of period 2m /T (i.e., X(Q + 27 /Ts) = X() for an integer k). Indeed,

X(Q+27/Ty) = Z x(nTy)e IMEH27/TOTs — Z x(nTy)e MR+ — x(Q)
n

n

m  X(s) may have an infinite number of poles or zeros—complicating the partial fraction expansion when
finding its inverse. Fortunately, the presence of the {e~™*} terms suggests that the inverse should be done
using the time-shift property of the Laplace transform instead, giving Equation (9.1).

m Example 9.1

To see the possibility of an infinite number of poles and zeros in the Laplace transform of a sam-
pled signal, consider a pulse x(t) = u(t) — u(t — Tp) sampled with a sampling period T; = To/N.
Find the Laplace transform of the sampled signal and determine its poles and zeros.

Solution
The sampled signal is

1 0<nT{<Typor0<n<N
0 otherwise

x(nTy) = {
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with Laplace transform

N
. 1 — ef(N*i’l)STs
X = Yo =
n=0

The poles are the s;, values that make the denominator zero—that is,

e =1
= e/ kinteger, —o0o <k < 00
or s, = —j2mwk/Ts for any integer k, an infinite number of poles. Similarly, one can show that X(s)

has an infinite number of zeros by finding the values s,, that make the numerator zero, or

e~ (N+DsuTs _ ¢

=™ integer, —o0 < m < 00
or sy, = —j2rm/((N + 1)Ts) for any integer m. Such a behavior can be better understood when we
consider the connection between the s-plane and the z-plane. |

The History of the Z-Transform

The history of the Z-transform goes back to the work of the French mathematician De Moivre, who in 1730 introduced the
characteristic function to represent the probability mass function of a discrete random variable. The characteristic function
is identical to the Z-transform. Also, the Z-transform is a special case of the Laurent’s series, used to represent complex
functions.

In the 1950s the Russian engineer and mathematician Yakov Tsypkin (1919-1997) proposed the discrete Laplace transform,
which he applied to the study of pulsed systems. Then Professor John Ragazzini and his students Eliahu Jury and Lofti
Zadeh at Columbia University developed the Z-transform. Ragazzini (1912-1988) was chairman of the Department of
Electrical Engineering at Columbia University. Three of his students are well recognized in electrical engineering for their
accomplishments: Jury for the Z-transform, nonlinear systems, and the inners stability theory; Zadeh for the Z-transform
and fuzzy set theory; and Rudolf Kalman for the Kalman filtering.

Jury was born in Irag, and received his doctor of engineering science degree from Columbia University in 1953. He was
professor of electrical engineering at the University of California, Berkeley, and at the University of Miami. Among his
publications, Professor Jury's “Theory and Application of the Z-transform,” is a seminal work on the theory and application
of the Z-transform.

Remarks
»  The relation z = e*'s provides the connection between the s-plane and the z-plane:

7 = esTs — e(aﬂ'Q)Ts — eaTSejQTS
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Letting r = ¢° s and w = QTy, we have that
z=rel?

which is a complex variable in polar form, with radius 0 < r < oo and angle w in radians. The variable
1 is a damping factor and o is the discrete frequency in radians, so the z-plane corresponds to circles of
radius v and angles —m < w < 7.

= Let us see how the relation z = e*'s maps the s-plane into the z-plane. Consider the strip of width
27 /Ts across the s-plane shown in Figure 9.1. The width of this strip is related to the Nyquist
condition establishing that the maximum frequency of the analog signals we are considering is
Qupm = Q5/2 = 7t /Ts where Qg is the sampling frequency and T; is the sampling period. If T — O,
we would be considering the class of signals with maximum frequency approaching co—that is, all signals.

The relation z = e*'s maps the real part of s = o + jQ, Re(s) = o, into the radius r = ¢° s > 0, and
the analog frequencies —n /Ty < Q < 7 /Ts into —w < w < 7, dccording to the frequency connection
w = QT. Thus, the mapping of the jQ axis in the s-plane, corresponding to o = 0, gives a circle of radius
r = 1 or the unit circle.

The right-hand s-plane, o > 0, maps into circles with radius r > 1, and the left-hand s-plane, o < 0,
maps into circles of radius r < 1. Points A, B, and C in the strip are mapped into corresponding points
in the z-plane as shown in Figure 9.1. So the given strip in the s-plane maps into the whole z-plane—
similarly for other strips of the same width. Thus, the s-plane, as a union of these strips, is mapped onto
the same z-plane.

»  The mapping z = e*’s can be used to illustrate the sampling process. Consider a band-limited signal x(t)
with maximum frequency 7 /Ts with a spectrum in the band [—n/Ts n/Ts]. According to the relation
z = el the spectrum of x(t) in [—m/Ts /T3] is mapped into the unit circle of the z-plane from [—m, )
on the unit circle. Going around the unit circle in the z-plane, the mapped frequency response repeats
periodically just like the spectrum of the sampled signal.

z:esTS
jQ
7 & Da
7B r
w
A B
(e}
c A
- _,_%_C_ —
s-plane z-plane

FIGURE 9.1

Mapping of the Laplace plane into the z-plane. Slabs of width 27 /T in the left-hand s-plane are mapped into the
inside of a unit circle in the z-plane. The right-hand side of the slab is mapped outside the unit circle. The jQ-axis
in the s-plane is mapped into the unit-circle in the z-plane. The whole s-plane as a union of these slabs is
mapped onto the same z-plane.
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9.3 TWO-SIDED Z-TRANSFORM

Given a discrete-time signal x[n], —oo < n < 00, its two-sided Z-transform is

o0

X@= Y x[nz™" (9.4)

n=-—00

defined in a region of convergence (ROC) in the z-plane.

Considering the sampled signal x(nT;) a function of n in Equation (9.3), we obtain the two-sided
Z-transform.

Remarks

m  The Z-transform can be thought of as the transformation of the sequence {x[n]} into a polynomial X(z)
(possibly of infinite degree in positive and negative powers of z) where to each x[ny] we attach a monomial
z~"™. Thus, given a sequence of samples {x|n]} its Z-transform simply consists in creating a polynomial
with coefficients x|n| corresponding to z—". Given a Z-transform as in Equation (9.4), its inverse is easily
obtained by looking at the coefficients attached to the z~" monomials for positive as well as negative values
of the sample value n. Clearly, this inverse is not in a closed form. We will see ways to compute these later
in this chapter.

m  The two-sided Z-transform is not useful in solving difference equations with initial conditions, just as the
two-sided Laplace transform was not useful either in solving differential equations with initial conditions.
To include initial conditions in the transformation it is necessary to define the one-sided Z-transform.

The one-sided Z-transform is defined for a causal signal, x[n] = 0 for n < 0, or for signals that are made causal
by multiplying them with the unit-step signal u[n]:

X1@) = Z([njuln]) = Y x[nJuln]z™" (9.5)

n=0
in a region of convergence R ;.

