


Marco Corazza

Claudio Pizzi

Mathematical and Statistical Methods for Actuarial Sciences and Finance





Marco Corazza (Editor)

Claudio Pizzi (Editor)

Mathematical and
Statistical Methods
for Actuarial Sciences
and Finance



Marco Corazza
Department of Applied Mathematics
University Ca’ Foscari Venice
Venice, Italy

Claudio Pizzi
Department of Statistics
University Ca’ Foscari Venice
Venice, Italy

ISBN 978-88-470-1480-0

DOI 10.1007/978-88-470-1481-7

e-ISBN 978-88-470-1481-7

Library of Congress Control Number: 2009939620

Springer Dordrecht Heidelberg London Milan New York

© Springer-Verlag Italia 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the Italian Copyright Law in its
current version, and permission for use must always ba obtained from Springer. Violations are liable
to prosecution under the Italian Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

9 8 7 6 5 4 3 2 1

Cover-Design: Simona Colombo, Milan
Typesetting with LATEX: PTP-Berlin, Protago TEX-Production GmbH, Germany (www.ptp-berlin.eu)

Printed in Italy
Printing and Binding: Signum, Bollate (MI)

Springer-Verlag Italia srl – Via Decembrio 28 – 20137 Milano
Springer is a part of Springer Science+Business Media (www.springer.com)



Preface

This volume collects a selection of refereed papers of the more than one hundred
presented at the International Conference MAF 2008 – Mathematical and Statistical
Methods for Actuarial Sciences and Finance.

The conference was organised by the Department of Applied Mathematics and
the Department of Statistics of the University Ca’ Foscari Venice (Italy), with the col-
laboration of the Department of Economics and Statistical Sciences of the University
of Salerno (Italy). It was held in Venice, from March 26 to 28, 2008, at the prestigious
Cavalli Franchetti palace, along Grand Canal, of the Istituto Veneto di Scienze, Lettere
ed Arti.

This conference was the first international edition of a biennial national series
begun in 2004, which was born of the brilliant belief of the colleagues – and friends –
of the Department of Economics and Statistical Sciences of the University of Salerno:
the idea following which the cooperation between mathematicians and statisticians
in working in actuarial sciences, in insurance and in finance can improve research on
these topics. The proof of this consists in the wide participation in these events. In
particular, with reference to the 2008 international edition:

– More than 150 attendants, both academicians and practitioners;
– More than 100 accepted communications, organised in 26 parallel sessions, from

authors coming from about twenty countries (namely: Canada, Colombia, Czech
Republic, France, Germany, Great Britain, Greece, Hungary, Ireland, Israel, Italy,
Japan, Poland, Spain, Sweden, Switzerland, Taiwan, USA);

– two plenary guest-organised sessions; and
– a prestigious keynote lecture delivered by Professor Wolfgang Härdle of the Hum-

boldt University of Berlin (Germany).

The papers published in this volume cover a wide variety of subjects: actuarial mod-
els; ARCH and GARCH modelling; artificial neural networks in finance; copulæ;
corporate finance; demographic risk; energy markets; insurance and reinsurance;
interest rate risk; longevity risk; Monte Carlo approaches; mutual fund analysis;
non-parametric testing; option pricing models; ordinal models; probability distribu-
tions and stochastic processes in finance; risk measures; robust estimation in finance;
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solvency analysis; static and dynamic portfolio management; time series analysis;
volatility term structure; and trading systems.

Of course, the favourable outcome of this conference would not have been possible
without the precious help of our sponsors (in alphabetical order): Banca d’Italia;
Casinò Municipale di Venezia; Cassa di Risparmio di Venezia; Istituto Veneto di
Scienze, Lettere ed Arti; Provincia di Venezia; and VENIS – Venezia Informatica e
Sistemi. We truly thank them all.

Moreover, we also express our gratitude to the members of the Scientific and the
Organising Committees, and to all the people whose collaboration contributed to the
success of the MAF 2008 conference.

Finally, we would like to report that the organization of the next conference
has already begun: the MAF 2010 conference will be held in Ravello (Italy), on
the Amalfitan Coast, from April 7 to 9, 2010 (for more details visit the website
http://maf2010.unisa.it/). We anticipate your attendance.

Venezia, August 2009 Marco Corazza and Claudio Pizzi
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Impact of interest rate risk on the Spanish
banking sector

Laura Ballester, Román Ferrer, and Cristóbal González

Abstract. This paper examines the exposure of the Spanish banking sector to interest rate
risk. With that aim, a univariate GARCH-M model, which takes into account not only the
impact of interest rate changes but also the effect of their volatility on the distribution of bank
stock returns, is used. The results show that both changes and volatility of interest rates have a
negative and significant impact on the stock returns of the Spanish banking industry. Moreover,
there seems to be a direct relationship between the size of banking firms and their degree of
interest rate sensitivity.

Key words: interest rate risk, banking firms, stocks, volatility

1 Introduction

Interest rate risk (IRR) is one of the key forms of financial risk faced by banks. This
risk stems from their role as financial intermediaries and it has been attributed to two
major reasons. First, in their balance sheets, banks primarily hold financial assets and
liabilities contracted in nominal terms. Second, banks traditionally perform a matu-
rity transformation function using short-term deposits to finance long-term loans. The
resulting maturity mismatch introduces volatility into banks’ income and net worth
as interest rates change, and this is often seen as the main source of bank IRR. In
recent years, IRR management has gained prominence in the banking sector due to
the fact that interest rates have become substantially more volatile and the increasing
concern about this topic under the new Basel Capital Accord (Basel II). The most
common approach to measuring bank interest rate exposure has consisted of estimat-
ing the sensitivity of bank stock returns to interest rate fluctuations. The knowledge
of the effect of interest rate variability on bank stocks is important for bank managers
to adequately manage IRR, investors for hedging and asset allocation purposes, and
banking supervisors to guarantee the stability of the banking system. The main ob-
jective of this paper is to investigate the interest rate exposure of the Spanish banking
industry at a portfolio level by using the GARCH (generalised autoregressive condi-
tional heteroskedasticity) methodology. Its major contribution is to examine for the
first time in the Spanish case the joint impact of interest rate changes and interest rate

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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volatility on the distribution of bank stock returns. The rest of the paper is organised
as follows. Section 2 contains a review of the relevant literature. The methodology
employed and data used are described in Sections 3 and 4, respectively. Section 5
reports the empirical results. Finally, Section 6 concludes.

2 Literature review

The influence of IRR on bank stocks is an issue addressed by a considerable amount
of literature. The bulk of the research has focused on the two-index model postulated
by [18] and several general findings can be stated. First, most of the papers document
a significant negative relationship between interest rate movements and bank stock
returns. This result has been mainly attributed to the typical maturity mismatch be-
tween banks’ assets and liabilities. Banks are normally exposed to a positive duration
gap because the average duration of their assets exceeds the average duration of their
liabilities. Thus, the net interest income and the bank value are negatively affected
by rising interest rates and vice versa. Second, bank stocks tend to be more sensitive
to changes in long-term interest rates than to short-term rates. Third, interest rate
exposure of banks has declined over recent years, probably due to the development
of better systems for managing IRR.

Early studies on bank IRR were based on standard regression techniques under
the restrictive assumptions of linearity, independence and constant conditional vari-
ance of stock returns (see, e.g., [1, 10]). Later on, several studies (see, e.g., [14, 15])
provided evidence against constant conditional variance. A more recent strand of
literature attempts to capture the time-varying nature of the interest rate sensitivity
of bank stock returns by using GARCH-type methodology. Specifically, [17] led the
way in the application of ARCH methodology in banking, showing its suitability for
bank stock analysis. Subsequent studies have used different types of GARCH pro-
cesses to examine interest rate exposure of banks. For example, [5] and [16] have
employed univariate GARCH-M (GARCH in mean) models to examine both the ef-
fect of changes in interest rates and their volatility on bank stock returns, whereas [6]
and [9] have used multivariate GARCH-M models.

3 Methodology

The model proposed can be viewed as an extended version of a univariate
GARCH(1,1)-M model similar to the formulations by [5] and [16]. It is as follows:

Rit = ωi + λi Rmt + θi�It + γi log hit + εit (1)

hit = α0 + α1ε
2
it−1 + βhit−1 + δi V C It−1 (2)

εit |�t−1 ∼ N(0, hit ) (3)

where Rit denotes the return on bank i’s stock in period t , Rmt the return on the
market portfolio in period t , �It the change in the interest rate in period t , εit an
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error term with zero mean and conditional variance hit , which is dependent on the
informationset�t−1, and V C It−1 the interest rate volatility in period t−1. Moreover,
ωi , λi , θi , γi , α0, α1, β and δi are the parameters to be estimated. In particular, λi

describes the sensitivity of the return on ith bank stock to general market fluctuations
and it can be seen as a measure of market risk. In turn, θi reflects the sensitivity of
the return on ith bank stock to movements in interest rates controlling for changes
in the market return. Hence, it is a measure of ith bank IRR. As usual, to preserve
the non-negativity requirement for the conditional variance α0, α1, β ≥ 0, whereas
α1 + β < 1 for stability to hold.

The GARCH-M approach is consistent with the patterns of leptokurtosis and
volatility clustering frequently observed in stock markets and allows for the consid-
eration of time-varying risk premia and an empirical assessment of the relationship
between risk and return. Some features of the model should be highlighted. First, it
incorporates the conditional variance hit as an additional explanatory variable in (1).
The specification of volatility in logarithmic form is based on [7]. Second, the typical
structure of GARCH processes has been extended in (2) by modelling the conditional
variance as a function of the conditional interest rate volatility lagged in one period. In
this respect, even though the effect of interest rate volatility on stock returns has been
considered in the literature to a lesser extent than the impact of interest rate changes,
the interest rate volatility is important enough to be taken into account. As [5] points
out, this variable conveys critical information about the overall volatility of the finan-
cial markets and it influences the volatility of bank stock returns also at the micro
level.

There are also several critical aspects regarding the model estimation. The first
issue has to do with the possible multicolinearity between the series of market portfolio
return and interest rate changes, which could generate serious estimation problems.
Due to the significant negative correlation typically observed in the Spanish case
between these two variables, an orthogonalisation procedure has been used. Since the
central aim of this study is to analyse the banks’ IRR, the market portfolio return has
been orthogonalised as in [10] or [11]. Thus, the residuals from an auxiliary regression
of the market return series on a constant and the interest rate fluctuations series, by
construction uncorrelated with the interest rate changes, have replaced the original
market portfolio returns in (1).

A second issue concerns the choice of the interest rate proxy to be used. In this
sense, long-term interest rates are the proxy most employed in the literature, since
they are assumed to exert great influence on corporate decisions and overall economic
activity. Nevertheless, in order to enhance the robustness of the results, short-term
interest rates and the spread between long- and short-term rates have been used as
well. With regard to the short-term rates, an interbank rate has been chosen since the
money market has become a key reference for Spanish banks during recent years.
In turn, the interest rate spread is considered a good proxy for the slope of the yield
curve.
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4 Data

The sample consists of all commercial banks listed on the Spanish Stock Exchange
for at least one year over the period January 1993 – December 2005 (23 banks in
total). Monthly stock returns have been obtained from the Bolsa de Madrid database.
The market portfolio used is a modified version of the Indice General de la Bolsa de
Madrid (IGBM), the widest Spanish stock market index. Due to the major relevance
of bank stocks in the IGBM, an alternative index where banks are excluded has been
constructed in order to obtain a series of market returns as exogenous as possible. Mar-
ket interest rates have been proxied by the monthly average yield on 10-year Spanish
government bonds and the 3-month average rate of the Spanish interbank market,
whereas the interest rate spread has been computed as the difference between them.
Following [5] and [16], interest rate volatility has been measured by the conditional
variance of interest rates, which is generated using a GARCH process.

To check whether there is a relationship between bank size and IRR, bank stocks
have been sorted by size into three portfolios – large (L), medium (M) and small (S)
banks. This classification (see Table 1) is based on the three categories of commercial
banks typically distinguished in the Spanish banking industry. Thus, the L portfolio
includes the banks that have given rise to the two currently multinational Spanish
banking conglomerates (B. Santander and BBVA). The M portfolio is made up of a
group of medium-sized Spanish banks that operate in national territory. Finally, the S
portfolio is constituted by a broad set of small banks that operate mostly at a regional

Table 1. List of banks and composition of bank portfolios

Portfolios Asset Volume ( C × 103) Obs. Portfolios Asset Volume ( C× 103) Obs.

Portfolio L
BSCH 396,124,995 81 B. Bilbao Vizcaya 100,026,979 85
BBVA 297,433,664 71 Argentaria 69,998,972 80
B. Santander 113,404,303 75 B. Central Hispano 68,793,146 75
Portfolio M
Banesto 42,332,585 156 Bankinter 15,656,910 156
B. Exterior 32,130,967 51 B. Pastor 8,789,945 156
B. Popular 29,548,620 156 B. Atlántico 7,591,378 138
B. Sabadell 26,686,670 56
Portfolio S
B. Zaragozano 4,597,099 130 B. Galicia 1,726,563 156
B. Valencia 4,213,420 156 B. de Vasconia 1,330,458 156
B. Guipuzcoano 4,082,463 156 B. de Vitoria 875,974 62
B. Andalucı́a 3,521,838 156 B. Crédito Balear 854,972 156
B. Herrero 2,624,824 95 B. Alicante 835,576 64
B. de Castilla 2,151,742 156 B. Simeón 686,451 67

This table displays the list of Spanish commercial banks considered and their distribution in
portfolios according to size criteria (portfolios L, M and S).
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level.1 The formation of portfolioshas a twofold advantage. First, it is an efficient way
of condensing substantial amounts of information. Second, it helps to smooth out the
noise in the data due to shocks to individual stocks. On the contrary, portfolios can
mask the dissimilarities among banks within each portfolio. In this case, the mentioned
advantages seem to outweigh this inconvenience, according to the number of papers
based on bank stock portfolios (see, e.g., [5,6,17]). Monthly value-weighted portfolio
returns have been obtained using year-end market capitalisation as the weight factor
for each individual bank stock.

5 Empirical results

Table 2 contains the descriptive statistics of bank stock portfolio returns. They suggest
that the data series are skewed and leptokurtic relative to the normal distribution. In
addition, there is evidence of nonlinear dependence, possibly due to autoregressive
heteroskedasticity. Overall, these diagnostics indicate that a GARCH-type process
is appropriate for studying the IRR of bank stocks. Table 3 reports the parameters
of the GARCH models estimated using the three alternative interest rate proxies.2

The coefficient on the market return, λi , is highly significant, positive and less than
unity in all cases. Further, its absolute value increases as the portfolio size increases,
indicating that market risk is directly related to bank size. This is a relevant and
unambiguous result, because it is not affected by the weight of banks in the market
index since they have been explicitly excluded from the market portfolio. The fact
that λi < 1 suggests that bank stock portfolios have less market risk than the overall
stock market.

Table 2. Descriptive statistics of bank portfolio stock returns

Mean Variance Skewness Kurtosis JB Q(12) Q(24) Q2(12) Q2(24)

L 0.016 0.006 −0.44∗∗∗ 5.15∗∗∗ 35.41∗∗∗ 9.63 12.55 49.59∗∗∗ 61.6∗∗∗
M 0.011 0.002 −0.002 5.34∗∗∗ 35.82∗∗∗ 9.89 19.51 95.92∗∗∗ 109.5∗∗∗
S 0.013 0.001 2.20∗∗∗ 13.42∗∗∗ 833.6∗∗∗ 29.28∗∗∗ 35.63∗ 25.93∗∗ 28.35

JB is the Jarque-Bera test statistic which tests the null hypothesis of normality of returns. Q(n)
is the Ljung-Box statistic at a lag of n, which tests the presence of serial correlation. As usual
∗∗∗ , ∗∗ and ∗ denote significance at the 1%, 5% and 10% levels, respectively.