The two-sided Z-transform can be expressed in terms of the one-sided Z-transform as follows:
X(2) = Z (x[n]u[n]) + Z (x[—n]u[n]) |z — x[0] (9.6)
The region of convergence of X(z) is

R=R1NRy

where R is the region of convergence of Z (x[n]u[n]) and R, is the region of convergence of Z (x[—n]u[n])|,.

The one-sided Z-transform coincides with the two-sided Z-transform whenever the discrete-time sig-
nal x[n] is causal (i.e., x[n] = O for n < 0). If the signal is noncausal, multiplying it by u[n] makes it
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causal. To express the two-sided Z-transform in terms of the one-sided Z-transform we separate the
sum into two and make each into a causal sum:

0 00 0
X@= Y x[nle™ = xlnjuln]c™"+ > x[nu[-n]z"" - x[0]
n=-—00 n=0 n=—00
= Z (x[n]u[n]) + Z x[—m]u[m]z" — x[0]
m=0

= Z (x[n]u[n]) + Z (x[—n]u[n]) |- — x[0]

where the inclusion of the additional term x[0] in the sum from —oo to 0 is compensated by subtract-
ing it, and in the same sum a change of variable (m = —n) gives a one-sided Z-transform in terms of
positive powers of z, as indicated by the notation Z (x[—n]u[n]) |..

9.3.1 Region of Convergence

The infinite summation of the two-sided Z-transform must converge for some values of z. For X(z) to
converge it is necessary that

IX()| =

Z x[n]z™"

n

<Y lxln]llr e = Ix[n]||Ir | < oo

n

Thus, the convergence of X(z) depends on r. The region in the z-plane where X(z) converges, its ROC,
connects the signal and its Z-transform uniquely. As with the Laplace transform, the poles of X(z) are
connected with its region of convergence.

The poles of a Z-transform X(z) are complex values {p,} such that
X(p) — o0
while the zeros of X(z) are the complex values {z;,} that make

X(z,) =0

m Example 9.2
Find the poles and the zeros of the following Z-transforms:
() X1(x) =142z ' +3272+4z73
@' -1 +2)?

b) X2(2) =
%@ @2+ V22141
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Solution

To see the poles and the zeros more clearly let us express Xj (z) as a function of positive powers
of z:
2(1+2z71+3272 +4273)
23
2 +22243z2+4  Ni(@)
23 - Di(®

X1(2) =

There are three poles at z = 0, the roots of D;(z) = 0, and the zeros are the roots of N (z) = 2> +
222 +3z+4=0.

Likewise, expressing X, (z) as a function of positive powers of z,
2@ =D ! +2)2
2Nz 2+ 22714+ 1)
_(1-2(1+22? Ni@
1+ V22+22 D

The poles of X, (z) are the roots of D (z) = 1 + +/2z + 22 = 0, while the zeros of X, (z) are the roots
of No(z) = (1 —2)(1 +22)2 = 0. [

X2(z) =

The region of convergence depends on the support of the signal. If it is finite, the ROC is very much
the whole z-plane; if it is infinite, the ROC depends on whether the signal is causal, anti-causal,
or noncausal. Something to remember is that in no case does the ROC include any poles of the
Z-transform.

ROC of Finite-Support Signals

The ROC of the Z-transform of a signal x[n] of finite support [Ng, N1] where —oco < Ng <n < Nj < 00,

N1

X@ =Y x[n]z"" (9.7)

n=Np

is the whole z-plane, excluding the origin z = 0 and/or z = +o0 depending on Ny and N .

Given the finite support of x[n] its Z-transform has no convergence problem. Indeed, for any z # 0
(or z # to0 if positive powers of z occur in Equation (9.40)), we have

Ny
IX@| < Y Ix[n]ll="| < (N1 — No + 1) max |x[n]| max || < oo
n=Np
The poles of X(z) are either at the origin of the z-plane (e.g., when Ny > 0) or there are no poles (e.g.,
when N < 0). Thus, only when z = 0 or z = +00 would X(z) go to infinity. The ROC is the whole
z-plane excluding these values.
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m Example 9.3

Find the Z-transform of a discrete-time pulse

dn= |1 0=n=0o
|0 otherwise

Determine the region of convergence of X(z).

Solution

The Z-transform of x[n] is

9 —10 10
1—-=z zv -1
_ —-n _ _
X() = E 1z7" = o1~ Pe_1 (9.8)
n=0

That this sum equals the term on the right can be shown by multiplying the left term by the
denominator 1 —z~! and verifying the result is the same as the numerator in negative powers of
z. In fact,

9 9 9
1-zH)Y 1z"=)"12"-> 12"
n=0 n=0 n=0
=4z '+ 2@ '+ +z27 42 =1-710

Since x[n] is a finite sequence there is no problem with the convergence of the sum, although X(z)
in Equation (9.8) seems to indicate the need for z # 1 (z = 1 makes the numerator and denom-
inator zero). From the sum, if we let z = 1, then X(1) = 10, so there is no need to restrict z to be
different from 1. This is caused by the pole at z = 1 being canceled by a zero. Indeed, the zeros z;,
of X(z) (see Eq. 9.8) are the roots of z!0 — 1 = 0, which are z, = ¢/27%/10 fork = 0, ..., 9. Therefore,
the zero when k = 0, or zp = 1, cancels the pole at 1 so that

1_[2:1 (Z o ejnk/S)

X(z) = =

That is, X(z) has nine poles at the origin and nine zeros around the unit circle except at z = 1. Thus,
the whole z-plane excluding the origin is the region of convergence of X(z) . |

ROC of Infinite-Support Signals

Signals of infinite support are either causal, anti-causal, or a combination of these or noncausal. Now
for the Z-transform of a causal signal x¢[n] (i.e., x;[n] = 0,n < 0)

Xc(z) = Zxc[n]z*" = Zxc[n]r*”e*j”“’
n=0 n=0

to converge we need to determine appropriate values of r, the damping factor. The frequency w
has no effect on the convergence. If R; is the radius of the farthest-out pole of X.(z), then there is



9.3 Two-Sided Z-Transform a

an exponential Ru[n] such that |x.[n]| < MR for n > 0 for some value M > 0. Then, for X(z) to
converge we need that

Ry |"
J— < 0
r

Xe@| < Y Ixelnlllr ™ <MY
n=0 n=0

or that R;/r < 1, which is equivalent to |z| = r > R;. As indicated, this ROC does not include any
poles of X, (z)—it is the outside of a circle containing all the poles of X;(z).

Likewise, for an anti-causal signal x,[n], if we choose a radius R, that is smaller than the radius of all
the poles of X,(z), the region of convergence is |z| = r < R,. This ROC does not include any poles of
X,(z)—it is the inside of a circle that does not contain any of the poles of X, (z).

If the signal x[n] is noncausal, it can be expressed as
x[n] = xc[n] + xa[n]

where the supports of x,[n] and x;[n] can be finite or infinite or any possible combination of these
two. The corresponding ROC of X(z) = Z{x|n|} would then be

0<R; <zl <Ry <

This ROC is a torus surrounded on the inside by the poles of the causal component, and in the
outside by the poles of the anti-causal component. If the signal has finite support, then R; = 0 and
Ry = o0, coinciding with the result for finite-support signals.

For the Z-transform X(z) of an infinite-support signal:

= A causal signal x[n] has a region of convergence |z| > Ry where R; is the largest radius of the poles of
X(z)—that is, the region of convergence is the outside of a circle of radius R; .

= An anti-causal signal x[n] has as region of convergence the inside of the circle defined by the smallest
radius R, of the poles of X(z), or |z] < R5.

= A noncausal signal x[n] has as region of convergence R; < |z| < Ry, or the inside of a torus of inside
radius R and outside radius R, corresponding to the maximum and minimum radii of the poles of X.(z)
and X, (z), which are the Z-transforms of the causal and anti-causal components of x[n].

m Example 9.4

The poles of X(z) are z = 0.5 and z = 2. Find all the possible signals that can be associated with it
according to different regions of convergence.

Solution
Possible regions of convergence are:

s {Ri1:|z] > 2}—the outside of a circle of radius 2, we associate X(z) with a causal signal x; [n].
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= {R,:]|z| < 0.5}—theinside of a circle of radius 0.5, an anti-causal signal x, [n] can be associated
with X(z).

m {R3:0.5 < |z| < 2}—atorus of radii 0.5 and 2, a noncausal signal x3[n] can be associated with
X(z).

Three different signals can be connected with X(z) by considering three different regions of
convergence. |

m Example 9.5

Find the regions of convergence of the Z-transforms of the following signals:

(@) x1[n] = <%>nu[n]
(b) xz[n] = — (%)nu[—n Y

Determine then the Z-transform of x; [n] + x2[n].

Solution

The signal x; [n] is causal, while x;|n] is anti-causal. The Z-transform of x1[n] is

xw=3 (1) e Lo ¢
1t = 2 T 1-05z! z-05

n=0

provided that [0.5z7!| < 1 or that its region of convergence is R1 : |z| > 0.5. The region R is the
outside of a circle of radius 0.5.

The signal x,[n] grows as n decreases from —1 to —oo, and the rest of its values are zero. Its Z-
transform is found as

-1 n o] —m
X2(z) = — Z <%) z‘":—Z(%) Z"+1
n=-—00 m=0

e -1 z
— 2MM 41 = 1=
Z + 1-—-2z + z—0.5
m=0

with a region of convergence of R : |z| < 0.5.

Although the signals are clearly different, their Z-transforms are identical. It is the corresponding
regions of convergence that differentiate them. The Z-transform of x;[n] 4+ x2[n] does not exist
given that the intersection of R and R; is empty. [ |
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Remarks The uniqueness of the Z-transform requires that the Z-transform of a signal be accompanied by
a region of convergence. It is possible to have identical Z-transforms with different regions of convergence,
corresponding to different signals.

m Example 9.6

Let c[n] =a™, 0 <& < 1, be a discrete-time signal (it is actually an autocorrelation function
related to the power spectrum of a random signal). Determine its Z-transform.

Solution
To find its two-sided Z-transform C(z) we consider its causal and anti-causal components. First,

Z(c|nlu|n]) = Za”z*" = ;1

1—oaz™
n=0

with the region of convergence of |az~!| < 1 or |z| > a. For the anti-causal component,

— 1
Z(c[-n]u[n]), = alZ" =
ng(:) 1—-oaz

with a region of convergence of |az| < 1 or |z| < |1/«].

Thus, the two-sided Z-transform of ¢[n] is (notice that the term for n = 0 was used twice in the
above calculations, so we need to subtract it)

C@) 1 + 1 1 z z
Z) = —1= _
l—az7l!  1-0az z—a (z—1/a)
. (¢ —1/a)z

C z—a)z—1/a)

with a region of convergence of

1
o] < z| < —‘
For instance, for « = 0.5, we get
—1.5z
Cl)= ———— 05<|z] <2 [
(z—0.5)(z—2)

9.4 ONE-SIDED Z-TRANSFORM

In most situations where the Z-transform is used the system is causal (its impulse response is h[n] = 0
for n < 0) and the input signal is also causal (x[n] = 0 for n < 0). In such cases the one-sided Z-
transform is very appropriate. Moreover, as we saw before, the two-sided Z-transform can be expressed
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in terms of one-sided Z-transforms. Another valid reason to study the one-sided Z-transform in more
detail is its use in solving difference equations with initial conditions.

Recall that the one-sided Z-transform is defined as
o0
X1(@) = Z@[nlu[n]) =Y x[n]u[n]z™" (9.9)
n=0
in a region of convergence R 1. Also recall that the computation of the two-sided Z-transform using
the one-sided Z-transform is given in Equation (9.6).

9.4.1 Computing the Z-Transform with Symbolic MATLAB

Similar to the computation of the Laplace transform, the computation of the Z-transform can be
done using the symbolic toolbox of MATLAB. The following is the necessary code for computing the
Z-transform of

hi[n] = 0.9u[n]

hy[n] = u[n] — u[n — 10]
hs[n] = cos(won)u[n]
ha[n] = hsigna, [n]ha[n]

The results are shown at the bottom. (As in the continuous case, in MATLAB the heaviside function is
the same as the unit-step function.)

%% % % % % % % % % % % % % % % % % % % %o

% Z-transform computation

% % % % % % % % % % % Y% %o Y% Y% % % % % % Yo

syms n w0

h1=0.9."n; H1 = ztrans(h1)

h2 = heaviside(n) - heaviside(n-10); H2 = ztrans(h2)
h3 = cos(wO % n) % heaviside(n); H3 = ztrans(h3)

H4 = ztrans(h1 % h3)

H1 =10/9/(10/9%z - 1)xz
H2=1+1/z+1/2"2+1/2°3+1/2"4+1/2°5+1/2"6+1/2"7+1/2"8+1/2"9
H3 = (z - cos(wQ)) % z/(z" 2 - 2%z * cos(wWO) + 1)

H4 = 10/9 % (10/9 x z - cos(w0))*z/(100/81 %z~ 2 - 20/9 % z * cos(wWO) + 1)

The function iztrans computes the inverse Z-transform. We will illustrate its use later on.

9.4.2 Signal Behavior and Poles
In this section we will use the linearity property of the Z-transform to connect the behavior of the
signal with the poles of its Z-transform.
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The Z-transform is a linear transformation, meaning that
Z(ax|n] + by|n]) = aZx[n]) + bZ(y[n]) (9.10)

for signals x[n] and y[n] and constants a and b.