1 The composition of bank portfolios is fixed for the whole sample period. Alternatively, we
have also considered an annual restructuring of the portfolios according to their volume of
total assets, and the results obtained in that case were very similar to those reported in this
paper.

2 The final model to be estimated for portfolio S does not include the conditional variance of
interest rates since its inclusion would generate serious problems in the estimation of the
model due to the small variability of the returns on that portfolio.
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Table 3. Maximum likelihood estimates of the GARCH-M extended model

3-month interest rate changes

ωi λi θi γi α0 α1 β δi

Portfolio L

−0.01∗∗∗ 0.96∗∗∗ −1.12 0.004∗∗∗ 0.0003∗∗∗ 0.09∗∗∗ 0.82∗∗∗ −15.04∗∗∗
(4.99) (17.60) (−0.09) (9.47) (10.22) (5.67) (54.94) (−8.56)

Portfolio M

0.02∗∗∗ 0.50∗∗∗ −1.31 0.002∗∗∗ 0.0004∗∗∗ 0.15∗∗∗ 0.66∗∗∗ −13.88∗∗∗
(11.04) (10.16) (−1.17) (8.87) (18.63) (4.74) (27.83) (−12.98)

Portfolio S

−0.15∗∗∗ 0.27∗∗∗ −1.31 −0.02∗∗∗ 0.00009∗∗∗ 0.03∗∗∗ 0.89∗∗∗ —

(−53.73) (5.12) (−1.17) (−58.56) (12.89) (6.33) (148.20) —

10-year interest rate changes

ωi λi θi γi α0 α1 β δi

Portfolio L

0.03∗∗∗ 0.89∗∗∗ −6.80∗∗∗ 0.003∗∗∗ 0.0004∗∗∗ 0.14∗∗∗ 0.79∗∗∗ −45.34∗∗∗
(9.08) (15.38) (−7.25) (6.41) (11.02) (6.65) (43.33) (−8.97)

Portfolio M

0.04∗∗∗ 0.48∗∗∗ −3.19∗∗∗ 0.005∗∗∗ 0.0003∗∗∗ 0.11∗∗∗ 0.78∗∗∗ −30.49∗∗∗
(14.29) (8.82) (−3.04) (12.18) (19.48) (5.19) (48.76) (−10.36)

Portfolio S

−0.11∗∗∗ 0.25∗∗∗ −3.28∗∗∗ −0.01∗∗∗ 0.00009∗∗∗ 0.04∗∗∗ 0.87∗∗∗ —

(−42.01) (4.26) (−3.37) (−46.50) (13.17) (6.80) (138.17) —

Interest rate spread

ωi λi θi γi α0 α1 β δi

Portfolio L

0.13∗∗∗ 0.95∗∗∗ −0.32 0.018∗∗∗ 0.0003∗∗∗ 0.10∗∗ 0.80∗∗∗ −10.00∗∗∗
(3.24) (15.82) (−0.90) (3.10) (2.17) (2.08) (11.16) (−3.79)

Portfolio M

0.05∗∗∗ 0.51∗∗∗ 0.03 0.007∗∗∗ 0.0001∗∗∗ 0.08∗∗∗ 0.83∗∗∗ −9.10∗∗∗
(18.84) (9.71) (0.18) (16.78) (12.45) (5.39) (66.60) (−5.40)

Portfolio S

−0.18∗∗∗ 0.26∗∗∗ −0.61∗∗∗ −0.03∗∗∗ 0.00008∗∗∗ 0.02∗∗∗ 0.89∗∗∗ —

(−66.93) (5.20) (−3.23) (−75.23) (12.67) (5.90) (155.75) —

This table shows the maximum likelihood estimates of the GARCH(1,1)-M extended model
for the different interest rate proxies based on equations (1)–(3). Values of t-statistics are in
parentheses and ∗∗∗ ,∗∗ and ∗ denote statistical significance at the 1%, 5% and 10% levels,
respectively.
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Concerning the impact of interest rate changes, θi is always negative and statis-
tically significant when long-term rates are used. Long-term rates exert the strongest
influence on bank stock portfolio returns, consistent with previous research (see,
e.g., [3,5,6]).

The IRR of the Spanish banking industry also seems to be directly related to
bank size. This finding may be attributed to three factors. First, the aggressive pricing
policies – especially on the asset side – introduced by larger banks over recent years
aimed to increase their market share in an environment of a sharp downward trend
of interest rates and intense competition have led to an extraordinary increase of
adjustable-rate products tied to interbank market rates. Second, the more extensive
engagement of large banks in derivative positions. Third, large banks may have an
incentive to assume higher risks induced by a moral hazard problem associated to their
too big to fail status. As a result, the revenues and stock performance of bigger banks
are now much more affected by market conditions. In contrast, more conservative
pricing strategies of small banks, together with a minor use of derivatives and a
heavier weight of idiosyncratic factors (e.g., rumours of mergers and acquisitions),
can justify their lower exposure to IRR.

To provide greater insight into the relative importance of both market risk and IRR
for explaining the variability of bank portfolio returns, a complementary analysis has
been performed. A two-factor model as in [18] is the starting point:

Rit = ωi + λi Rmt + θi�It + εit (4)

Since both explanatory variables are linearly independent by construction, the vari-
ance of the return of each bank stock portfolio, V ar(Rit ), can be written as:

V ar(Rit ) = λ̂2
i V ar(Rmt )+ θ̂2

i V ar(�It )+ V ar(εit ) (5)

To compare both risk factors, equation (5) has been divided by V ar(Rit ). Thus, the
contribution of each individual factor can be computed as the ratio of its variance over
the total variance of the bank portfolio return. As shown in Table 4, the market risk is
indisputably the most important determinant of bank returns. IRR is comparatively
less relevant, long-term rates being the ones which show greater incidence.

Table 4. Relative importance of risk factors

Interest rate changes

3 months 10 years Spread
�It Rmt Total �It Rmt Total �It Rmt Total

Portfolio L R2(%) 0.85 53.84 54.69 2.81 51.77 54.58 1.22 53.47 54.69
Portfolio M R2(%) 1.30 34.21 35.52 2.74 32.78 35.52 1.19 34.83 36.02
Portfolio S R2(%) 1.24 15.19 16.42 5.59 12.40 17.99 1.08 15.35 16.43

This table shows the contribution of interest rate and market risks, measured through the factor
R2 obtained from equation (5) in explaining the total variance of bank portfolio returns.
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Turning to the mean equation of the GARCH-M model, the parameter γi has
usually been interpreted as the compensation required to invest in risky assets by risk-
averse investors. Since volatility as measured in GARCH models is not a measure
of systematic risk, but total risk, γi does not necessarily have to be positive because
increases of total risk do not always imply higher returns.3 For our case, the estimated
values for γi differ in sign across bank portfolios (positive for portfolios L and M and
negative for portfolio S). This heterogeneity among banks may be basically derived
from differences in product and client specialisation, interest rate hedging strategies,
etc. The absence of a conclusive result concerning this parameter is in line with the
lack of consensus found in prior research. In this sense, whereas [12] and [4] detected
a positive relationship between risk and return (γi > 0), [5,9,13] suggested a negative
relationship (γi < 0). In turn, [2] and [16] found an insignificant γi .

With regard to the conditional variance equation,α1 and β are positive and signif-
icant in the majority of cases. In addition, the volatility persistence (α1+β) is always
less than unity, consistent with the stationarity conditions of the model. This implies
that the traditional constant-variance capital asset pricing models are inappropriate
for describing the distribution of bank stock returns in the Spanish case.

The parameter δi , which measures the effect of interest rate volatility on bank
portfolio return volatility, is negative and significant for portfolios L and M.4 A pos-
sible explanation suggested by [5] is that, in response to an increase in interest rate
volatility, L and M banks seek shelter from IRR and are able to reduce their exposure
within one month, e.g., by holding derivatives and/or reducing the duration gap of
their assets and liabilities. Hence, this generates a lower bank stock volatility in the
following period. Moreover, a direct relationship seems to exist between the absolute
value of δi , the bank size and the term to maturity of interest rates. Thus, analogously
to the previous evidence with interest rate changes, interest rate volatility has a greater
negative effect on bank return volatility as the bank size increases. Further, interest
rate volatility has a larger impact when long-term rates are considered. In sum, it
can be concluded that the Spanish bank industry does show a significant interest rate
exposure, especially with respect to long-term interest rates.

In addition, the proposed GARCH model has been augmented with the purpose
of checking whether the introduction of the euro as the single currency within the
Monetary European Union from January 1, 1999 has significantly altered the de-
gree of IRR of Spanish banks.5 Thus, the following extended model has been esti-

3 [13] indicates several reasons for the relationship between risk and return being negative.
In the framework of the financial sector, [5] also suggests an explanation to get a negative
trade-off coefficient between risk and return.

4 Recall that this parameter does not appear in the model for portfolio S.
5 Since the GARCH model estimation requires a considerable number of observations, a

dummy variable procedure has been employed instead of estimating the model for each
subperiod.
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mated:

Rit = ωi + λi Rmt + θi�It + ηi Dt�It + γi log hit + εit (6)

hit = α0 + α1ε
2
it−1 + βhit−1 + δi V C It−1 (7)

εit |�t−1 ∼ N(0, hit ) (8)

where Dt = 1 if t ≤ January 1999 and Dt = 0 if t > January 1999. Its associated
coefficient, ηi , reflects the differential impact in terms of exposure to IRR during the
pre-euro period. The results are reported in Table 5.

Table 5. Maximum likelihood estimates of the GARCH-M extended model with dummy vari-
able

Portfolio L Portfolio M Portfolio S

3 month 10 years Spread 3 months 10 years Spread 3 month 10 years Spread
θi 1.94 −3.44 −1.88∗∗∗ 2.42 2.59 −0.73∗∗∗ −1.69 −0.67 −0.17
ηi −6.52∗∗ −4.69∗∗ 1.52∗∗ −4.57∗∗∗ −6.53∗∗∗ 0.95∗∗∗ 0.13 −3.43∗∗∗ −0.61∗∗

This table shows the IRR estimated parameters in the GARCH-M model following (6)–(8).
∗∗∗ ,∗∗ and ∗ denote statistical significance at the 1%, 5% and 10% levels, respectively.

The coefficient ηi is negative and significant at the usual levels in most cases
with the long- and short-term interest rate changes, whereas the results are not totally
conclusive with the spread series. This finding shows that the IRR is substantially
higher during the pre-euro period, in line with prior evidence (see [15]) and indicating
that interest rate sensitivity of bank stock returns has decreased considerably since
the introduction of the euro. The declining bank IRR during the last decade can be
basically attributed to the adoption of a more active role in asset-liability management
by the banks in response to the increase of volatility in financial markets, which has
led to more effective IRR management.

6 Conclusions

This paper examines the interest rate exposure of the Spanish banking sector within
the framework of the GARCH-M. In particular, the analysis has been carried out on
bank stock portfoliosconstructed according to size criteria. Following the most recent
strand of research, this study investigates the impact of both interest rate changes and
interest rate volatility on the distribution of bank stock returns.

The results confirm the common perception that interest rate risk is a significant
factor to explain the variability in bank stock returns but, as expected, it plays a sec-
ondary role in comparison with market risk. Consistent with previous work, bank
stock portfolio returns are negatively correlated with changes in interest rates, the
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long-term rates being the ones which exert greater influence. This negative relation-
ship has been mostly attributed to the typical maturity mismatch between banks’
assets and liabilities. Another explanation is closely linked to the expansion phase
of the Spanish economy since the mid-1990s. Specifically, bank profits did increase
dramatically, reaching their greatest figures ever, with the subsequent positive effect
on stock prices, in a context of historically low interest rates within the framework
of the Spanish housing boom. Further, interest rate volatility is also found to be a
significant determinant of bank portfolio return volatility, with a negative effect.

Another major result refers to the direct relationship found between bank size and
interest rate sensitivity. This size-based divergence could be the result of differences
between large and small banks in terms of bank pricing policy, extent of use of
derivative instruments or product and client specialisation. Thus, larger banks have
a stock performance basically driven by market conditions, whereas smaller banks
are influenced more heavily by idiosyncratic risk factors. Finally, a decline of bank
interest rate sensitivity during recent years has been documented, which may be linked
to the greater availability of systems and instruments to manage and hedge interest
rate risk.
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Tracking error with minimum guarantee constraints

Diana Barro and Elio Canestrelli

Abstract. In recent years the popularity of indexing has greatly increased in financial markets
and many different families of products have been introduced. Often these products also have
a minimum guarantee in the form of a minimum rate of return at specified dates or a minimum
level of wealth at the end of the horizon. Periods of declining stock market returns together
with low interest rate levels on Treasury bonds make it more difficult to meet these liabilities.
We formulate a dynamic asset allocation problem which takes into account the conflicting
objectives of a minimum guaranteed return and of an upside capture of the risky asset returns. To
combine these goals we formulate a double tracking error problem using asymmetric tracking
error measures in the multistage stochastic programming framework.

Key words: minimum guarantee, benchmark, tracking error, dynamic asset allocation, sce-
nario

1 Introduction

The simultaneous presence of a benchmark and a minimum guaranteed return char-
acterises many structured financial products. The objective is to attract potential in-
vestors who express an interest in high stock market returns but also are not risk-
seeking enough to fully accept the volatility of this investment and require a cushion.
This problem is of interest also for the asset allocation choices for pension funds
both in the case of defined benefits (which can be linked to the return of the funds)
and defined contribution schemes in order to be able to attract members to the fund.
Moreover, many life insurance products include an option on a minimum guaranteed
return and a minimum amount can be guaranteed by a fund manager for credibil-
ity reasons. Thus the proper choice of an asset allocation model is of interest not
only for investment funds or insurance companies that offer products with investment
components, but also for pension fund industry.

In the literature there are contributions which discuss the two components sep-
arately, and there are contributions which discuss the tracking error problem when
a Value at Risk (VaR), Conditional Value at Risk (CVaR) or Maximum Drawdown
(MD) constraint is introduced mainly in a static framework, but very few contributions
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address the dynamic portfolio management problem when both a minimum guaran-
tee and a tracking error objective are present; see for example [14]. To jointly model
these goals we work in the stochastic programming framework as it has proved to
be flexible enough to deal with many different issues which arise in the formulation
and solution of these problems. We do not consider the point of view of an investor
who wants to maximise the expected utility of his wealth along the planning horizon
or at the end of the investment period. Instead we consider the point of view of a
manager of a fund, thus representing a collection of investors, who is responsible for
the management of a portfolio connected with financial products which offer not only
a minimum guaranteed return but also an upside capture of the risky portfolio returns.
His goals are thus conflicting since in order to maximise the upside capture he has
to increase the total riskiness of the portfolio and this can result in a violation of the
minimum return guarantee if the stock market experiences periods of declining re-
turns or if the investment policy is not optimal. On the other hand a low risk profile on
the investment choices can assure the achievement of the minimum return guarantee,
if properly designed, but leaves no opportunity for upside capture.

2 Minimum guaranteed return and constraints
on the level of wealth

The relevance of the introduction of minimum guaranteed return products has grown
in recent years due to financial market instability and to the low level of interest rates
on government (sovereign) and other bonds. This makes it more difficult to fix the
level of the guarantee in order to attract potential investors. Moreover, this may create
potential financial instability and defaults due to the high levels of guarantees fixed
in the past for contracts with long maturities, as the life insurance or pension fund
contracts. See, for example, [8,20,31].

A range of guarantee features can be devised such as rate-of-return guarantee,
including the principal guarantee, i.e., with a zero rate of return, minimum benefit
guarantee and real principal guarantee. Some of them are more interesting for par-
ticipants in pension funds while others are more relevant for life insurance products
or mutual funds. In the case of minimum return guarantee, we ensure a deterministic
positive rate of return (given the admissibility constraints for the attainable rate of
returns); in the minimum benefit a minimum level of payments are guaranteed, at re-
tirement date, for example. In the presence of nominal guarantee, a fixed percentage
of the initial wealth is usually guaranteed for a specified date while real or flexible
guarantees are usually connected to an inflation index or a capital market index.