To illustrate the linearity property as well as the connection between the signal and the poles of its
Z-transform, consider the signal x[n] = o™ u[n] for real or complex values «. Its Z-transform will be
used to compute the Z-transform of the following signals:

s x[n] = cos(won + 0)u|n] for frequency 0 < wp < 7 and phase 6.
s x[n] = a" cos(won + 0)u[n] for frequency 0 < wy < 7 and phase 6.

Show how the poles of the corresponding Z-transform connect with the signals.

The Z-transform of the causal signal x[n] = «"u[n] is

o0 o0
1 z
_ n_—n __ —1\n __ _ .
X(z) = nE:Ooc "= ngzo(az )t = —arl —72_a ROC: |z]| > || (9.11)

Using the last expression in Equation (9.11) the zero of X(z) is z = 0 and its pole is z = «, since the
first value makes X(0) = 0 and the second makes X(«) — oo. For « real, be it positive or negative,
the region of convergence is the same, but the poles are located in different places. See Figure 9.2 for
a < 0.

If o = 1 the signal x[n] = u[n] is constant for n > 0 and the pole of X(z) is at z = 1¢/® (the radius

is r = 1 and the lowest discrete frequency @ = 0 rad). On the other hand, when o« = —1 the signal
is x[n] = (—1)"u[n], which varies from sample to sample for n > 0; its Z-transform has a pole at
z=—1= 1/ (aradius r = 1 and the highest discrete frequency w = & rad). As we move the pole

toward the center of the z-plane (i.e., |¢| — 0), the corresponding signal decays exponentially for 0 <
«a < 1, and is a modulated exponential of |¢|"(—1)"u[n] = |«|" cos(zn)u[n] for —1 < « < 0. When
|| > 1 the signal becomes either a growing exponential (¢ > 1) or a growing modulated exponential
(@ < —1).

z-plane
/ - ~
Rl o/ \\ 1
1

\ //
FIGURE 9.2 S
Region of convergence (shaded area) of X(z) with a pole at
z=a,a < 0 (same ROC if pole is at z = —a).
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For a real value & = |a|ef®0 for wy = 0 or 7,

1
sn)=a"uln] & X@=-———=-——" ROC: || > |al
1—oaz™ zZ—o

and the location of the pole of X(z) determines the behavior of the signal:
m  Whena > 0, then wg = 0 and the signal is less and less damped as o — oo.
m  When a < 0, then wg = 7 and the signal is a modulated exponential that grows as « — —oc.

To compute the Z-transform of x[n] = cos(won + 0)u[n], we use Euler’s identity to write x[n] as

pllwont+0)  —j(won+0)
x[n] = + u[n]

2 2

Applying the linearity property and using the above Z-transform when a = ¢/ and its conjugate
a* = e, we get

1 el? e 10
X@=3 [T R g

1 [2 cos(8) — 2 cos(wo — G)Z_1i|

T2 1-2cos(wp)z 1 +22

cos(0) — cos(wg — 0)z~ 1

= 9.12
1 — 2 cos(wg)z~! +z72 ( )
Expressing X(z) in terms of positive powers of z, we get
X(2) = z(z cos(0) — cos(wg — 6)) _ z(z cos(0) — cos(wg — 0)) (9.13)

2 -2 cos(wp)z + 1 - (z — e]"UO)(z — e—jwo)

which is valid for any value of 6. If x[n] = cos(won)u[n], then # = 0 and the poles of X(z) are a
complex conjugate pair on the unit circle at frequency wg radians. The zeros are at z=0 and z =
cos(wp). When x[n] = sin(won)u[n] = cos(won — 7 /2)u[n], then § = —x/2 and the poles are at the
same location as those for the cosine, but the zeros are at z = 0 and z = cos(wg + 7/2)/ cos(t/2) —
00, so there is only one finite zero at zero. For any other value of 6, the poles are located in the same
place but there is a zero at z = 0 and another at z = cos(wy — 0)/ cos(8).

For simplicity, we let & = 0. If wyp = 0, one of the double poles at z = 1 is canceled by one of the zeros
at z = 1, resulting in the poles and the zeros of Z([u|n]). Indeed, the signal when wp = 0 and 6 = 0
is x[n] = cos(0n)u[n] = u[n]. When the frequency wg > 0 the poles move along the unit circle from
the lowest (wp = 0 rad) to the highest (wy = 7 rad) frequency.
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The Z-transform pairs of a cosine and a sine are, respectively,

z(z — cos(wq))
(z — eJ0)(z — e7I*0)
zsin(wg)

sin(won)u[n] < PP s y—— ROC: [z] > 1 (9.15)

cos(wom)u[n] <

ROC: |z] > 1 (9.14)

The Z-transforms for these sinusoids have identical poles 1eT®0, but different zeros. The frequency of the
sinusoid increases from the lowest (wg = 0 rad) to the highest (wg = 7 rad)) as the poles move along the unit
circle from 1 to —1 in its lower and upper parts.

Consider then the signal x[n] = " cos(won + 6)u[n], which is a combination of the above cases. As
before, the signal is expressed as a linear combination

14 jwo \n —j0 (p—j®0\N
x[n] _ |:e] (re] 0) n e (Te ] 0) :|u[n]

2 2

and it can be shown that its Z-transform is
z(zcos(8) — rcos(wg — 0))

X(z) = : -
(z — reJ®0)(z — re~J*0)

(9.16)

The Z-transform of a sinusoid is a special case of the above (i.e.,, when r = 1). It also becomes clear
that as the value of r decreases toward zero, the exponential in the signal decays faster, and that
whenever r > 1, the exponential in the signal grows making the signal unbound.

The Z-transform pair

z(zcos(0) — rcos(wg — 0))

™ cos(won + 0)u[n a .
(o Julnl (z — 1e)?¥0)(z — re™J®0)

(9.17)

shows how complex conjugate pairs of poles inside the unit circle represent the damping indicated by the
radius r and the frequency given by wq in radians.

Double poles are related to the derivative of X(z) or to the multiplication of the signal by n. If

X@@) =) x[nJz™"
n=0

its derivative with respect to z is

dX(z) . > dz="
dz —;x[n] dz

o
=—z! Z nx[n]z™"
n=0
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Or the pair
dX(z
nx[nluln] < —=z @ (9.18)
dz
For instance, if X(z) = 1/(1 — az™') = z/(z — ), we find that
dX(z) . o
dz ~  (z—«)?
That is, the pair
oz
na"u[n] < m
indicates that double poles correspond to multiplication of x[n] by n.

The above shows that the location of the poles of X(z) provides basic information about the signal
x[n]. This is illustrated in Figure 9.3, where we display the signal and its corresponding poles.

9.4.3 Convolution Sum and Transfer Function
The most important property of the Z-transform, as it was for the Laplace transform, is the
convolution property.

The output y[n] of a causal LTT system is computed using the convolution sum

ylnl =[x+ h][n] = > x[klh[n — k] =) hlk|x[n — k] (9.19)

k=0 k=0

where x[n] is a causal input and h[n] is the impulse response of the system. The Z-transform of y[n] is the
product

Y(z) = Z{[x = h][n]} = Z{x[n]} Z{h|n]} = X(x)H(2) (9.20)
and the transfer function of the system is thus defined as

_ Y@ _ Zloutput y[n]]

H@ = X(z) ~ Z[input x|n]]

(9.21)

That is, H(z) transfers the input X(z) into the output Y(z).

Remarks

m  The convolution sum property can be seen as a way to obtain the coefficients of the product of two polyno-
mials. Whenever we multiply two polynomials X1 (z) and X5 (z), of finite or infinite order, the coefficients
of the resulting polynomial can be obtained by means of the convolution sum. For instance, consider

X1(@) =1+a1z a2
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FIGURE 9.3
Effect of pole location on the inverse Z-transform: (a) if the pole is at z = 1 the signal is u[n], constant for n > 0;
(b) if the pole is at z = —1 the signal is a cosine of frequency 7 continuously changing, constant amplitude; (c, d)
when poles are complex, if inside the unit circle the signal is a decaying modulated exponential, and if outside
the unit circle the signal is a growing modulated exponential.
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and
X2(2) = 1+ b1zt
Their product is

X1(@Xa(@) =1+ b1z + a1z +arbiz 2 + arz % + apb1z>

=14+ (b + a1)Z_1 + (a1by + az)z_z + a2b1Z_3

The convolution sum of the two sequences |1 a1 az] and |1 by], formed by the coefficients of X1 (z) and
X5(z), is [1 (a1 + b1) (a2 + biay) az], which corresponds to the coefficients of the product of the polyno-
mials X1(2)X3(z). Also notice that the sequence of length 3 (corresponding to the first-order polynomial
X1(z)) and the sequence of length 2 (corresponding to the second-order polynomial X, (z)) when convolved
give a sequence of length 3 + 2 — 1 = 4 (corresponding to the third-order polynomial X1(2)X3(2)).

m A finite-impulse response or FIR filter is implemented by means of the convolution sum. Consider an FIR
with an input—output equation

N-1
ylnl = bix[n — k] (9.22)
k=0

where x|n] is the input and y[n] is the output. The impulse response of this filter is (let x|n] = 8[n] and
set initial conditions to zero, so that y[n] = h[n])

N-1
hin] =) bsn — k|
k=0

giving h[n] = b, forn =0,...,N — 1, and accordingly, we can write Equation (9.22) as

N-1
ylnl = ) hlklxn — k]
k=0

which is the convolution of the input x|n| and the impulse response h|n] of the FIR filter. Thus, if X(z) =
Z(x[n]) and H(z) = Z(h|n]), then

Y(2) = H@)X(z) and y[n] =Z7'[Y(2)]

The length of the convolution of two sequences of lengths M and NisM + N — 1.

= If one of the sequences is of infinite length, the length of the convolution is infinite. Thus, for an infinite-
impulse response (IIR) or recursive filters the output is always of infinite length for any input signal, given
that the impulse response of these filters is of infinite length.
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m Example 9.7
Consider computing the output of an FIR filter,

YIn] = % (x[n] + x[n — 1] + x[n — 2])

for an input x[n] = u[n] — u[n — 4] using the convolution sum, analytically and graphically, and
the Z-transform.

Solution

The impulse response is h[n] = 0.5(8[n] + §[n — 1] + §[n — 2]), so that h[0], h[1], h[2] are,
respectively, 0.5, 0.5, and 0.5, and h[n] is zero otherwise.

Convolution sum formula: The equation

ylnl = hlklx{n — k]

k=0
= x[0]h[n] + x[1]h[n — 1] 4+ -- - + x[n]h[0] n=>0
with the condition that in each entry the arguments of x[.] and k[.] add to n > 0, gives
y[0] = x[0]h[0] = 0.5
y[1] = x[0]h[1] + x[1]h[0] = 1
v[2] = x[0]h[2] + x[1]h[1] + x[2]k[0] = 1.5
v[3] = x[0]h[3] + x[1]h[2] + x[2]h[1] + x[3]h[0] = x[1]h[2] + x[2]h[1] + x[3]h[0] = 1.5
v[4] = x[0]h[4] + x[1]h[3] + x[2]h[2] + x[3]h[1] + x[4]h[0] = x[2]h[2] + x[3]h[1] =1
v[5] = x[0]h[5] + x[1]h[4] + x[2]h[3] + x[3]h[2] 4+ x[4]h[1] + x[5]h[0] = x[3]h[2] = 0.5

and the rest are zero. In the above computations, we notice that the length of y[n]is4 +3 — 1 =
6 since the length of x[n] is 4 and that of h|n] is 3.

Graphical approach: The convolution sum is given by either

n

ylnl = Y xlklh[n — k]

k=0

= Xn: hlk]x[n — k]

k=0

Choosing one of these equations, let’s say the first one, we need x|k] and h[n — k], as functions
of k, for different values of n. Multiply them and then add the nonzero values. For instance, for
n = 0 the sequence h[—k] is the reflection of h[k]; multiplying x[k] by h[—k] gives only one value
different from zero at k = 0, or y[0] = 1/2. For n = 1, the sequence h[1 — k], as a function of k,
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n=— x[K]

\q yI-11=0

(a)

x[k]

\A yl[2]=x[0]h[2]+x[1]h[1]+x[2]h[0]

x[K]

W

hi5—- k]

x”

T T yI5]=x[3]h[2]
k

3 -2 -1 o 1 2 3 4 5
(©

FIGURE 9.4

Graphical approach: convolution sum for () n = —1, (b) n = 2, and (c) n = 5 with corresponding outputs y[—1],
y[2], and y[5]. Both x[k] and h[n — k] are plotted as functions of k for a given value of n. The signal x[k] remains
stationary, while h[n — k] moves linearly from left to right. Thus, the convolution sum is also called a linear

convolution.

is h[—k] shifted to the right one sample. Multiplying x[k] by h[1 — k] gives two values different
from zero, which when added gives y[1] = 1, and so on. For increasing values of n we shift to
the right one sample to get h[n — k|, multiply it by x[k], and then add the nonzero values to
obtain the output y[n]. Figure 9.4 displays the graphical computation of the convolution sum
forn=—-1,n=2andn=>5.