The guarantee constraints can be chosen with respect to the value of terminal
wealth or as a sequence of (possibly increasing) guaranteed returns. This choice may
be led by the conditions of the financial products linked to the fund. The design of the
guarantee is a crucial issue and has a consistent impact on the choice of management
strategies.
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Not every value of minimum guarantee is reachable; no arbitrage arguments can
be applied. The optimal design of a minimum guarantee has been considered and
discussed in the context of pension fund management in [14]. Muermann et al. [26]
analyses the willingness of participants in a defined contribution pension fund to pay
for a guarantee from the point of view of regret analysis.

Another issue which has to be tackled in the formulation is the fact that policies
which give a minimum guaranteed return usually provide to policyholders also a
certain amount of the return of the risky part of the portfolio invested in the equity
market. This reduces the possibility of implementing a portfolio allocation based on
Treasury bonds since no upside potential would be captured. The main objective is
thus a proper combination of two conflicting goals, namely a guaranteed return, i.e.,
a low profile of risk, and at least part of the higher returns which could be granted
by the equity market at the cost of a high exposure to the risk of not meeting the
minimum return requirement.

The first possibility is to divide the investment decision into two steps. In the first
the investor chooses the allocation strategy without taking care of the guarantee, while
in the second step he applies a dynamic insurance strategy (see for example [15]).

Consiglio et al. [9] discuss a problem of asset and liability management for UK
insurance products with guarantees. These products offer the owners both a minimum
guaranteed rate of return and the possibility to participate in the returns of the risky
part of the portfolio invested in the equity market. The minimum guarantee is treated
as a constraint and the fund manager maximises the certainty equivalent excess return
on equity (CEexROE). This approach is flexible and allows one to deal also with the
presence of bonuses and/or target terminal wealth.

Different contributions in the literature have tackled the problem of optimal portfo-
lio choices with the presence of a minimum guarantee both in continuous and discrete
time also from the point of view of portfolio insurance strategies both for a European
type guarantee and for an American type guarantee, see for example [10,11].

We consider the problem of formulating and solving an optimal allocation problem
including minimum guarantee requirements and participation in the returns generated
from the risky portfolio. These goals can be achieved both considering them as con-
straints or including them in the objective function. In the following we will analyse
in more detail the second case in the context of dynamic tracking error problems,
which in our opinion provide the more flexible framework.

3 Benchmark and tracking error issues

The introduction of benchmarks and of indexed products has greatly increased since
the Capital Asset Pricing Model (see [23,25,28]) promoted a theoretical basis for index
funds. The declaration of a benchmark is particularly relevant in the definition of the
risk profile of the fund and in the evaluation of the performance of funds’ managers.
The analysis of the success in replicating a benchmark is conducted through tracking
error measures.
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Considering a given benchmark, different sources of tracking error can be analysed
and discussed, see, for example [19]. The introduction of a liquidity component in
the management of the portfolio, the choice of a partial replication strategy, and
management expenses, among others, can lead to tracking errors in the replication
of the behaviour of the index designed as the benchmark. This issue is particularly
relevant in a pure passive strategy where the goal of the fund manager is to perfectly
mime the result of the benchmark, while it is less crucial if we consider active asset
allocation strategies in which the objective is to create overperformance with respect
to the benchmark. For instance, the choice of asymmetric tracking error measures
allows us to optimise the portfolio composition in order to try to maximise the positive
deviations from the benchmark. For the use of asymmetric tracking error measures
in a static framework see, for example, [16,22,24,27].

For a discussion on risk management in the presence of benchmarking, see Basak
et al. [4]. Alexander and Baptista [1] analyse the effect of a drawdown constraint,
introduced to control the shortfall with respect to a benchmark, on the optimality of
the portfolios in a static framework.

We are interested in considering dynamic tracking error problems with a stochastic
benchmark. For a discussion on dynamic tracking error problems we refer to [2,5,7,
13,17].

4 Formulation of the problem

We consider the asset allocation problem for a fund manager who aims at maximis-
ing the return on a risky portfolio while preserving a minimum guaranteed return.
Maximising the upside capture increases the total risk of the portfolio. This can be
balanced by the introduction of a second goal, i.e., the minimisation of the shortfall
with respect to the minimum guarantee level.

We model the first part of the objective function as the maximisation of the over-
performance with respect to a given stochastic benchmark. The minimum guarantee
itself can be modelled as a, possibly dynamic, benchmark. Thus the problem can be
formalized as a double tracking error problem where we are interested in maximising
the positive deviations from the risky benchmark while minimising the downside dis-
tance from the minimum guarantee. The choice of asymmetric tracking error measures
allows us to properly combine the two goals.

To describe the uncertainty, in the context of a multiperiod stochastic programming
problem, we use a scenario tree. A set of scenarios is a collection of paths from t = 0
to T , with probabilities πkt associated to each node kt in the path: according to
the information structure assumed, this collection can be represented as a scenario
tree where the current state corresponds to the root of the tree and each scenario is
represented as a path from the origin to a leaf of the tree.

If we fix it as a minimal guaranteed return, without any requirement on the upside
capture we obtain a problem which fits the portfolio insurance framework, see, for
example, [3,6,18,21,29]. For portfolio insurance strategies there are strict restrictions
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on the choice of the benchmark, which cannot exceed the return on the risk-free
security for no arbitrage conditions.

Let xkt be the value of the risky benchmark at time t in node kt ; zt is the value of the
lower benchmark, the minimum guarantee, which can be assumed to be constant or
have deterministic dynamics, thus it does not depend on the node kt . We denote with
ykt the value of the managed portfolio at time t in node kt . Moreover letφkt (ykt , xkt )be
a proper tracking error measure which accounts for the distance between the managed
portfolio and the risky benchmark, and ψkt (ykt , zt) a distance measure between the
risky portfolio and the minimum guarantee benchmark. The objective function can
be written as

max
ykt

T∑
t=0

⎡⎣αt

Kt∑
kt=Kt−1+1

φkt (ykt , xkt ) − βt

Kt∑
kt=Kt−1+1

ψkt (ykt , zt)

⎤⎦ (1)

where αt and βt represent sequences of positive weights which can account both
for the relative importance of the two goals in the objective function and for a time
preference of the manager. For example, if we consider a pension fund portfolio
management problem we can assume that the upside capture goal is preferable at
the early stage of the investment horizon while a more conservative strategy can be
adopted at the end of the investment period. A proper choice of φt and ψt allows us
to define different tracking error problems.

The tracking error measures are indexed along the planning horizon in such a way
that we can monitor the behaviour of the portfolio at each trading date t . Other for-
mulations are possible. For example, we can assume that the objective of a minimum
guarantee is relevant only at the terminal stage where we require a minimum level of
wealth zT

max
ykt

T∑
t=0

⎡⎣αt

Kt∑
kt=Kt−1+1

φkt (ykt , xkt )

⎤⎦ − βT

KT∑
kT=KT−1+1

ψkT (ykT , zT ). (2)

The proposed model can be considered a generalisation of the tracking error model
of Dembo and Rosen [12], who consider as an objective function a weighted average
of positive and negative deviations from a benchmark. In our model we consider two
different benchmarks and a dynamic tracking problem.

The model can be generalised in order to take into account a monitoring of the
shortfall more frequent than the trading dates, see Dempster et al. [14].

We consider a decision maker who has to compose and manage his portfolio
using n = n1 + n2 risky assets and a liquidity component. In the following qi kt ,
i = 1, . . . , n1, denotes the position in the ith stock and b j kt , j = 1, . . . , n2 denotes
the position in the j th bond while ckt denotes the amount of cash.

We denote with rkt = (r1 kt , . . . , rn kt ) the vector of returns of the risky assets for
the period [t − 1, t ] in node kt and with rc kt the return on the liquidity component
in node kt . In order to account for transaction costs and liquidity component in the
portfolio we introduce two vector of variables akt = (a1 kt , . . . , an kt ) and vkt =
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(v1 kt , . . . , vn kt ) denoting the value of each asset purchased and sold at time t in node
kt , while we denote with κ+ and κ− the proportional transaction costs for purchases
and sales.

Different choices of tracking error measures are possible and different trade-offs
between the goals on the minimum guarantee side and on the enhanced tracking error
side, for the risky benchmark, are possible, too. In this contribution we do not tackle
the issue of comparing different choices for tracking error measures and trade-offs
in the goals with respect to the risk attitude of the investor. Among different possible
models, we propose the absolute downside deviation as a measure of tracking error
between the managed portfolio and the minimum guarantee benchmark, while we
consider only the upside deviations between the portfolio and the risky benchmark

φkt (ykt , xkt ) = [ykt − xkt ]
+ = θ+kt

; (3)

ψkt (ykt , zt) = [ykt − zt ]− = γ−kt
, (4)

where [ykt − xkt ]
+ = max[ykt − xkt , 0] and [ykt − zt ]− = −min[ykt − zt , 0]. The

minimum guarantee can be assumed constant over the entire planning horizon or it can
follow a deterministic dynamics, i.e, it is not scenario dependent. Following [14] we
assume that there is an annual guaranteed rate of return denoted with ρ. If the initial
wealth is W0 = ∑n+1

i=1 xi0, then the value of the guarantee at the end of the planning
horizon is WT = W0(1 + ρ)T . At each intermediate date the value of the guarantee
is given by zt = eδ(t,T−t)(T−t)W0(1+ ρ)T , where eδ(t,T−t)(T−t) is a discounting factor,
i.e., the price at time t of a zcb which pays 1 at terminal time T .

The objective function becomes a weighted trade-off between negative deviations
from the minimum guarantee and positive deviations from the risky benchmark. Given
the choice for the minimum guarantee, the objective function penalises the negative
deviations from the risky benchmark only when these deviations are such that the
portfoliovalues are below the minimum guarantee and penalises them for the amounts
which are below the minimum guarantee. Thus, the choice of the relative weights for
the two goals is crucial in the determination of the level of risk of the portfolio strategy.

The obtained dynamic tracking error problem in its arborescent form is

max
qkt ,bkt ,ckt

T∑
t=1

⎡⎣αt

Kt∑
kt=Kt−1+1

θ+kt
− βt

Kt∑
kt=Kt−1+1

γ−kt

⎤⎦ (5)

θ+kt
− θ−kt

= ykt − xkt (6)

−γ−kt
≤ ykt − zt (7)

ykt = ckt +
n1∑

i=1

qi kt +
n2∑

j=1

b j kt (8)
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qi kt = (1+ ri kt )
[
qi f (kt ) + ai f (kt ) − vi f (kt )

]
i = 1, . . . , n1 (9)

b j kt = (1+ r j kt )
[
b j f (kt ) + a j f (kt ) − v j f (kt )

]
j = 1, . . . , n2 (10)

ckt = (1+ rc kt )

[
c f (kt ) −

n1∑
i=1

(κ+)ai f (kt ) +
n1∑

i=1

(κ−)vi f (kt )

+
n2∑

j=1

(κ+)a j f (kt ) +
n2∑

j=1

(κ−)v j f (kt ) +
n2∑

j=1

gkt b j f (kt )

]
(11)

ai kt ≥ 0 vi kt ≥ 0 i = 1, . . . , n1 (12)

a j kt ≥ 0 v j kt ≥ 0 j = 1, . . . , n2 (13)

qi kt ≥ 0 i = 1, . . . , n1 (14)

b j kt ≥ 0 j = 1, . . . , n2 (15)

θ+kt
θ−kt

= 0 (16)

θ+kt
≥ 0 θ−kt

≥ 0 (17)

γ−kt
≥ 0 (18)

ckt ≥ 0 (19)

qi 0 = q̄i i = 1, . . . , n1 (20)

b j 0 = b̄ j j = 1, . . . , n2 (21)

c0 = c̄ (22)

kt = Kt−1 + 1, . . . , Kt

t = 1, . . . , T

where equation (8) represents the portfolio composition in node kt ; equations (9)–
(11) describe the dynamics of the amounts of stocks, bonds and cash in the portfolio
moving from the ancestor node f (kt ), at time t−1, to the descendent nodes kt , at time
t , with K0 = 0. In equation (11), with gkt we denote the inflows from the bonds in the
portfolio. Equation (16) represents the complementarity conditions which prevent
positive and negative deviations from being different from zero at the same time.
Equations (20)–(22) give the initial endowments for stocks, bonds and cash.

We need to specify the value of the benchmark and the value of the minimum
guarantee at each time and for each node. The stochastic benchmark ykt and the prices
of the risky assets in the portfolio must be simulated according to given stochastic
processes in order to build the corresponding scenario trees. Other dynamics for the
minimum guaranteed level of wealth can be designed. In particular, we can discuss
a time-varying rate or return ρt along the planning horizon, or we can include the
accrued bonuses as in [8].

A second approach to tackle the problem of the minimum return guarantee is
to introduce probabilistic constraints in the dynamic optimisation problem. Denot-
ing with θ the desired confidence level, we can formulate the shortfall constraints
both on the level of wealth at an intermediate time t and on the terminal wealth as
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follows
Pr(Wt ≤ zt) ≤ 1− θ Pr(WT ≤ zT ) ≤ 1− θ

where Wt is the random variable representing the level of wealth. Under the as-
sumption of a discrete and finite number of realisations we can compute the shortfall
probability using the values of the wealth in each node Wkt =

∑n+1
i=1 xi kt . This gives

rise to a chance constrained stochastic optimisation problem which can be extremely
difficult to solve due to non-convexities which may arise, see [14].

5 Conclusions

We discuss the issue of including in the formulation of a dynamic portfolio optimisa-
tion problem both a minimum return guarantee and the maximisation of the potential
returns from a risky portfolio. To combine these two conflicting goals we formulate
them in the framework of a double dynamic tracking error problem using asymmetric
tracking measures.
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Energy markets: crucial relationship between prices

Cristina Bencivenga, Giulia Sargenti, and Rita L. D’Ecclesia

Abstract. This study investigates the relationship betweencrude oil, natural gas and electricity
prices. A possible integration may exist and it can be measured using a cointegration approach.
The relationship between energy commodities may have several implications for the pricing of
derivative products and for risk management purposes. Using daily price data for Brent crude
oil, NBP UK natural gas and EEX electricity we analyse the short- and long-run relationship
between these markets. An unconditional correlation analysis is performed to study the short-
term relationship, which appears to be very unstable and dominated by noise. A long-run
relationship is analysed using the Engle-Granger cointegration framework. Our results indicate
that gas, oil and electricity markets are integrated. The framework used allows us to identify a
short-run relationship.

Key words: energy commodities, correlation, cointegation, market integration

1 Introduction

Energy commodities have been a leading actor in the economic and financial scene in
the last decade. The deregulation of electricity and gas markets in western countries
caused a serious change in the dynamic of electricity and gas prices and necessitated
the adoption of adequate risk management strategies. The crude oil market has also
been also experiencing serious changes over the last decade caused by economic
and political factors. The deregulation of gas and electricity markets should cause,
among other things, more efficient price formation of these commodities. However
their dependence on oil prices is still crucial. An analysis of how these commodities
are related to each other represents a milestone in the definition of risk measurement
and management tools.

For years natural gas and refined petroleum products have been used as close
substitutes in power generation and industry. As a consequence, movements of natural
gas prices have generally tracked those of crude oil. This brought academics and
practitioners to use a simple rule of thumb to relate natural gas prices to crude oil
prices according to which a simple deterministic function may be able to explain the
relationships between them (see, e.g., [7]). Recently the number of facilities able to
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switch between natural gas and residual fuel oil has declined, so gas prices seem to
move more independently from oil prices. However, to a certain extent, oil prices are
expected to remain the main drivers of energy prices through inter-fuel competition
and price indexation clauses in some long-term gas contracts.