Convolution sum property: We have
X@=1+z"'+z2+z

H@) =-[1+z"'+277]

N —
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15

yln]

0.5

n
(©)
FIGURE 9.5

Convolution sum for an averager FIR: (a) x[n], (b) h[n], and (c) y[n]. The output y[n] is of length 6 given that x[n]
is of length 4 and h[n] is the impulse response of a second-order FIR filter of length 3.

and according to the convolution sum property,

1 —1 -2 -3 —4 -5
Y(Z)=X(Z)H(Z)=§(1+2z +327° 432774+ 22 " +27°)

Thus, y[0] = 0.5, y[1] = 1, y[2] = 1.5, y[3] = 1.5, y[4] = 1, and y[5] = 0.5, just as before.
In MATLAB the function conv is used to compute the convolution sum giving the results shown
in Figure 9.5, which coincide with the ones obtained in the other approaches. |

m Example 9.8

Consider an FIR filter with impulse response
hln] = 8[n] + 8[n — 1] + 8[n — 2]

Find the filter output for an input x[n] = cos(27n/3)(u[n] — u[n — 14]). Use the convolution sum
to find the output, and verify your results with MATLAB.
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Solution
Graphical approach: Let us use the formula

n

ylnl = ) xlklh[n — k]

k=0

which keeps the more complicated signal x[k] as the unchanged signal. The term h[n — k] is
h[k] reversed for n = 0, and then shifted to the right for n > 1. The output is zero for negative
values of n, and for n > 0 we have

yo]=1

y[1] = 0.5

y[n] =0 2<n<13
y[14] = 0.5
y[15] = —0.5

The first value is obtained by reflecting the impulse response to get h|—k], and when multiplied
by x[k] we only have the value at k = 0 different from zero, therefore y[0] = x[0]h[0] = 1. As
we shift the impulse response to the right to get h[1 — k] for n = 1 and multiply it by x[k], we
get two values different from zero; when added they equal 0.5. The result for 2 < n < 13 is zero
because we add three values of —0.5, 1 and —0.5 from the cosine. These results are verified by
MATLAB as shown in Figure 9.6. (the cosine does not look like a sampled cosine given that
only three values are used per period).

Convolution property approach: By the convolution property, the Z-transform of the output y[n] is
Y(2) =X@H®@ =X@1 +2z ' +27) =X@) +X(@z ' +X(x)z"?
The coefficients of Y (z) can be obtained by adding the coefficients of X(z), X(z)z~!, and X(2)z~:

ZO Z—l Z—Z Z_3 2_4 Z—S 2_6 2_7 Z—S Z—9 Z—lO Z_ll Z—12 Z—13 Z_14 2_15
1 -05 —-0.5 1 -05 —-0.5 1 -05 -0.5 1 -05 —-0.5 1 -0.5
1 -05 -0.5 1 -05 —-0.5 1 -05 -05 1 -05 -0.5 1 —-05
1 -0.5 -0.5 1 -05 -05 1 -0.5 —-0.5 1 -0.5 —-0.5 1 -05

Adding these coefficients vertically, we obtain
Y@ =1405z" 40z 24 +0z 7 +05z* —05z"
=1405z"' 4052 -05z"

Notice from this example that

= The convolution sum is simply calculating the coefficients of the polynomial product
X(z)H(z).
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(@) (b)

-2 0 2 4 6 8 10 12 14 16 18

()
FIGURE 9.6
Convolution sum for FIR filter: (a) x[n], (b) h[n], and (c) y[n].

= The length of the convolution sum = length of x[n] + length of h[n] -1 =14+3 -1 =
16—that is, Y(z) is a polynomial of order 15. u

m Example 9.9

The convolution sum of noncausal signals is more complicated graphically than that of the causal
signals we showed in the previous examples. Let

1
hiln] = 3 (8[n+ 1] + 8[n] + 8[n — 1])
be the impulse response of a noncausal averager FIR filter, and x[n] = u[n] — u[n — 4] be the input.
Compute the filter output using the convolution sum.
Solution

Graphically, it is a bit confusing to plot hi[n — k], as a function of k, to do the convolution
sum. Using the convolution and the time-shifting properties of the Z-transform we can view the
computation more clearly.
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According to the convolution property the Z-transform of the output of the noncausal
filter is

Y1(z) = X(2)H1(2)
= X(2)[zH(2)] (9.23)

where we let
1
Hi(z) = Z[hi[n]] = §(z+ 1+z7hH
=z [1(1 +2z7! +z‘2)} = zH(z)
=z|3 =

where H(z) = (1/3)Z[8[n] + §[n — 1] + §[n — 2]] is the transfer function of a causal filter. Let
Y (z) = X(z)H(z) be the Z-transform of the convolution sum y[n] = [x % h][n] of x[n] and k[n], both
of which are causal and can be computed as before.

According to Equation (9.23), we then have Y;(z) = zY(z) or y1[n] = [x* hi][n] = y[n + 1].
|

Let x1[n] be the input to a noncausal LTI system, with an impulse response hj[n] such that hy[n] = 0 for
n < N1 < 0. Assume x1[n] is also noncausal (i.e., x1[n] = 0 for n < Ng < 0). The output y; [n] = [x1 * h1][n]
has a Z-transform of

where X(z) and H(z) are the Z-transforms of a causal signal x[n] and of a causal impulse response h[n]. If we

Y1) = X1@H1 () = [NX@)][N H(2)]

let
yInl = [xxh][n] = 27! [X(9)H(2)]
then
y1[nl = [x1 * h1][n] = y[n + No + N1]
Remarks

The impulse response of an IIR system, represented by a difference equation, is found by setting the initial
conditions to zero, therefore, the transfer function H(z) also requires a similar condition. If the initial
conditions are not zero, the Z-transform of the total response Y (z) is the sum of the Z-transforms of the
zero-state and the zero-input responses—that is, its Z-transform is of the form

_ X(@B() | Io(2)

and it does not permit us to compute the ratio Y (z) /X (z) unless the component due to the initial conditions
is Ip(z) = 0.
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m [t is important to remember the relations

Y@ _ Zlyln]]
X()  Z[x[n]]

H(z) = Z[h[n]] =

where H(z) is the transfer function and h|n] is the impulse response of the system, with x[n] as the input
and y[n] as the output.

m Example 9.10
Consider a discrete-time IIR system represented by the difference equation
y[n] = 0.5y[n — 1] + x[n] (9.25)

with x[n] as the input and y[n] as the output. Determine the transfer function of the system and
from it find the impulse and the unit-step responses. Determine under what conditions the system
is BIBO stable. If stable, determine the transient and steady-state responses of the system.