Finally, the high price volatility in the energy commodity markets boosted the
development of energy derivative instruments largely used for risk management. In
particular, spread options have been largely used, given that the most useful and
important structure in the world of energy is represented by the spread.1 The joint
behaviour of commodity prices as well as gas, oil and electricity, is crucial for a
proper valuation of spread contracts. This requires a real understanding of the nature
of volatility and correlation in energy markets.

The aim of this paper is twofold. First, to investigate the short-run relationship
between oil, natural gas and electricity in the European energy markets. Second, to
identify possible long-run equilibrium relationships between these commodities. In
particular we test for shared price trends, or common trends, in order to detect if
natural gas and electricity are driven by a unique source of randomness, crude oil. In
a financial context the existence of cointegrating relationships implies no arbitrage
opportunity between these markets as well as no leading market in the price discovery
process. This is going to be a key feature for the definition of hedging strategies also
for energy markets, given the recent deregulation process of the gas and the electricity
market in Europe.

The paper is organised as follows. Section 2 provides an overview of the rele-
vant literature on this topic. Section 3 describes the data set given by daily prices of
electricity, oil and natural gas for the European market over the period 2001–2007 and
examines the annualised quarterly volatilities of each time series. In Sections 4 and
5 current state of the art methodologies are used to analyse the short- and long-run
relationships, as well as a rolling correlation and cointegration approach. Section 6
draws some preliminary conclusions.

2 Relevant literature

Economic theory suggests the existence of a relationship between natural gas and
oil prices. Oil and natural gas are competitive substitutes and complements in the
electricity generation and in industrial production.Due to the asymmetric relationship
in the relative size of each market, past changes in the price of oil caused changes in
the natural gas market, but the converse did not hold [17].

The relationship between natural gas and crude oil has been largely investigated.
In [14] UK gas and Brent oil prices over the period 1996–2003 have been analysed.
In [3] the degree of market integration both among and between the crude oil, coal,
and natural gas markets in the US has been investigated. A longer time period 1989–
2005, is used in [17] where a cointegration relationship between oil and natural gas

1 Spreads are price differentials between two commodities and are largely used to describe
power plant refineries, storage facilities and transmission lines. For an extensive description
of energy spread options, see [6].
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prices has been found despite periods where they may have appeared to decouple.
A cointegration relationship between the prices of West Texas Intermediate (WTI)
crude oil and Henry Hub (HH) natural gas has been examined in [4] and [9].

Analysis of the relationship between electricity and fossil fuel prices has only
been performed at regional levels and on linked sets of data given the recent in-
troduction of spot electricity markets. Serletis and Herbert [15] used the dynamics
of North America natural gas, fuel oil and power prices from 1996 to 1997 to find
that the HH and Transco Zone 6 natural gas prices and the fuel oil price are coin-
tegrated, whereas power prices series appears to be stationary. In [8] the existence
of a medium- and long-term correlation between electricity and fuel oil in Europe
is analysed. [2] investigates the dynamic of gas, oil and electricity during an interim
period 1995–1998: deregulation of the UK gas market (1995) and the opening up of
the Interconnector (1998). Cointegration between natural gas, crude oil and electric-
ity prices is found and a leading role of crude oil is also identified. More recently,
using a multivariate time series framework, [13] interrelationships among electricity
prices from two diverse markets, Pennsylvania, New Jersey, Maryland Interconnec-
tion (PJM) and Mid-Columbia (Mid-C), and four major fuel source prices, natural
gas, crude oil, coal and uranium, in the period 2001–2008, are examined.

To the best of our knowledge the level of integration between the gas, oil and
electricity markets in the European market has not been investigated. The purpose of
this study is mainly to perform such analysis in order to verify if an integrated energy
market can be detected.

3 The data set

Time series for the daily prices of ICE Brent crude oil,2 natural gas at the National
Balancing Point (NBP) UK3 and European Energy Exchange (EEX) electricity4 are
used for the period September 2001 – December 2007.

Oil prices are expressed in US$/barrel per day (bd), gas in UK p/therm and elec-
tricity prices in e/Megawatt hour (MWh). We convert all prices into e/MWh using
the conversion factors for energy content provided by the Energy Information Ad-
ministration (EIA).5 The dynamics of the energy prices are represented into Figure 1.

Following the standard literature we perform a finer analysis of the volatility of
each price series by estimating the annualised quarterly volatilities σi = σi,N

√
250,

2 Brent blend is the reference crude oil for the North Sea and is one of the three major
benchmarks in the international oil market [7].

3 The NBP is the most liquid gas trading point in Europe. The NBP price is the reference
for many forward transactions and for the International Petroleum Exchange (IPE) Future
contracts [7].

4 EEX is one of the leading energy exchanges in central Europe [7]. For the purpose of our
analysis peak load prices have been used.

5 According to EIA conversion factors, 1 barrel of crude oil is equal to 1.58 MWh.
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Fig. 1. Crude oil, natural gas and electricity prices, 2001–2007
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The oil price volatility swings between 21% and 53%, confirming the non-stationarity
of the data. The same non-stationaritycharacterises the data of natural gas, fluctuating
between 65% and 330%. Electricity prices, as expected, were far more volatile than
oil and gas prices,6 with a range of quarterly volatility which swings between around
277% and 868%.

A preliminary analysis is going to be performed on the stationarity of the time
series. In line with most of the recent literature we transform the original series in
logs. First we test the order of integration of a time series using the Augmented
Dickey-Fuller (ADF) type regression:

�yt = α0 + α1t + γ yt−1 +
k∑

j=1

β j�yt− j + εt (1)

6 Seasonality and mean reversion are common features in commodity price dynamics; in
addition a jump component has to be included when describing electricity prices.
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where�yt = yt−yt−1 and the lag length k is automatic based on Scharwz information
criterion (SIC). The results of the unit root test are reported in Table 1.

Table 1. Unit root test results for the logged price series

Series tγ τ0 τ1 τd Decision

Oil 1.17 (1) −0.70 (1) −2.73 (1) −43.2 (1) I(1)
Gas −0.30 (6) −3.37∗ (6) −5.58∗∗ (2) −21.1 (1) I(1)
Elect −0.06 (14) −3.41 (14) −4.36∗∗ (14) −18.4 (1) I(1)

The 5% significance levels are −1.94 for ADF without exogenous variables, −2.86 for ADF
with a constant and −3.41 for ADF with a constant and trend. (∗) denotes acceptance of the
null at 1%, (∗∗) denotes rejection of the null at the conventional test sizes. The SIC-based
optimum lag lengths are in parentheses.

We run the test without any exogenous variable, with a constant and a constant plus
a linear time trend as exogenous variables in equation (1). The reported t -statistics are
tγ , τ0 and τ1, respectively. τd is the t -statistic for the ADF tests in first-differenced data.
tγ is greater than the critical values but we reject the hypothesis in first-difference,
hence we conclude that the variables are first-difference stationary (i.e., all the series
are I (1)).

4 The short-run relationship

Alexander [1] presents the applications of correlation analysis to the crude oil and
natural gas markets. Correlation measures co-movements of prices or returns and can
be considered a short-term measure. It is essentially a static measure, so it cannot
reveal any dynamic causal relationship. In addition, estimated correlations can be
significantly biased or nonsense if the underlying variables are polynomials of time
or when the two variables are non-stationary [18].

To analyse a possible short-run relationship among the variables, we estimate a
rolling correlation over τ j = 100 days7 according to:

ρs[x, y] =
1

τ j−1

∑s+τ j
i=s (xi − x̂)(yi − ŷ)

σ̂x σ̂y
, s = 1, . . . , T − τ j , (2)

where T = 1580 (the entire period 2001–2007), and σ̂x and σ̂y are the standard
deviations of x and y, estimated on the corresponding time window.

Correlation changes over time, as expected, given the non-stationarity of the un-
derlying processes. Volatilitiesof commodity prices are time dependent and so are the
covariance and the unconditional correlation. This means that we can only attempt

7 This window period is suggested in [6]. We also perform the analysis with larger windows
(τ j = 100, 150, 200 days), getting similar results.
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to catch seasonal changes in correlations when interpreting the rolling correlation
coefficient. The unconditional correlation coefficients,8 ρT , together with the main
statistical features of the rolling correlations, ρs , s = 1, . . . , T , between the energy
price series are reported in Table 2. It is interesting to notice that the rolling correla-
tions between gas and oil show some counterintuitive behaviour.

Table 2. Unconditional correlation and rolling correlations between log prices

Matrices ρT E(ρs ) σ (ρs) Max(ρs) Min(ρs)

Oil/Elect 0.537 0.0744 0.260 0.696 −0.567
Gas/Elect 0.515 0.119 0.227 0.657 −0.280
Oil/Gas 0.590 -0.027 0.426 0.825 −0.827

These results do not provide useful insights into the real nature of the relationship
between the main commodities of the energy markets.

5 The long-run relationship

Table 1 confirms a stochastic trend for all the price series; a possible cointegration
relationship among the energy commodity prices may therefore be captured (i.e., the
presence of a shared stochastic trend or common trend). Two non-stationary series are
cointegrated if a linear combination of them is stationary. The vector which realises
such a linear combination is called the cointegrating vector.

We examine the number of cointegrating vectors by using the Johansen method
(see [10] and [11]). For this purpose we estimate a vector error correction model
(VECM) based on the so-called reduced rank regression method (see [12]). Assume
that the n-vector of non-stationary I (1) variables Yt follows a vector autoregressive
(VAR) process of order p,

Yt = A1Yt−1 + A2Yt−2 + . . . + ApYt−p + εt (3)

with εt as the corresponding n-dimensional white noise, and n × n Ai , i = 1, . . . , p
matrices of coefficients.9 Equation (3) is equivalently written in a VECM framework,

�Yt = D1�Yt−1 + D2�Yt−2 + · · · + Dp�Yt−p+1 + DYt−1 + εt (4)

where Di = −(Ai+1+· · ·+Ap), i = 1, 2, . . . , p−1 and D = (A1+· · ·+Ap− In).
The Granger’s representation theorem [5] asserts that if D has reduced rank r ∈ (0, n),
then n× r matrices � and B exist, each with rank r, such that D = −�B ′ and B ′Yt is
I (0).r is the number of cointegrating relations and the coefficients of the cointegrating
vectors are reported in the columns of B.

The cointegration results for the log prices are shown in Table 3.

8 The unconditional correlation for the entire period is given by ρT = cov(x,y)
σ̂x σ̂y

.
9 In the following, for the VAR(p) model we exclude the presence of exogenous variables.
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Table 3. Cointegration rank test (trace and maximum eigenvalue)

Nr. of coint. vec. Eigenvalue λtrace λ0.05
trace λmax λ0.05

max

r = 0 0.121 237.2 29.79 240.3 21.13

r ≤ 1 0.020 32.91 15.49 32.24 14.26
r ≤ 2 0.000 0.672 3.841 0.672 3.841

A rejection of the null ‘no cointegrated’ relationship and ‘r at most 1’ in favour of
‘r at most 2’ at the 5% significance level is provided. This provides evidence of the
existence of two cointegrating relationships among the three commodity price series.
In a VECM framework, the presence of two cointegrating vectors, r = 2, on a set of
n = 3 variables allows the estimation of a n−r = 1 common (stochastic) trend [16].
The common trend may be interpreted as a source of randomness which affects the
dynamics of the commodity prices. In this case we may assume oil prices represent
the leading risk factor in the energy market as a whole.

To better analyse the dynamics of the markets we use the Engle-Granger [5] two-
step methodology. This method consists in estimating each cointegrating relationship
individually using ordinary least squares (OLS) and then including the errors from
those cointegrating equations in short-run dynamic adjustment equations which allow
the explanation of adjustment to the long-run equilibrium. The first step is to estimate
the so-called cointegrating regression

y1,t = α + βy2,t + zt (5)

where y1,t and y2,t are two price series, both integrated of order one, and zt denotes
the OLS regression residuals. We perform the test twice for each couple of time series
using as dependent variable both of the series. For each couple of time series, using
both of the series as dependent variables. The results are reported in Table 4. The
null hypothesis of no cointegration is rejected at the 8% significance level for the
regression oil vs electricity, at the 1 % level in all the other cases. The coefficients β
in equation (5), which represent the factors of proportionality for the common trend,
are estimated by OLS.

According to the Granger representation theorem, if two series cointegrate, the
short-run dynamics can be described by the ECM. The basic ECM proposed in [5]
can be written as follows:

�y1,t = φ�y2,t + θ(y1,t−1 − α − βy2,t−1)+ εt (6)

where (y1,t−1−α−βy2,t−1) represents the error correction term zt−1 of equation (5),
φ measures the contemporaneous price response,10 θ represents the speed of the
adjustment towards the long-term cointegrating relationship, and εt ∼ i.i.d.(0, �).

10 The parameter φ approximates the correlation coefficient between first differences in prices
(�yi,t and�y j,t ) and it will be close to 1 when the two commodities are in the same market.
Therefore, a higher value of φ is a sign of a stronger integration of the market [3].
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Table 4. Engle and Granger cointegration test

Dep. variable Indep. variable β tβ p-value

Elect Gas 0.514 23.90 0.00
Gas Elect 0.516 0.00

Elect Oil 0.732 25.33 0.00
Oil Elect 0.394 0.08

Oil Gas 0.432 29.03 0.00
Gas Oil 0.805 0.00

tβ are the t-statistics for the coefficients β in equation (5). The last column reports the p-values
for the unit root tests on the regression residuals.

Cointegration tests per se do not focus on the economically interesting parameters α,
β,φ and θ [3]. The ECM highlights that the deviations from the long-run cointegrating
relationship are corrected gradually through a series of partial short-run adjustments.
In the long run equilibrium the error correction term will be equal to zero. However, if
the variables y1,t and y2,t deviate from the long-run equilibrium, the error correction
term will be different from zero and each variable adjusts to restore the equilibrium
relation whose speed of adjustment is represented by θ .

The results reported in Table 5 highlight no significative value for coefficient φ
in any cases. Therefore we apply an ECM using a different lag for the independent
variable.

Table 5. Estimated speed of adjustment parameters for the ECM

Dep. variable Indep. variable φ tφ p-value θ tθ p-value

� Elect � Gas 0.010 0.150 0.880 −0.452 −21.54 0.00

� Elect � Oil −0.427 −1.059 0.289 −0.461 −21.71 0.00

� Gas � Oil 0.028 0.189 0.849 −0.053 −6.553 0.00

For electricity and gas, significative coefficients φ and θ are found (φ = 0.25,
θ = 0.46) with a lag of two days, indicating that in addition to a long-run relationship a
short-run influence exists among the two series. For the pair electricity/oil, considering
the independent variable with a five-day lag, a significative coefficient, φ = 0.68 (9%
level), is found whereas θ = 0.452; also in this case, the price adjustment in the short
run is detected with a lag of five days. For the pair gas/oil a significative coefficient
φ is found (φ = 0.29) at the 5% level with a lag of six days. θ is equal to 0.05,
showing that the speed adjustment to the long-run equilibrium is particularly low.
The presence of a short-run relationship among the various commodities may also be
explained by the fact that the analysis refers to European markets where deregulation
has not been completely performed yet. Some of the markets still experience market
power and in this context the oil prices may still represent the leading actor for the
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electricity and gas price formation. The misalignment between oil and gas in the short
run may depend on different forces (i.e., the supply of gas from Algeria or Russia)
that may provide some independent source of randomness for natural gas prices. This
may explain why, especially in turbulent periods, gas and oil tend to have different
dynamics, while natural gas prices follow crude oil in the long run.

6 Conclusions

This paper analyses the dynamics of the prices of oil, electricity and natural gas in the
European markets in order to estimate the nature of the existing relationship among
them. The simple correlation analysis among the various time series is non-effective
given the non-stationarity of the data. A cointegration approach is chosen to measure
a possible integration among the markets.