Solution
The system transfer function is given by

_ Y (z) _ 1

H@ = X0 = T- 050

and its impulse response is

h|n] = Z7YH(z)] = 0.5"u[n]

The response of the system to any input can be easily obtained by the transfer function. If the input
is x[n] = u[n], we have
1
(1-0.5z"1H(1 —-2z71
-1 2
R R ——

Y(z) = H(z)X(z) =

so that the total solution is
yIn] = —0.5"u[n] + 2u|n]
From the transfer function H(z) of the LTI system, we can test the stability of the system by finding

the location of its poles—very much like in the analog case. An LTI system is BIBO stable if and
only if the impulse response of the system is absolutely summable—that is,

Y Ihln]l < oo



m CHAPTER9: The Z-Transform

An equivalent condition is that the poles of H(z) are inside the unit circle. In this case, h[n] is
absolutely summable, indeed

'S}
n 1
E 0.5" = =2
1-05
n=0

On the other hand,

H) 1 z
Z) = =
1-05z7! z—-05

has a pole at z = 0.5, inside the unit circle. Thus, the system is BIBO stable. As such, its transient
and steady-state responses exist. As n — oo, y[n] = 2 is the steady-state response, and —0.5"u[n] is
the transient solution. [ |

m Example 9.11
An FIR system has the input-output equation

il = 5 [afn] +x{n — 1] +x[ - 2])

where x[n] is the input and y[n] is the output. Determine the transfer function and the impulse
response of the system, and from them indicate whether the system is BIBO stable or not.

Solution

The transfer function is
1
HE =31 +z 4272

_zz—i—z—i—l
- 322

and the corresponding impulse response is
1
hln] = g[a[n] +68[n—1]+68[n—2]]

The impulse response of this system only has three nonzero values, h[0] = h|1] = h[2] = 1/3, and
the rest of the values are zero. As such, h|n] is absolutely summable and the filter is BIBO stable.
FIR filters are always BIBO stable given their impulse responses will be absolutely summable, due
to their final support, and equivalently because the poles of the transfer function of these system
are at the origin of the z-plane, very much inside the unit circle. ]

Nonrecursive or FIR systems: The impulse response h[n] of an FIR or nonrecursive system

y|n] = box|n] + bix[n — 1]+ - - - + bux[n — M]



9.4 One-Sided Z-Transform

has finite length and is given by
h[n] = bos[n] + b1d[n — 1] + - - - + byd[n — M|

Its transfer function is

Y@
~ XG)

=bo+b1z '+ + bz ™

H(z)

_ boZM + ble_l + -+ by
= v

with all its poles at the origin z = 0 (multiplicity M), and as such the system is BIBO stable.

Recursive or IIR systems: The impulse response h[n] of an IIR or recursive system
N M
yinl = =Y awyln =kl + ) byxln — m]
k=1 m=0
has (possible) infinite length and is given by

hin] = 27 [H@)]
22—1[ Z%:o bpz™" :|

1+ 30 az*
z-1 [@}
A(z)

he]s[n — €]

M

~
Il
o

where H(z) is the transfer function of the system. If the poles of H(z) are inside the unit circle, or
A(z) # 0 for |z| > 1, the system is BIBO stable.

9.4.4 Interconnection of Discrete-Time Systems

Just like with analog systems, two discrete-time LTI systems with transfer functions H; (z) and H;(z)
(or with impulse responses h1[n] and hy[n]) can be connected in cascade, parallel, or feedback. The
first two forms result from properties of the convolution sum.

The transfer function of the cascading of the two LTI systems is

H(z) = H1(2)H2(2z) = H2(2)H1(2) (9.26)
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FIGURE 9.7
Connections of LTI systems: (a) cascade, (b) parallel, and (c) negative feedback.

showing that there is no effect on the overall system if we interchange the two systems (see
Figure 9.7(a)). Recall that such a property is only valid for LTI systems. In the parallel system, as
in Figure 9.7(b), both systems have the same input and the output is the sum of the output of the
subsystems. The overall transfer function is

H(z) = H1(2) + H2(z) (9.27)

Finally, the negative feedback connection of the two systems shown in Figure 9.7(c) gives in the
feedforward path

Y(2) = HiQE®) (9.28)

where Y(z) = Z[y|n]] is the Z-transform of the output y[n] and E(z) = X(z) — W(z) is the
Z-transform of the error function e[n| = x[n] — w[n]. The feedback path gives that

W(2) = Z[w[n]] = H2(2)Y (2)

Replacing W(z) in E(z), and then replacing E(z) in Equation (9.28), we obtain the overall transfer

function

Y@@ H(2)
X(z) 1+ Hi(®H3(2)

H(z) (9.29)
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9.4.5 Initial and Final Value Properties

In some control applications and to check a partial fraction expansion, it is useful to find the initial
or the final value of a discrete-time signal x[n] from its Z-transform. These values can be found as
shown in the following box.

If X(z) is the Z-transform of a causal signal x[n], then
Initial value:  x[0] = lim X(2)
zZ—> 00

Finalvalue:  lim x[n] = lim (z — 1)X(z) (9.30)
n—o0 z—1

The initial value results from the definition of the one-sided Z-transform—that is,

Jim X = i, (xlo] 3 ng]) =00
n>1

To show the final value, we have that

oo oo

(z—1)X(2) = X:x[n]z_”+1 - Zx[n]z_”

n=0 n=0
= x[0]z + Z[x[n + 1] —x[n]]z™"
n=0

and thus the limit

lim(z = DX(2) = 2[0] + ) (x[n + 1] = x{n])

n=0
= x[0] + (x[1] — x[O]) + (x[2] — x[1]) + (x[3] = x[2]) - --
= Jim sl

given that the entries in the sum cancel out as n increases, leaving x[oco].

m Example 9.12

Consider a negative-feedback connection of a plant with a transfer function G(z) = 1/(1 — 0.5z 1)
and a constant feedback gain K (see Figure 9.8). If the reference signal is a unit step, x[n] = u|n],
determine the behavior of the error signal ¢[n]. What is the effect of the feedback, from the error
point of view, on an unstable plant G(z) = 1/(1 —z~!)?
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XN eln n
n + (n] 62 yln] )
FIGURE 9.8 K e
Negative-feedback system with plant G(z). w(n]
Solution

For G(z) = 1/(1 — 0.5z 1), the Z-transform of the error signal is
E(z) = X(z) — W(z) = X(z) — KG(z)E(2)

and for X(z) = 1/(1 —z~ 1),

B(z) — X(z) _ 1
@ =17Kkcw ~ d—=DHd + KC@)

The initial value of the error signal is then

. 1
e[O] = le)n;.lo E(Z) = m{

since G(oc0) = 1.

The steady-state or final value of the error is

. L (2= DX
i efn] = lim(z = DEG) = lim 2=~
z(z—1) 1

= lim =
=1 (z—1)(1+KGkr) 142K
since G(1) = 2. If we want the steady-state error to go to zero, then K must be large. In that case,
the initial error is also zero.

If G(z) = 1/(1 — z~!) (i.e., the plant is unstable), the initial value of the error function remains the
same, ¢[0] = 1/(1 + K), but the steady state error goes to zero since G(1) — oo. |

Tables 9.1 and 9.2 provide a list of one-side Z-transforms and the basic properties of the one-sided
Z-transform.



9.4 One-Sided Z-Transform a

Function of z, ROC

1, whole z-plane

T Fd
1
-z 71
z 11 +z7hH
Ay AP
= |z > o]
az™!
A —az 12’ 2] > o

1 — cos(wp)z~ !

1 —2cos(wp)z=! +2z72' Il > 1
sin(wg)z ™!
1 —2cos(wg)z—! +z72' Il > 1
1 — o cos(wg)z ™!
1 — 2a cos(wg)z—! + 272" 2l >
o sin(wg)z™!
|z| >

Table 9.1 One-Sided Z-Transforms
Function of Time

1. 8[n]

2. uln|

3. nun]

4. n2uln]

5. aMuln], la| <1

6. nauln], || <1

7. cos(wonm)u[n]

8. sin(won)u[n]

9.  a"cos(wonuln], |a| <1
10.  a"sin(won)u[n], |e| < 1

1 — 2a cos(wg)z—! + 272’

1

||

Table 9.2 Basic Properties of One-Sided Z-Transform

Causal signals and constants
Linearity

Convolution sum

Time shifting—causal

Time shifting—noncausal

Time reversal
Multiplication by n
Multiplication by n?
Finite difference

Accumulation

Initial value

Final value

ax[n], By[n]

ax[n] + By[n]

s p)[n] =2 x[nlyln — k]
x[n — N|N integer

x[n — N]

x[n] noncausal, N integer

x[—n]

n x[n]

n? x[n]

x[n] — x[n — 1]
Y=o *[k]

x[0]

iy ol

aX(z), BY (z)

aX(z) + BY(z)

X@)Y (@)

zNX(z)

2 NX(2) +a[— 1]z N*H!
+x[—2]e N2 4 ... £ x[-N]

Xz

dX(z)
dz

d*X(z)  dX(@)
dz? “ dz

(1 -2 HX® —x[-1]
X(2)

1—z1
lim X(z)
Z—> 00

—Z

ZZ

lin} (z — 1)X(2)
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9.5 ONE-SIDED Z-TRANSFORM INVERSE

Different from the inverse Laplace transform, which was done mostly by the partial fraction expan-
sion, the inverse Z-transform can be done in different ways. For instance, if the Z-transform is given
as a finite-order polynomial, the inverse can be found by inspection. Indeed, if the given Z-transform
is

N

X(2) =) x[n]z™"

n=0

=x[0] +x[1]e7 ! +x[2]z272 4+ - -+ x[N]z™N (9.31)

by the definition of the Z-transform, x[k] is the coefficient of the monomial z* fork=0,1,...,N;
thus the inverse Z-transform is given by the sequence {x[0], x[1], ..., x[n]}. For instance, if we have a
Z-transform

X(@@) =1+2z104372°
the inverse is a sequence
x[n] = 8[n] + 28[n — 10] + 38[n — 20]

so that x[0] = 1, x[10] = 2, x[20] = 3, and x|[n] = O for n £ 0, 10, 20, respectively. In this case it
makes sense to do this because N is finite, but if N — oo, this way of finding the inverse Z-transform
might not be very practical. In that case, the long-division method and the partial fraction expan-
sion method, which we consider next, are more appropriate. In this section we will consider the
inverse of one-sided Z-transforms, and in the next section we consider the inverse of two-sided
transforms.

9.5.1 Long-Division Method

When a rational function X(z) = B(z)/A(z), having as ROC the outside of a circle of radius R (i.e., x[n] is causal),
is expressed as

X@ =x[0] +2[1]e~" +x[2]e™2 + - -
then the inverse is the sequence {x[0], x[1], x[2], ...}, or

x[n] = x[0]8[n] + x[1]8[n — 1] + x[2]8[n — 2] + - --

To find the inverse we simply divide the polynomial B(z) by A(z) to obtain a possible infinite-order
polynomial in negative powers of z~!. The coefficients of this polynomial are the inverse values. The
disadvantage of this method is that it does not provide a closed-form solution, unless there is a clear
connection between the terms of the sequence. But this method is useful when we are interested in
finding some of the initial values of the sequence x[n].
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m Example 9.13

Find the inverse Z-transform of

X(z) = lz| > /2

14272
Solution

We can perform the long division to find the x[n] values, or equivalently let
X(z) = x[0] +x[1]z" +x[2]z72 4 - -
and find the {x[n]} samples so that the product X(z)(1 + 2z=2) = 1. Thus,

1=142z2)[0] + 1]z +x[2]2 +---)
=x[0] +af1]e + 2] (3] + -
+2x[0]z 2 + 2x[1]e > + -

and comparing the terms on the two sides of the equality gives

x[0] =1

x[1]=0

x[2] +2x[0] =0 = x[2] = -2
x[3]+ 2x[1] =0 = x[3] =0
x[4] + 2x[2] = 0 = x[4] = (—=2)?

So the inverse Z-transform is x[0] = 1 and x[n] = (—=2)!°8®™ for n > 0 and even, and zero
otherwise. Notice that this sequence grows as n — oo.

Another possible way to find the inverse is to use the geometric series equation

> 1

Za": la] <1
11—«

k=0

with —a = 2272 (notice that |a| = 2/|z|> < 1 or |z| > +/2, the given ROC). Therefore,

1 —251 —25\2 —2\3
X(Z)=—1+2Z_2=1+(—2z )+ (=227 +(=227)7 + -

but this method is not as general as the long division. |
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9.5.2 Partial Fraction Expansion
The basics of partial fraction expansion remain the same for the Z-transform as for the Laplace

transform. A rational function is a ratio of polynomials N(z) and D(z) inz orz™":

1

NG

X(z) = D)

The poles of X(z) are the roots of D(z) = 0 and the zeros of X(z) are the roots of the equation N(z) = 0.

Remarks

The basic characteristic of the partial fraction expansion is that X(z) must be a proper rational function,
or that the degree of the numerator polynomial N(z) must be smaller than the degree of the denominator
polynomial D(z) (assuming both N(z) and D(z) are polynomials in either z=' or z). If this condition is
not satisfied, we perform long division until the residue polynomial is of a degree less than that of the
denominator.

It is more common in the Z-transform than in the Laplace transform to find that the numerator and the
denominator are of the same degree—this is because §|n] is not as unusual as the analog impulse function
5(b).

The partial fraction expansion is generated, from the poles of the proper rational function, as a sum of
terms of which the inverse Z-transforms are easily found in a Z-transform table. By plotting the poles and
the zeros of a proper X(z), the location of the poles provides a general form of the inverse within some
constants that are found from the poles and the zeros.

Given that the numerator and the denominator polynomials of a proper rational function X(z) can be
expressed in terms of positive or negative powers of z, it is possible to do partial fraction expansions in
either z or z~'. We will see that the partial fraction expansion in negative powers is more like the partial
fraction expansion in the Laplace transform, and as such we will prefer it. Partial fraction expansion in
positive powers of z requires more care.

m Example 9.14

Consider the nonproper rational function

24272

X@)=—""°
@ 142z 14272

(the numerator and the denominator are of the same degree in powers of z~!). Determine