A cointegration relationship among each pair of commodities is found using the
Engle-Granger approach. The Johansen cointegration test reports that oil, gas and
electricity prices are all cointegrated. Two further integrating equations are found,
implying that one common trend is present in the energy market. From an economic
point of view this can be interpreted as a simple source of risk (the oil market), which
affects the dynamics of the two other commodities (electricity and gas).
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Tempered stable distributions and processes in
finance: numerical analysis

Michele Leonardo Bianchi∗, Svetlozar T. Rachev, Young Shin Kim, and
Frank J. Fabozzi

Abstract. Most of the important models in finance rest on the assumption that randomness
is explained through a normal random variable. However there is ample empirical evidence
against the normality assumption, since stock returns are heavy-tailed, leptokurtic and skewed.
Partly in response to those empirical inconsistencies relative to the properties of the normal
distribution, a suitable alternative distribution is the family of tempered stable distributions.
In general, the use of infinitely divisible distributions is obstructed the difficulty of calibrating
and simulating them. In this paper, we address some numerical issues resulting from tempered
stable modelling, with a view toward the density approximation and simulation.

Key words: stable distribution, tempered stable distributions, Monte Carlo

1 Introduction

Since Mandelbrot introduced the α-stable distribution in modelling financial asset
returns, numerous empirical studies have been done in both natural and economic
sciences. The works of Rachev and Mittnik [19] and Rachev et al. [18] (see also
references therein), have focused attention on a general framework for market and
credit risk management, option pricing, and portfolio selection based on the α-stable
distribution. While the empirical evidence does not support the normal distribution, it
is also not always consistent with the α-stable distributional hypothesis. Asset returns
time series present heavier tails relative to the normal distribution and thinner tails than
the α-stable distribution. Moreover, the stable scaling properties may cause problems
in calibrating the model to real data. Anyway, there is a wide consensus to assume
the presence of a leptokurtic and skewed pattern in stock returns, as showed by the
α-stable modelling. Partly in response to the above empirical inconsistencies, and to
maintain suitable properties of the stable model, a proper alternative to the α-stable
distribution is the family of tempered stable distributions.

Tempered stable distributions may have all moments finite and exponential mo-
ments of some order. The latter property is essential in the construction of tempered
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institution to which he belongs.
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stable option pricing models. The formal definition of tempered stable processes has
been proposed in the seminal work of Rosiński [21]. The KoBol (Koponen, Bo-
yarchenko, Levendorskiı̆) [4], CGMY (Carr, Geman, Madan, Yor) [5], Inverse Gaus-
sian (IG) and the tempered stable of Tweedie [22] are only some of the parametric
examples in this class that have an infinite-dimensional parametrisation by a family
of measures [24]. Further extensions or limiting cases are also given by the fractional
tempered stable framework [10], the bilateral gamma [15] and the generalised tem-
pered stable distribution [7] and [16]. The general formulation is difficult to use in
practical applications, but it allows one to prove some interesting results regarding the
calculus of the characteristic function and the random number generation. The infinite
divisibilityof this distributionallows one to construct the corresponding Lévy process
and to analyse the change of measure problem and the process behaviour as well.

The purpose of this paper is to show some numerical issues arising from the use
of this class in applications to finance with a look at the density approximation and
random number generation for some specific cases, such as the CGMY and the Kim-
Rachev (KR) case. The paper is related to some previous works of the authors [13,14]
where the exponential Lévy and the tempered stable GARCH models have been
studied. The remainder of this paper is organised as follows. In Section 2 we review
the definition of tempered stable distributions and focus our attention on the CGMY
and KR distributions. An algorithm for the evaluation of the density function for
the KR distribution is presented in Section 3. Finally, Section 4 presents a general
random number generation method and an option pricing analysis via Monte Carlo
simulation.

2 Basic definitions

The class of infinitely divisible distribution has a large spectrum of applications and
in recent years, particularly in mathematical finance and econometrics, non-normal
infinitely divisible distributions have been widely studied. In the following, we will
refer to the Lévy-Khinchin representation with Lévy triplet (ah , σ, ν) as in [16]. Let
us now define the Lévy measure of a TSα distribution.

Definition 1 A real valued random variable X is TSα if is infinitely divisible without
a Gaussian part and has Lévy measure ν that can be written in polar coordinated

ν(dr, dw) = r−α−1q(r, w)dr σ(dw), (1)

where α ∈ (0, 2) and σ is a finite measure on Sd−1 and

q : (0,∞)× Sd−1 
→ (0,∞)
is a Borel function such that q(·, w) is completely monotone with q(∞, w) = 0 for
each w ∈ Sd−1. A TSα distribution is called a proper TSα distribution if

lim
r→0+

q(r, w) = 1

for each w ∈ Sd−1.
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Furthermore, by theorem 2.3 in [21], the Lévy measure ν can be also rewritten in
the form

ν(A) =
∫
Rd

0

∫ ∞

0
IA(t x)αt−α−1e−t dt R(dx), A ∈ B(Rd ), (2)

where R is a unique measure on Rd such that R({0}) = 0∫
Rd
(‖x‖2 ∧ ‖x‖α)R(dx) <∞, α ∈ (0, 2). (3)

Sometimes the only knowledge of the Lévy measure cannot be enough to obtain
analytical properties of tempered stable distributions. Therefore, the definition of
Rosiński measure R allows one to overcome this problem and to obtain explicit ana-
lytic formulas and more explicit calculations. For instance, the characteristic function
can be rewritten by directly using the measure R instead of ν (see theorem 2.9 in [21]).
Of course, given a measure R it is always possible to find the corresponding tempering
function q; the converse is true as well. As a consequence of this, the specification of
a measure R satisfying conditions (3), or the specification of a completely monotone
function q , uniquely defines a TSα distribution.

Now, let us define two parametric examples. In the first example the measure R is
the sum of two Dirac measures multiplied for opportune constants, while the spectral
measure R of the second example has a nontrivial bounded support. If we set

q(r,±1) = e−λ±r , λ > 0, (4)

and the measure
σ({−1}) = c− and σ({1}) = c+, (5)

we get

ν(dr) = c−
|r|1+α− e−λ−r I{r<0} + c+

|r|1+α+ e−λ+r I{r>0}. (6)

The measures Q and R are given by

Q = c−δ−λ− + c+δλ+ (7)

and
R = c−λα−δ− 1

λ−
+ c+λα+δ 1

λ+
, (8)

where δλ is the Dirac measure at λ (see [21] for the definition of the measure Q).
Then the characteristic exponent has the form

ψ(u) = iub + �(−α)c+((λ+ − iu)α − λα+ + iαλα−1+ u)

+�(−α)c−((λ− + iu)α − λα− − iαλα−1− u),
(9)

where we are considering the Lévy-Khinchin formula with truncation function h(x)=
x . This distributionis usually referred to as the KoBoL or generalised tempered stable
(GTS) distribution. If we take λ+ = M , λ− = G, c+ = c− = C, α = Y and m = b,
we obtain that X is CGMY distributed with expected value m. The definition of the
corresponding Lévy process follows.
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Definition 2 Let Xt be the process such that X0 = 0 and E[eiuXt ] = etψ(u) where

ψ(u) = ium + �(−Y )C((M − iu)Y − MY + iY MY−1u)

+�(−Y )C((G + iu)Y − GY − iY GY−1u).

We call this process the CGMY process with parameter (C, G, M, Y , m) where
m = E[X1].

A further example is given by the KR distribution [14], with a Rosińsky measure
of the following form

R(dx) = (k+r−p++ I(0,r+)(x)|x |p+−1 + k−r−p−− I(−r−,0)(x)|x |p−−1) dx, (10)

where α ∈ (0, 2), k+, k−, r+, r− > 0, p+, p− ∈ (−α,∞) \ {−1, 0}, and m ∈ R.
The characteristic function can be calculated by theorem 2.9 in [21] and is given in
the following result [14].

Definition 3 Let Xt be a process with X0 = 0 and corresponding to the spectral
measure R defined in (10) with conditions p �= 0, p �= −1 and α �= 1, and let
m = E[X1]. By considering the Lévy-Khinchin formula with truncation function
h(x) = x, we have E[eiuXt ] = etψ(u) with

ψ(u) = k+�(−α)
p+

(
2 F1(p+,−α; 1+ p+; ir+u)− 1+ iαp+r+u

p+ + 1

)
k−�(−α)

p−

(
2 F1(p−,−α; 1+ p−; −ir−u)− 1− iαp−r−u

p− + 1

)
+ ium,

(11)

where 2 F1(a, b; c; x) is the hypergeometric function [1]. We call this process the KR
process with parameter (k+ , k− , r+, r− , p+, p−, α, m).

3 Evaluating the density function

In order to calibrate asset returns models through an exponential Lévy process or
tempered stable GARCH model [13, 14], one needs a correct evaluation of both the
pdf and cdf functions. With the pdf function it is possible to construct a maximum
likelihood estimator (MLE), while the cdf function allows one to assess the goodness
of fit. Even if the MLE method may lead to a local maximum rather than to a global
one due to the multidimensionality of the optimisation problem, the results obtained
seem to be satisfactory from the point of view of goodness-of-fit tests. Actually, an
analysis of estimation methods for this kind of distribution would be interesting, but
it is far from the purpose of this work.

Numerical methods are needed to evaluate the pdf function. By the definition of
the characteristic function as the Fourier transform of the density function [8], we
consider the inverse Fourier transform that is

f (x) = 1

2π

∫
R

e−iux E[eiuX ]du (12)
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where f (x) is the density function. If the density function has to be calculated for a
large number of x values, the fast Fourier Transform (FFT) algorithm can be employed
as described in [23]. The use of the FFT algorithm largely improves the speed of the
numerical integration above and the function f is evaluated on a discrete and finite
grid; consequently a numerical interpolation is necessary for x values out of the grid.
Since a personal computer cannot deal with infinite numbers, the integral bounds
(−∞,∞) in equation (12) are replaced with [−M,M], where M is a large value. We
take M ∼ 216 or 215 in our study and we have also noted that smaller values of M
generate large errors in the density evaluation given by a wave effect in both density
tails. We have to point out that the numerical integration as well as the interpolation
may cause some numerical errors. The method above is a general method that can be
used if the density function is not known in closed form.

While the calculus of the characteristic function in the CGMY case involves only
elementary functions, more interesting is the evaluation of the characteristic function
in the KR case that is connected with the Gaussian hypergeometric function. Equation
(11) implies the evaluation of the hypergeometric 2 F1(a, b; c; z) function only on the
straight line represented by the subset I = {iy | y ∈ R} of the complex plane C. We
do not need a general algorithm to evaluate the function on the entire complex plane
C, but just on a subset of it. This can be done by means of the analytic continuation,
without having recourse either to numerical integration or to numerical solution of a
differential equation [17] (for a complete table of the analytic continuation formulas
for arbitrary values of z ∈ C and of the parameters a, b, c, see [3] or [9]). The
hypergeometric function belongs to the special function class and often occurs in
many practical computational problems. It is defined by the power series

2 F1(a, b, c; z)=
∞∑

n=0

(a)n(b)n
(c)n

zn

n !
, |z| < 1, (13)

where (a)n := �(a + n)/�(n) is the Ponchhammer symbol (see [1]). By [1] the
following relations are fulfilled

2 F1(a, b, c; z) = (1 − z)−b
2 F1

(
b, c− a, c,

z

z − 1

)
if

∣∣∣∣ z

z − 1

∣∣∣∣ < 1

2 F1(a, b, c; z) = (−z)−a �(c)�(b − a)

�(c − a)�(b)
2 F1

(
a, a − c+ 1, a − b + 1,

1

z

)
+(−z)−b �(c)�(a − b)

�(c− b)�(a)
2 F1

(
b, b− c + 1, b− a + 1,

1

z

)
if

∣∣∣∣1

z

∣∣∣∣ < 1

2 F1(a, b, c; −iy) = 2 F1(a, b, c; iy) if y ∈ R. (14)

First by the last equality of (14), one can determine the values of 2 F1(a, b, c; z) only
for the subset I+ = {iy | y ∈ R+} and then simply consider the conjugate for the
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set I− = {iy | y ∈ R−}, remembering that 2 F1(a, b, c; 0) = 1. Second, in order to
obtain a fast convergence of the series (13), we split the positive imaginary line into
three subsets without intersection,

I 1+ = {iy | 0 < y ≤ 0.5}
I 2+ = {iy | 0.5 < y ≤ 1.5}
I 3+ = {iy | y > 1.5},

then we use (13) to evaluate 2 F1(a, b, c; z) in I 1+. Then, the first and the second
equalities of (14) together with (13) are enough to evaluate 2 F1(a, b, c; z) in I 2+ and
I 3+ respectively. This subdivision allows one to truncate the series (13) to the integer
N = 500 and obtain the same results as Mathematica. We point out that the value of
y ranges in the interval [−M,M]. This method, together with the MATLAB vector
calculus, considerably increases the speed with respect to algorithms based on the
numerical solution of the differential equation [17]. Our method is grounded only on
basic summations and multiplication. As a result the computational effort in the KR
density evaluation is comparable to that of the CGMY one. The KR characteristic
function is necessary also to price options, not only for MLE estimation. Indeed,
by using the approach of Carr and Madan [6] and the same analytic continuation as
above, risk-neutral parameters may be directly estimated from option prices, without
calibrating the underlying market model.

4 Simulation of TSα processes

In order to generate random variate from TSα processes, we will consider the gen-
eral shot noise representation of proper TSα laws given in [21]. There are different
methods to simulate Lévy processes, but most of these methods are not suitable for
the simulation of tempered stable processes due to the complicated structure of their
Lévy measure. As emphasised in [21], the usual method of the inverse of the Lévy
measure [20] is difficult to implement, even if the spectral measure R has a simple
form. We will apply theorem 5.1 from [21] to the previously considered parametric
examples.

Proposition 1 Let {U j } and {Tj } be i.i.d. sequences of uniform random variables in
(0, 1) and (0, T ) respectively, {E j } and {E ′j } i.i.d. sequences of exponential variables
of parameter 1 and {� j } = E ′1+ . . .+ E ′j , {V j } an i.i.d. sequence of discrete random
variables with distribution

P(Vj = −G) = P(V j = M) = 1

2
,

a positive constant 0 < Y < 2 ( with Y �= 1), and ‖σ‖ = σ(Sd−1) = 2C. Further-
more, {U j }, {E j }, {E ′j } and {V j } are mutually independent. Then

Xt
d=

∞∑
j=1

[(
Y� j

2C

)−1/Y

∧ E jU
1/Y
j |Vj |−1

]
Vj

|Vj | I{Tj≤t} + tbT t ∈ [0, T ], (15)
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where
bT = −�(1 − Y )C(MY−1 − GY−1) (16)

and γ is the Euler constant [1, 6.1.3], converges a.s. and uniformly in t ∈ [0, T ] to
a CGMY process with parameters (C, G, M, Y , 0).

This series representation is not new in the literature, see [2] and [12]. It is a slight
modification of the series representation of the stable distribution [11], but here big
jumps are removed. The shot noise representation for the KR distribution follows.

Proposition 2 Let {U j } and {Tj } be i.i.d. sequences of uniform random variables in
(0, 1) and (0, T ) respectively, {E j } and {E ′j } i.i.d. sequences of exponential variables
of parameter 1 and {� j } = E ′1 + . . . + E ′j , and constants α ∈ (0, 2) (with α �= 1),
k+, k−, r+, r− > 0 and, p+, p− ∈ (−α,∞) \ {−1, 0}. Let {V j } be an i.i.d. sequence
of random variables with density

fV (r) = 1

‖σ‖
(

k+r−p++ I{r> 1
r+ }

r−α−p+−1 + k−r−p+− I{r<− 1
r− }
|r|−α−p−−1

)
where

‖σ‖ = k+rα+
α + p+

+ k−rα−
α + p−

.

Furthermore, {U j }, {E j }, {E ′j } and {V j } are mutually independent. If α ∈ (0, 1), or
if α ∈ (1, 2) with k+ = k−, r+ = r− and p+ = p−, then the series

Xt =
∞∑
j=1

I{Tj≤t}

((
α� j

T‖σ‖
)−1/α

∧ E jU
1/α
j |Vj |−1

)
Vj

|Vj | + tbT (17)

converges a.s. and uniformly in t ∈ [0, T ] to a KR tempered stable process with
parameters (k+ , k+ , r+ , r+ , p+, p+, α, 0) with

bT = −�(1 − α)
(

k+r+
p+ + 1

− k−r−
p− + 1

)
.

If α ∈ (1, 2) and k+ �= k− (or r+ �= r− or alternatively p+ �= p−), then

Xt =
∞∑

j=1

[
I{Tj≤t}

((
α� j

T ‖σ‖
)−1/α

∧ E jU
1/α
j |Vj |−1

)
V j

|Vj |

− t

T

(
α j

T‖σ‖
)−1/α

x0

]
+ tbT , (18)

converges a.s. and uniformly in t ∈ [0, T ] to a KR tempered stable process with
parameters (k+ , k− , r+ , r− , p+, p−, α, 0), where we set

bT = α−1/αζ

(
1

α

)
T−1(T ‖σ‖)1/αx0 − �(1− α)x1
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with

x0 = ‖σ‖−1
(

k+rα+
α + p+

− k−rα−
α + p−

)
,

x1 = k+r+
p+ + 1

− k−r−
p− + 1

,

where ζ denotes the Riemann zeta function [1, 23.2],γ is the Euler constant [1, 6.1.3].

4.1 A Monte Carlo example

In this section, we assess the goodness of fit of random number generators proposed in
the previous section. A brief Monte Carlo study is performed and prices of European
put options with different strikes are calculated. We take into consideration a CGMY
process with the same artificial parameters as [16], that is, C = 0.5, G = 2, M = 3.5,
Y = 0.5, interest rate r = 0.04, initial stock price S0 = 100 and annualised maturity
T = 0.25. Furthermore we consider also a GTS process defined by the characteristic
exponent (9) and parameters c+ = 0.5, c− = 1, λ+ = 3.5, λ− = 2 and α = 0.5,
interest rate r, initial stock price S0 and maturity T as in the CGMY case.

Monte Carlo prices are obtained through 50,000 simulations. The Esscher trans-
form with θ = −1.5 is considered to reduce the variance [12]. We want to emphasise
that the Esscher transform is an exponential tilting [21], thus if applied to a CGMY
or a GTS process, it modifies only parameters but not the form of the characteristic
function.

In Table 1 simulated prices and prices obtained by using the Fourier transform
method [6] are compared. Even if there is a competitive CGMY random number
generator, where a time changed Brownian motion is considered [16], we prefer to
use an algorithm based on series representation. Contrary to the CGMY case, in

Table 1. European put option prices computed using the Fourier transform method (price) and
by Monte Carlo simulation (Monte Carlo)

CGMY
Strike Price Monte Carlo

80 1.7444 1.7472
85 2.3926 2.3955
90 3.2835 3.2844
95 4.5366 4.5383
100 6.3711 6.3724
105 9.1430 9.1532
110 12.7632 12.7737
115 16.8430 16.8551
120 21.1856 21.2064

GTS
Strike Price Monte Carlo

80 3.2170 3.2144
85 4.2132 4.2179
90 5.4653 5.4766
95 7.0318 7.0444
100 8.9827 8.9968
105 11.3984 11.4175
110 14.3580 14.3895
115 17.8952 17.9394
120 21.9109 21.9688
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general there is no constructive method to find the subordinator process that changes
the time of the Brownian motion; that is we do not know the process Tt such that the
TSα process Xt can be rewritten as WT (t) [7]. The shot noise representation allows
one to generate any TSα process.

5 Conclusions

In this work, we have focused our attention on the practical implementation of nu-
merical methods involving the use of TSα distributions and processes in the field of
finance. Basic definitions are given and a possible algorithm to approximate the den-
sity function is proposed. Furthermore, a general Monte Carlo method is developed
with a look at option pricing.
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Transformation kernel estimation of insurance claim
cost distributions

Catalina Bolancé, Montserrat Guillén, and Jens Perch Nielsen

Abstract. A transformation kernel density estimator that is suitable for heavy-tailed distribu-
tions is discussed.Using a truncated beta transformation, the choice of the bandwidth parameter
becomes straightforward. An application to insurance data and the calculation of the value-at-
risk are presented.

Key words: non-parametric statistics, actuarial loss models, extreme value theory

1 Introduction

The severity of claims is measured in monetary units and is usually referred to as
insurance loss or claim cost amount. The probability density function of claim amounts
is usually right skewed, showing a big bulk of small claims and some relatively
infrequent large claims. For an insurance company, density tails are therefore of
special interest due to their economic magnitude and their influence on re-insurance
agreements.

It is widely known that large claims are highly unpredictable while they are re-
sponsible for financial instability and so, since solvency is a major concern for both
insurance managers and insurance regulators, there is a need to estimate the density
of claim cost amounts and to include the extremes in all the analyses.

This paper is about estimating the density function nonparametrically when
data are heavy-tailed. Other approaches are based on extremes, a subject that
has received much attention in the economics literature. Embrechts et al., Coles,
and Reiss and Thomas [8, 11, 15] have discussed extreme value theory (EVT)
in general. Chavez-Demoulin and Embrechts [6], based on Chavez-Demoulin and
Davison [5], have discussed smooth extremal models in insurance. They focused
on highlighting nonparametric trends, as a time dependence is present in many
catastrophic risk situations (such as storms or natural disasters) and in the finan-
cial markets. A recent work by Cooray and Ananda [9] combines the lognormal
and the Pareto distribution and derives a distribution which has a suitable shape
for small claims and can handle heavy tails. Others have addressed this subject
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© Springer-Verlag Italia 2010
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with the g-and-h distribution, like Dutta and Perry [10] for operation risk anal-
ysis. The g-and-h distribution [12] can be formed by two nonlinear transforma-
tions of the standard normal distribution and has two parameters, skewness and
kurtosis.

In previous papers, we have analysed claim amounts in a one-dimensional setting
and we have proved that a nonparametric approach that accounts for the asymmetric
nature of the density is preferred for insurance loss distributions [2, 4]. Moreover,
we have applied the method to a liability data set and compared the nonparametric
kernel density estimation procedure to classical methods [4]. Several authors [7] have
devoted much interest to transformation kernel density estimation, which was initially
proposed by Wand et al. [21] for asymmetrical variables and based on the shifted
power transformation family. The original method provides a good approximation
for heavy-tailed distributions. The statistical properties of the density estimators are
also valid when estimating the cumulative density function (cdf). Transformation
kernel estimation turns out to be a suitable approach to estimate quantiles near 1 and
therefore it can be used to estimate Value-at-Risk (VaR) in financial and insurance-
related applications.

Buch-Larsen et al. [4] proposed an alternative transformation based on a gener-
alisation of the Champernowne distribution; simulation studies have shown that it is
preferable to other transformation density estimation approaches for distributions that
are Pareto-like in the tail. In the existing contributions, the choice of the bandwidth
parameter in transformation kernel density estimation is still a problem. One way of
undergoing bandwidth choice is to implement the transformation approach so that it
leads to a beta distribution, then use existing theory to optimise bandwidth parameter
selection on beta distributed data and backtransform to the original scale. The main
drawback is that the beta distribution may be very steep in the domain boundary, which
causes numerical instability when the derivative of the inverse distribution function is
needed for the backward transformation. In this work we propose to truncate the beta
distribution and use the truncated version at transformation kernel density estimation.
The results on the optimal choice of the bandwidth for kernel density estimation of
beta density are used in the truncated version directly. In the simulation study we
see that our approach produces very good results for heavy-tailed data. Our results
are particularly relevant for applications in insurance, where the claims amounts are
analysed and usually small claims (low cost) coexist with only a few large claims
(high cost).

Let fx be a density function. Terrell and Scott [19] and Terrell [18] analysed several

density families that minimise functionals
∫ {

f (p)x (x)
}2

dx , where superscript (p)

refers to the pth derivative of the density function. We will use these families in
the context of transformed kernel density estimation. The results for those density
families are very useful to improve the properties of the transformation kernel density
estimator.
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Given a sample X1, . . . , Xn of independent and identically distributed (iid) ob-
servations with density function fx , the classical kernel density estimator is:

f̂x (x) = 1

n

n∑
i=1

Kb (x − Xi) , (1)

where b is the bandwidth or smoothing parameter and Kb (t) = K (t/b) /b is the
kernel. In Silverman [16] or Wand and Jones [20] one can find an extensive revision
of classical kernel density estimation.

An error distance between the estimated density f̂x and the theoretical density
fx that has widely been used in the analysis of the optimal bandwidth b is the mean
integrated squared error (M I S E):

E

{∫ (
fx (x)− f̂x (x)

)2
dx

}
. (2)

It has been shown (see, for example, Silverman [16], chapter 3) that the M I S E is
asymptotically equivalent to A − M I S E :

1

4
b4 (k2)

2
∫ {

f ′′X (x)
}2

dx + 1

nb

∫
K (t)2 dt, (3)

where k2 =
∫

t2K (t) dt . If the second derivative of fx exists (and we denote it

by f ′′X ), then
∫ {

f ′′x (x)
}2

dx is a measure of the degree of smoothness because the
smoother the density, the smaller this integral is. From the expression for A−M I S E
it follows that the smoother fx, the smaller the value of A− M I S E .

Terrell and Scott (1985, Lemma 1) showed that Beta (3, 3) defined on the domain
(−1/2, 1/2)minimises the functional

∫ {
f ′′x (x)

}2
dx within the set of beta densities

with the same support. The Beta (3, 3) distribution will be used throughout our work.
Its pdf and cdf are:

g (x) = 15

8

(
1− 4x2

)2
,−1

2
≤ x ≤ 1

2
, (4)

G (x) = 1

8

(
4− 9x + 6x2

)
(1+ 2x)3 . (5)

We assume that a transformation exists so that T (Xi) = Zi (i = 1, . . . , n) is
assumed from a Uni f orm(0, 1) distribution. We can again transform the data so
that G−1 (Zi) = Yi is a random sample from a random variable y with a Beta(3, 3)
distribution, whose pdf and cdf are defined respectively in (4) and (5).

In this work, we use a parametric transformation T(·), namely the modified Cham-
pernowne cdf, as proposed by Buch-Larsen et al. [4].

Let us define the kernel estimator of the density function for the transformed
variable:

ĝ (y) = 1

n

n∑
i=1

Kb (y − Yi) , (6)
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which should be as close as possible to a Beta(3, 3). We can obtain an exact
value for the bandwidth parameter that minimizes A − M I S E of ĝ. If K (t) =
(3/4)

(
1− t2

)
1 (|t | ≤ 1) is the Epanechnikov kernel, where 1 (·) equals one when

the condition is true and zero otherwise, then we show that the optimal smoothing
parameter for ĝ if y follows a Beta(3, 3) is:

b =
(

1

5

)− 2
5
(

3
5

) 1
5

(720)−
1
5 n−

1
5 . (7)

Finally, in order to estimate the density function of the original variable, since
y = G−1 (z) = G−1 {T (x)}, the transformation kernel density estimator is:

f̂x (x) = ĝ (y)
[
G−1 {T (x)}

]′
T ′ (x) =

= 1

n

n∑
i=1

Kb

(
G−1 {T (x)} − G−1 {T (Xi)}

) [
G−1 {T (x)}

]′
T ′ (x) . (8)

The estimator in (8) asymptotically minimises M I S E and the properties of the trans-
formation kernel density estimation (8) are studied in Bolancé et al. [3]. Since we
want to avoid the difficulties of the estimator defined in (8), we will construct the
transformation so as to avoid the extreme values of the beta distribution domain.

2 Estimation procedure

Let z = T (x) be a Uni f orm(0, 1); we define a new random variable in the interval
[1− l, l], where 1/2 < l < 1. The values for l should be close to 1. The new random
variable is z∗ = T ∗ (x) = (1 − l) + (2l − 1) T (x). We will discuss the value of l
later.

The pdf of the new variable y∗ = G−1 (z∗) is proportional to the Beta(3, 3) pdf,
but it is in the [−a, a] interval, where a = G−1 (l). Finally, our proposed transfor-
mation kernel density estimation is:

f̂x (x) = ĝ (y∗)
[
G−1 {T ∗ (x)}]′ T ∗′ (x)
(2l − 1)

= ĝ
(
y∗
) [

G−1 {T ∗ (x)
}]′

T ′ (x)

= 1

n

n∑
i=1

Kb

(
G−1 {T ∗ (x)

}− G−1 {T (Xi)}
) [

G−1 {T ∗ (x)
}]′

T ′ (x) . (9)

The value of A − M I S E associated to the kernel estimation ĝ (y∗), where the
random variable y∗ is defined on an interval that is smaller than Beta(3, 3) domain
is:

A − M I S Ea = 1

4
b4 (k2)

2
∫ a

−a

{
g ′′ (y)

}2
dy + 1

nb

∫ a

−a
g (y) dy

∫
K (t)2 dt . (10)
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And finally, the optimal bandwidth parameter based on the asymptotic mean integrated
squared error measure for ĝ (y∗) is:

bopt
g = k

− 2
5

2

(∫ 1

−1
K (t)2 dt

∫ a

−a
g (y) dy

) 1
5 (∫ a

−a

{
g′′ (y)

}2
dy

)− 1
5

n−
1
5

=
(

1

5

)− 2
5
(

3

5

(
1

4
a
(
−40a2 + 48a4 + 15

))) 1
5

×
(

360a
(
−40a2 + 144a4 + 5

))− 1
5

n− 1
5 , (11)

The difficulty that arises when implementing the transformation kernel estimation
expressed in (9) is the selection of the value of l. This value can be chosen subjectively
as discussed in the simulation results by Bolancé et al. [3]. Let Xi , i = 1, . . . , n, be
iid observations from a random variable with an unknown density fx. The transforma-
tion kernel density estimator of fx is called KIBMCE (kernel inverse beta modified
Champernowne estimator).

3 VaR estimation

In finance and insurance, the VaR represents the magnitude of extreme events and
therefore it is used as a risk measure, but VaR is a quantile. Let x be a loss random
variable with distribution function Fx; given a probability level p, the VaR of x
is V a R (x, p) = inf {x, Fx (x) ≥ p} . Since Fx is a continuous and nondecreasing
function, then V a R (x, p) = F−1

x (p), where p is a probability near 1 (0.95, 0.99,...).
One way of approximating V a R (x, p) is based on the empirical distribution function,
but this has often been criticised because the empirical estimation is based only on
a limited number of observations, and even np may not be an integer number. As
an alternative to the empirical distribution approach, classical kernel estimation of
the distribution function can be useful, but this method will be very imprecise for
asymmetrical or heavy-tailed variables.

Swanepoel and Van Graan [17] propose to use a nonparametric transformation of
the data, which is equal to a classical kernel estimation of the distribution function.
We propose to use a parametric transformation based on a distribution function.

Given a transformation function T r (x), it follows that Fx (x) = FTr(x) (Tr (x)).
So, the computation of V a R (x, p) is based on the kernel estimation of the distribution
function of the transformed variable.

Kernel estimation of the distribution function is [1, 14]:

F̂Tr(x) (Tr (x)) = 1

n

n∑
i=1

∫ Tr(x)−T r(Xi )
b

−1
K (t) dt . (12)

Therefore, the V a R (x, p) can be found as:

V a R (x, p) = Tr−1 [V a R (T r (x) , p)] = Tr−1
[

F̂−1
Tr(x) (p)

]
. (13)
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4 Simulation study

This section presents a comparison of our inverse beta transformation method with the
results presented by Buch-Larsen et al. [4] based only on the modified Champernowne
distribution. Our objective is to show that the second transformation, which is based
on the inverse of a beta distribution, improves density estimation.

In this work we analyse the same simulated samples as in Buch-Larsen et al. [4],
which were drawn from four distributionswith different tails and different shapes near
0: lognormal, lognormal-Pareto,Weibull and truncated logistic.The distributionsand
the chosen parameters are listed in Table 1.

Table 1. Distributions in simulation study

Distribution Density Parameters

Lognormal(μ,σ ) f (x) = 1√
2πσ 2 x

e
− (log x−μ)2

2σ2 (μ, σ ) = (0, 0.5)

Weibull(γ ) f (x) = γ x(γ−1)e−xγ γ = 1.5

Mixture of pLognormal(μ, σ )
and (1− p)Pareto(λ, ρ, c)

f (x) = p 1√
2πσ 2 x

e
− (log x−μ)2

2σ2

+ (1− p)(x − c)−(ρ+1)ρλρ

(p,μ, σ, λ, ρ, c)

= (0.7, 0, 1, 1, 1,−1)

= (0.3, 0, 1, 1, 1,−1)

Tr. Logistic f (x) = 2
s e

x
s

(
1+ e

x
s

)−2
s = 1

Buch-Larsen et al. [4] evaluate the performance of the KMCE estimators com-
pared to the estimator described by Clements et al. [7], the estimator described by
Wand et al. [21] and the estimator described by Bolancé et al. [2]. The Champer-
nowne transformation substantially improves the results from previous authors. Here
we see that if the second transformation based on the inverse beta transformation
improves the results presented in Buch-Larsen et al. [4], this means that the double-
transformation method presented here is a substantial gain with respect to existing
methods.

We measure the performance of the estimators by the error measures based on L1
norm, L2 norm and W I S E . The last one weighs the distance between the estimated
and the true distribution with the squared value of x . This results in an error measure
that emphasises the tail of the distribution, which is very relevant in practice when
dealing with income or cost data:⎛⎝ ∞∫

0

(
f̂ (x)− f (x)

)2
x2 dx

⎞⎠1/2

. (14)

The simulation results can be found in Table 2. For every simulated density and
for sample sizes N = 100 and N = 1000, the results presented here correspond to
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Table 2. Estimated error measures (L1, L2 and W I S E) for KMCE and KIBMCE l = 0.99
and l = 0.98 for sample size 100 and 1000 based on 2000 replications

Lognormal Log-Pareto Weibull Tr. Logistic

p = 0.7 p = 0.3

N=100 L1 KMCE 0.1363 0.1287 0.1236 0.1393 0.1294
KIBMCE l = 0.99 0.1335 0.1266 0.1240 0.1374 0.1241

l = 0.98 0.1289 0.1215 0.1191 0.1326 0.1202
L2 KMCE 0.1047 0.0837 0.0837 0.1084 0.0786

KIBMCE l = 0.99 0.0981 0.0875 0.0902 0.1085 0.0746
l = 0.98 0.0956 0.0828 0.0844 0.1033 0.0712

WISE KMCE 0.1047 0.0859 0.0958 0.0886 0.0977
KIBMCE l = 0.99 0.0972 0.0843 0.0929 0.0853 0.0955

l = 0.98 0.0948 0.0811 0.0909 0.0832 0.0923
N =1000 L1 KMCE 0.0659 0.0530 0.0507 0.0700 0.0598

KIBMCE l = 0.99 0.0544 0.0509 0.0491 0.0568 0.0497
l = 0.98 0.0550 0.0509 0.0522 0.0574 0.0524

L2 KMCE 0.0481 0.0389 0.0393 0.0582 0.0339
KIBMCE l = 0.99 0.0394 0.0382 0.0393 0.0466 0.0298

l = 0.98 0.0408 0.0385 0.0432 0.0463 0.0335
WISE KMCE 0.0481 0.0384 0.0417 0.0450 0.0501

KIBMCE l = 0.99 0.0393 0.0380 0.0407 0.0358 0.0393
l = 0.98 0.0407 0.0384 0.0459 0.0369 0.0394

the following error measures: L1, L2 and W I S E for different values of the trim-
ming parameter l = 0.99, 0.98. The benchmark results are labelled KMCE and they
correspond to those presented in Buch-Larsen et al. [4].

In general, we can conclude that after a second transformation based on the inverse
of a modified beta distribution cdf, the error measures diminish with respect to the
KMCE method. In some situations the errors diminish quite substantially with respect
to the existing approaches.

We can see that the error measure that shows improvements when using the
KIBMCE estimator is the W I S E , which means that this new approach fits the tail
of positive distributions better than existing alternatives. The W I S E error measure
is always smaller for the KIBMCE than for the KMCE, at least for one of the two
possible values of l that have been used in this simulation study. This would make the
KIBMCE estimator specially suitable for positive heavy-tailed distributions. When
looking more closely at the results for the mixture of a lognormal distribution and a
Pareto tail, we see that larger values of l are needed to improve the error measures
that were encountered with the KMCE method only for N = 1000. For N = 100, a
contrasting conclusion follows.

We can see that for the truncated logistic distribution, the lognormal distribution
and the Weibull distribution, the method presented here is clearly better than the
existing KMCE. We can see in Table 2 that for N = 1000, the KIBMCE W I S E is
about 20 % lower than the KMCE W I S E for these distributions. A similar behaviour
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is shown by the other error measures, L1 and L2, which for N = 1000, are about
15 % lower for the KIBMCE.

Note that the KMCE method was studied in [4] and the simulation study showed
that it improved on the error measures for the existing methodological approaches [7,
21].

5 Data study

In this section, we apply our estimation method to a data set that contains automobile
claim costs from a Spanish insurance company for accidents that occurred in 1997.
This data set was analysed in detail by Bolancé et al. [2]. It is a typical insurance
claims amount data set, i.e., a large sample that looks heavy-tailed. The data are
divided into two age groups: claims from policyholders who are less than 30 years old
and claims from policyholders who are 30 years old or older. The first group consists
of 1061 observations in the interval [1;126,000] with mean value 402.70. The second
group contains 4061 observations in the interval [1;17,000] with mean value 243.09.
Estimation of the parameters in the modified Champernowne distribution function
for the two samples is, for young drivers α̂1 = 1.116, M̂1 = 66, ĉ1 = 0.000 and for
older drivers α̂2 = 1.145, M̂2 = 68, ĉ2 = 0.000. We notice that α1 < α2, which
indicates that the data set for young drivers has a heavier tail than the data set for
older drivers.

For small costs, the KIBMCE density in the density peak is greater than for
the KMCE approach proposed by Buch-Larsen et al. [4] both for young and older
drivers. For both methods, the tail in the estimated density of young policyholders is
heavier than the tail of the estimated density of older policyholders. This can be taken
as evidence that young drivers are more likely to claim a large amount than older
drivers. The KIBMCE method produces lighter tails than the KMCE methods. Based
on the results in the simulation study presented in Bolancé et al. [3], we believe that
the KIBMCE method improves the estimation of the density in the extreme claims
class.

Table 3. Estimation of VaR at the 95% level, in thousands

KIBMCE

Empirical KMCE l = 0.99 l = 0.98

Young 1104 2912 1601 1716
Older 1000 1827 1119 1146

Table 3 presents the VaR at the 95% level, which is obtained from the empirical
distribution estimation and the computations obtained with the KMCE and KIBMCE.
We believe that the KIBMCE provides an adequate estimation of the VaR and it seems
a recommendable approach to be used in practice.
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What do distortion risk measures tell us on excess of
loss reinsurance with reinstatements?

Antonella Campana and Paola Ferretti

Abstract. In this paper we focus our attention on the study of an excess of loss reinsurance
with reinstatements, a problem previously studied by Sundt and, more recently, by Mata and
Hürlimann. It is well known that the evaluation of pure premiums requires knowledge of the
claim size distribution of the insurance risk: in order to face this question, different approaches
have been followed in the actuarial literature. In a situation of incomplete information in which
only some characteristics of the involved elements are known, it appears to be particularly
interesting to set this problem in the framework of risk-adjusted premiums. It is shown that if
risk-adjusted premiums satisfy a generalised expected value equation, then the initial premium
exhibits some regularity properties as a function of the percentages of reinstatement.

Key words: excess of loss reinsurance, reinstatements, distortion risk measures

1 Introduction

In recent years the study of excess of loss reinsurance with reinstatements has become
a major topic, in particular with reference to the classical evaluation of pure premiums,
which is based on the collective model of risk theory.

The problem, previously studied by Sundt [5] and, more recently, by Mata [4]
and Hürlimann [3], requires the evaluation of pure premiums given the knowled-
ge of the claim size distribution of the insurance risk: in order to face this question,
different approaches have been followed in the actuarial literature. Sundt [5] based the
computation on the Panjer recursion numerical method and Hürlimann [3] provided
distribution-free approximations to pure premiums.

In a situation of incomplete information in which only some characteristics of
the involved elements are known, it appears to be particularly interesting to set this
problem in the framework of risk-adjusted premiums.

We start from the methodology developed by Sundt [5] to price excess of loss rein-
surance with reinstatements for pure premiums and, with the aim of relaxing the basic
hypothesis made by Walhin and Paris [6], who calculated the initial premium P under
the Proportional Hazard transform premium principle, we address our analysis to the
study of the role played by risk-adjusted premium principles. The particular choice
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in the proposal of Walhin and Paris of the PH-transform risk measure strengthens our
interest in the study of risk-adjusted premiums that belong to the class of distortion
risk measures defined by Wang [7].

In the mathematical model we studied (for more details see Campana [1]), when
the reinstatements are paid (0 ≤ ci ≤ 1 is the ith percentage of reinstatement)
the total premium income δ(P) becomes a random variable which is correlated to
the aggregate claims S. Since risk measures satisfy the properties of linearity and
additivity for comonotonic risks (see [2]) and layers are comonotonic risks, we can
define the function

F(P, c1, c2, . . . , cK ) = P

[
1+ 1

m

K−1∑
i=0

ci+1 Wg1(L X (im, (i + 1)m))

]
−

−
K∑

i=0

Wg2(L X (im, (i + 1)m))

(1)

where g1 and g2 are distortion functions and Wg(X ) denotes the distortion risk mea-
sure of X . This function gives a measure of the distance between two distortion risk
measures: that of the total premium income δ(P) and that of the aggregate claims S.
The choice of risk-adjusted premiums satisfying the expected value equation ensures
that the previous distance is null: in this way, it is possible to study the initial premium
P as a function of the percentages of reinstatement.

The paper is organised as follows. In Section 2 we first review some basic settings
for describing the excess of loss reinsurance model and we review some definitions
and preliminary results in the field of non-proportional reinsurance covers. Section 3
is devoted to the problem of detecting the total initial premium: we present the study
of the case in which the reinstatements are paid in order to consider the total premium
income as a random variable which is correlated to the aggregate claims. The analysis
is set in the framework of distortion risk measures: some basic definitions and results
in this field are recalled. Section 4 presents the main results related to the problem of
measuring the total initial premium as a function of the percentages of reinstatement,
dependence that it is generally neglected in the literature. Some concluding remarks
in Section 5 end the paper.

2 Excess of loss reinsurance with reinstatements: problem setting

The excess of loss reinsurance model we study in this paper is related to the model
that has been proposed and analysed by Sundt [5]. Some notations, abbreviations and
conventions used throughout the paper are the following.

An excess of loss reinsurance for the layer m in excess of d , written m xs d , is
a reinsurance which covers the part of each claim that exceeds the deductible d but
with a limit on the payment of each claim, which is set equal to m; in other words,
the reinsurer covers for each claim of size Y the amount

LY (d, d + m) = min{(Y − d)+,m}
where (a)+ = a if a > 0, otherwise (a)+ = 0.
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We consider an insurance portfolio: N is the number of claims that occurred in
the portfolio during the reference year and Yi is the ith claim size (i = 1, 2, . . . , N ).
The aggregate claims to the layer is the random sum given by

X =
N∑

i=1

LYi (d, d + m).

It is assumed that X = 0 when N = 0. An excess of loss reinsurance, or for short
an X L reinsurance, for the layer m xs d with aggregate deductible D and aggregate
limit M covers only the part of X that exceeds D but with a limit M:

L X (D, D + M) = min{(X − D)+,M}.
This cover is called an XL reinsurance for the layer m xs d with aggregate layer

M xs D.
Generally it is assumed that the aggregate limit M is given as a whole multiple of

the limit m, i.e., M = (K +1)m: in this case we say that there is a limit to the number
of losses covered by the reinsurer. This reinsurance cover is called an XL reinsurance
for the layer m xs d with aggregate deductible D and K reinstatements and provides
total cover for the following amount

L X (D, D + (K + 1)m) = min{(X − D)+, (K + 1)m}. (2)

Let P be the initial premium: it covers the original layer, that is

L X(D, D +m) = min{(X − D)+,m}. (3)

It can be considered as the 0-th reinstatement.
The condition that the reinstatement is paid pro rata means that the premium for

the ith reinstatement is a random variable given by

ci P

m
L X(D + (i − 1)m, D + im) (4)

where 0 ≤ ci ≤ 1 is the ith percentage of reinstatement. If ci = 0 the reinstatement
is free, otherwise it is paid.

The related total premium income is a random variable, say δ(P), which is defined
as

δ(P) = P

(
1+ 1

m

K−1∑
i=0

ci+1 L X (D + im, D + (i + 1)m)

)
. (5)

From the point of view of the reinsurer, the aggregate claims S paid by the reinsurer
for this XL reinsurance treaty, namely

S = L X (D, D + (K + 1)m) (6)

satisfy the relation

S =
K∑

i=0

L X(D + im, D + (i + 1)m). (7)
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3 Initial premium, aggregate claims and distortion risk measures

The total premium income δ(P) is a random variable which is correlated to the
aggregate claims S in the case in which the reinstatements are paid. Then it follows
that it is not obvious how to calculate the initial premium P.

Despite its importance in practice, only recently have some Authors moved their
attention to the study of techniques to calculate the initial premium. More precisely,
Sundt [5] proposed the methodology to calculate the initial premium P under pure
premiums and premiums loaded by the standard deviation principle.

Looking at the pure premium principle for which the expected total premium
income should be equal to the expected aggregate claims payments

E[δ(P)] = E[S], (8)

it is quite natural to consider the case in which premium principles belong on more
general classes: with the aim of plugging this gap, we focus our attention on the class
of distortion risk measures. Our interest is supported by Walhin and Paris [6], who
calculated the initial premium P under the Proportional Hazard transform premium
principle. Even if their analysis is conducted by a numerical recursion, the choice
of the PH-transform risk measure as a particular concave distortion risk measure
strengthens our interest.

Furthermore, in an excess of loss reinsurance with reinstatements the computation
of premiums requires the knowledge of the claim size distribution of the insurance
risk: with reference to the expected value equation of the XL reinsurance with rein-
statements (8), Sundt [5] based the computation on the Panjer recursion numerical
method and Hürlimann [3] provided distribution-free approximations to pure premi-
ums.

Note that both Authors assumed only the case of equal reinstatements, a particular
hypothesis on basic elements characterising the model.

In this paper we set our analysis in the framework of distortion risk measures:
the core of our proposal is represented by the choice of a more general equation
characterising the excess of loss reinsurance with reinstatements, in such a way that
it is possible to obtain some general properties satisfied by the initial premium as a
function of the percentages of reinstatement. In order to present the main results, we
recall some basic definitions and results.

3.1 Distortion risk measures

A risk measure is defined as a mapping from the set of random variables, namely losses
or payments, to the set of real numbers. In actuarial science common risk measures
are premium principles; other risk measures are used for determining provisions and
capital requirements of an insurer in order to avoid insolvency (see e.g., Dhaene et
al. [2]).

In this paper we consider the distortion risk measure introduced by Wang [7]:

Wg(X ) =
∫ ∞

0
g(HX(x))dx (9)
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where the distortion function g is defined as a non-decreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1. As is well known, the quantile risk measure
and the Tail Value-at-Risk are examples of risk measures belonging to this class. In
the particular case of a power g function, i.e., g(x) = x1/ρ , ρ ≥ 1, the corresponding
risk measure is the PH-transform risk measure, which is the choice made by Walhin
and Paris [6].

Distortion risk measures satisfy the following properties (see Wang [7] and Dhaene
et al. [2]):

P1. Additivity for comonotonic risks

Wg(S
c) =

n∑
i=1

Wg(Xi ) (10)

where Sc is the sum of the components of the random vector Xc with the same
marginal distributions of X and with the comonotonic dependence structure.

P2. Positive homogeneity

Wg(a X ) = a Wg(X ) for any non-negative constant a; (11)

P3. Translation invariance

Wg(X + b) = Wg(X )+ b for any constant b; (12)

P4. Monotonicity
Wg(X ) ≤ Wg(Y ) (13)

for any two random variables X and Y where X ≤ Y with probability 1.

In the particular case of a concave distortion measure, the related distortion risk
measure satisfying properties P1-P4 is also sub-additive and it preserves stop-loss
order. It is well known that examples of concave distortion risk measures are the Tail
Value-at-Risk and the PH-transform risk measure, whereas quantile risk measure is
not a concave risk measure.

4 Risk-adjusted premiums

In equation (8) the expected total premium income is set equal to the expected aggre-
gate claims payments: in order to refer to a class of premium principles that is more
general than the pure premium principle, we consider a new expected value condition
with reference to the class of distortion risk measures.

We impose that the distorted expected value of the total premium income δ(P)
equals the distorted expected value of the aggregate claims S, given two distortion
functions g1 and g2. Note that in our proposal it is possible to consider distortion
functions that are not necessarily the same.

The equilibrium condition may be studied as an equation on the initial premium
P: if it admits a solution which is unique, then we call initial risk-adjusted premium
the corresponding premium P. This is formalised in the following definition.
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Definition 1. Let g1 and g2 be distortion functions. The initial risk-adjusted premium
P is the unique initial premium, if it does exist, for which the distorted expected value
of the total premium income δ(P) equals the distorted expected value of the aggregate
claims S, that is

Wg1(δ(P)) = Wg2(S). (14)

Equation (14) may be studied from several different perspectives, mostly con-
cerned with the existence and uniqueness of the solutions. The next result presents a
set of conditions ensuring a positive answer to both these questions: the choice of an
excess of loss reinsurance for the layer m xs d with no aggregate deductible D and
K reinstatements plays the leading role.

Proposition 1. Given an XL reinsurance with K reinstatements and no aggregate
deductible and given two distortion functions g1 and g2, the initial risk-adjusted
premium P results to be a function of the percentages of reinstatement c1, c2, . . . , cK .
Moreover, it satisfies the following properties:

i) P is a decreasing function of each percentage of reinstatement ci (i = 1, . . . , K );
ii) P is a convex, supermodular, quasiconcave and quasiconvex function of the per-

centages of reinstatement c1, c2, . . . , cK .

Proof. Given the equilibrium condition between the distorted expected premium in-
come and the distorted expected claim payments (14), the initial risk-adjusted pre-
mium P is well defined: in fact equation (14) admits a solution which is unique.

Since the layers L X (im, (i + 1)m), i = 1, 2, . . . , K + 1, are comonotonic risks
from (7) we find

Wg2(S) =
K∑

i=0

Wg2(L X (im, (i + 1)m)). (15)

From (5), by assuming the absence of an aggregate deductible (i.e. ,D = 0), we have

Wg1(δ(P)) = P

(
1+ 1

m

K−1∑
i=0

ci+1Wg1(L X (im, (i + 1)m))

)
. (16)

Therefore, the initial premium P is well defined and it is given by

P =
∑K

i=0 Wg2(L X (im, (i + 1)m))

1+ 1
m

∑K−1
i=0 ci+1 Wg1(L X (im, (i + 1)m))

. (17)

The initial risk-adjusted premium P may be considered a function of the percen-
tages of reinstatement c1, c2, . . . , cK . Let P = f (c1, c2, · · · , cK ).

Clearly the function f is a decreasing function of any percentage of reinstatement
ci (where i = 1, . . . , K ).

Moreover, if we set

A =
K∑

i=0

Wg2(L X (im, (i + 1)m)),
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the gradient vector ∇ f (c) is

∇ f (c) =
(
∂ f

∂cl
(c)

)
=

⎛⎜⎝ −A Wg1 (L X ((l − 1)m, lm))

m
[
1+ 1

m

∑K−1
i=0 ci+1 Wg1(L X (im, (i + 1)m))

]2

⎞⎟⎠
for each l = 1, . . . , K .

Convexity follows by the strict positivity and concavity of the function

1+ 1
m

K−1∑
i=0

ci+1 Wg1(L X (im, (i + 1)m)).

Moreover, the Hessian matrix H f (c) of the function f is given by

H f (c) =
(
∂2 f

∂cl∂cn
(c)

)
=

⎛⎜⎝2A Wg1(L X ((l − 1)m, lm))Wg1 (L X ((n − 1)m, nm))

m2
[
1+ 1

m

∑K−1
i=0 ci+1 Wg1(L X (im, (i + 1)m))

]3

⎞⎟⎠
for each l, n = 1, . . . , K . More compactly it can be expressed as

H f (c) =
(

Wg1(L X ((l − 1)m, lm))Wg1 (L X ((n − 1)m, nm))
)

B

for each l, n = 1, . . . , K , where

B = 2A

m2
[
1+ 1

m

∑K−1
i=0 ci+1 Wg1(L X (im, (i + 1)m))

]3
.

Clearly, H f (c) is non-negative definite.
Given that any cross-partial derivative of the matrix H f (c) is non-negative, the

function g is supermodular.
Finally, the initial risk-adjusted premium P is a quasiconcave and quasiconvex

function of the percentages of reinstatement c1, c2, . . . , cK because it is a ratio of
affine functions. ��
Remark 1. Note that the regularity properties exhibited by the initial risk-adjusted
premium P are not influenced by functional relations between the two distortion
functions g1 and g2. Moreover, any hypothesis on concavity/convexity of distortion
risk measures may be omitted because they are unnecessary to prove the smooth shape
of the initial premium P as a function of c1, c2, . . . , cK .

Remark 2. The reinsurance companies often assess treaties under the assumption that
there are only total losses. This happens, for example, when they use the rate on line
method to price catastrophe reinsurance. Then it follows that the aggregate claims are
generated by a discrete distribution and we have (for more details see Campana [1])

P = f (c1, c2, · · · , cK ) = m
∑K

i=0 g2(pi+1)

1+∑K−1
i=0 ci+1 g1(pi+1)

(18)
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where the premium for the ith reinstatement (4) is a two-point random variable dis-
tributed as ci P Bpi and Bpi denotes a Bernoulli random variable such that

Pr[Bpi = 1] = pi = 1− Pr[Bpi = 0].

Then

∇ f (c) =
(
∂ f

∂cl
(c)

)
=

⎛⎜⎝ −m
∑K

i=0 g2(pi+1)[
1+∑K−1

i=0 ci+1g1(pi+1)
]2

g1(pl)

⎞⎟⎠
and

H f (c) =
(
∂2 f

∂cl∂cn
(c)

)
=

⎛⎜⎝ 2m
∑K

i=0 g2(pi+1)[
1+∑K−1

i=0 ci+1g1(pi+1)
]3

g1(pl)g1(pn)

⎞⎟⎠
for each l, n = 1, . . . , K .

5 Conclusions

In actuarial literature excess of loss reinsurance with reinstatement has been essen-
tially studied in the framework of collective model of risk theory for which the classical
evaluation of pure premiums requires knowledge of the claim size distribution.Gener-
ally, in practice, there is incomplete information: few characteristics of the aggregate
claims can be computed. In this situation, interest in general properties characterising
the involved premiums is flourishing.

Setting this problem in the framework of risk-adjusted premiums, it is shown
that if risk-adjusted premiums satisfy a generalised expected value equation, then the
initial premium exhibits some regularity properties as a function of the percentages
of reinstatement. In this way it is possible to relax the particular choice made by
Walhin and Paris [6] of the PH-transform risk measure and to extend the analysis of
excess of loss reinsurance with reinstatements to cover the case of not necessarily
equal reinstatements.

The obtained results suggest that further research may be addressed to the analysis
of optimal premium plans.
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Some classes of multivariate risk measures

Marta Cardin and Elisa Pagani

Abstract. In actuarial literature the properties of risk measures or insurance premium prin-
ciples have been extensively studied. We propose a new kind of stop-loss transform and a
related order in the multivariate setting and some equivalent conditions. In our work there is
a characterisation of some particular classes of multivariate and bivariate risk measures and a
new representation result in a multivariate framework.

Key words: risk measures, distortion function, concordance measures, stochastic orders

1 Introduction

In actuarial sciences it is fairly common to compare two random variables that are
risks by stochastic orderings defined using inequalities on expectations of the random
variables transformed by measurable functions. By characterising the considered set
of functions some particular stochastic orderings may be obtained such as stochastic
dominance or stop-loss order. These stochastic order relations of integral form may
be extended to cover also the case of random vectors.

The main contribution of this paper concerns the construction of a mathematical
framework for the representation of some classes of multivariate risk measures; in
particular we study the extension to the multivariate case of distorted risk measures
and we propose a new kind of vector risk measure. Moreover, we introduce the product
stop-loss transform of a random vector to derive a multivariate product stop-loss order.

2 Multivariate case

We consider only non-negative random vectors. Let � be the space of the states
of nature, F be the σ -field and P be the probability measure on F . Our random
vector is the function X : � → Rn+ such that X (ω) represents the payoff obtained
if state ω occurs. We also specify some notations: FX (x) : Rn → [0, 1] is the
distribution function of X, SX (x) : Rn → [0, 1] is its survival or tail function, and
(X (ω)− a)+ = max (X (ω)− a, 0) componentwise.
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A risk measure, or a premium principle, is the functional R : X → R̃, where X
is a set of non-negative random vectors and R̃ is the extended real line.

In what follows we present some desirable properties P for risk measures, that are
our proposal to generalise the well known properties for the scalar case:

1. Expectation boundedness: R [X] ≥ E [X1 . . . Xn] ∀X.
2. Non-excessive loading: R [X] ≤ supω∈� {|X1 (ω)| , . . . , |Xn (ω)|}.
3. Translation invariance: R [X+ a] = R [X] + ā ∀X, ∀a ∈ Rn , where a is a

vector of sure initial amounts and ā is the componentwise product of the elements
of a.

4. Positive homogeneity of order n: R [cX] = cn R [X] ∀X, ∀c ≥ 0.
5. Monotonicity: R [X] ≤ R [Y] ∀X,Y such that X � Y in some stochastic sense.
6. Constancy: R [b] = b̄ ∀b ∈ Rn . A special case is R [0] = 0, which is called

normalisation property.
7. Subadditivity: R [X+ Y] ≤ R [X]+ R [Y] ∀X,Y, which reflects the idea that

risk can be reduced by diversification.
8. Convexity: R [λX+ (1− λ)Y] ≤ λR [X] + (1− λ) R [Y] , ∀X,Y and λ ∈

[0, 1]; this property implies diversification effects as subadditivity does.

We recall here also some notations about stochastic orderings for multivariate random
variables: X �S D Y indicates the usual stochastic dominance, X �U O Y indicates the
upper orthant order, X �L O Y indicates the lower orthant order, X �C Y indicates
the concordance order and X �S M Y indicates the supermodular order. For the
definitions, look them up in, for instance, [5].

Let us now characterise another formulation for stop-loss transform in the multi-
variate setting.

Definition 1. The product stop-loss transform of a random vector X ∈ X is defined
by πX (t) = E

[
(X1 − t1)+ . . . (Xn − tn)+

] ∀t ∈ Rn.

As in the univariate case, we can use this instrument to derive a multivariate stochastic
order:

Definition 2. Let X,Y ∈ X be two random vectors. We say that X precedes Y in the
multivariate product stop-loss order

(
X �S Ln Y

)
if it holds:

πX (t) ≤ πY (t) ∀t ∈ Rn.

It could be interesting to give some extensions to the theory of risk in the multivariate
case, but sometimes it is not possible and we will be satisfied if the generalisation
works at least in two dimensions. As is well known, different notions are equivalent
in the bivariate case for risks with the same univariate marginal distribution [11], but
this is no longer true for n-variate risks with n ≥ 3 [8].
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We now introduce the concept of Fréchet space: R denotes the Fréchet space
given the margins, that is R(F1, F2) is the class of all bivariate distributions with
given margins F1, F2. The lower Fréchet bound X of X is defined by FX(t) :=
max{F1(t1) + F2(t2) − 1, 0} and the upper Fréchet bound of X, X, is defined by
FX(t) := mini{Fi (ti )}, where t = (t1, t2) ∈ R2 and i = 1, 2. The following theorems
summon up some known results about stochastic orders. For a more interested reader,
we cite [5].

Theorem 1. Let X,Y be bivariate random variables, where X,Y ∈ R(F1, F2). Then:
X�U O Y ⇔ Y�L OX ⇔ X�S MY ⇔ X�C Y.

This result is no longer true when multivariate random variables are considered with
n ≥ 3.

Theorem 2. Let X, Y be bivariate random variables in R (F1, F2). The following
conditions are equivalent:

i) X�S MY;
ii) E [ f (X)] ≤ E [ f (Y)] for every increasing supermodular function f ;
iii) E[ f1(X1) f2(X2)] ≤ E[ f1(Y1) f2(Y2)] for all increasing functions f1, f2;
iv) πX (t) ≤ πY (t) ∀t ∈ R2.

3 Multivariate distorted risk measures

Distorted probabilities have been developed in the theory of risk to consider the
hypothesis that the original probability is not adequate to describe the distribution
(for example to protect us against some events). These probabilities generate new
risk measures, called distorted risk measures, see for instance [4,12,13].

In this section we try to deepen our knowledge about distorted risk measures in
the multidimensional case. Something about this topic is discussed in [9], but here
there is not a representation through complete mathematical results.

We can define the distortion risk measure in the multivariate case as:

Definition 3. Given a distortion g, which is a non-decreasing function such that g :
[0, 1] → [0, 1], with g (0) = 0 and g (1) = 1, a vector distorted risk measure is the
functional: Rg [X] = ∫ +∞

0 . . .
∫ +∞

0 g
(
SX (x)

)
dx1 . . . dxn.

We note that the function g
(
SX (x)

)
: Rn+ → [0, 1] is non-increasing in each com-

ponent.

Proposition 1. The properties of the multivariate distorted risk measures are the
following: P1-P6, and P7, P8 if g is concave.

Proof. P1 and P2 follow immediately from Definition 3, P3 follows recalling that
SX+a (t) = SX (t − a), P4 is a consequence of the fact that ScX (t) = SX

( t
c

)
, P5

follows from the relationship between multivariate stochastic orders and P6 is given
by

∫ b1
0 . . .

∫ bn
0 g (1) dtn . . . dt1 = bn . . . b1 = b̄. P7 follows from this definition of



66 M. Cardin and E. Pagani

concavity: if g is a concave function, then we have that g (a + c)−g (a) ≥ g (b + c)−
g (b) with a ≤ b and c ≥ 0. We apply this definition pointwise to SX ≤ SY with
SX+Y ≥ 0. P8 is obvious from properties P4, P5 and P7. ��
In the multivariate case the equality FX = 1 − SX does not hold and thus, the
relation

∫
Rn+ g

(
SX (x)

)
dx = ∫

Rn+[1 − f
(
FX (x)

)
]dx is not in general true with

f : [0, 1] → [0, 1], increasing function.
Moreover, the duality relationship between the functions f and g does not hold,

thus, in general, the equation g (x) = 1− f (1− x) is not true. Applying the concept
of distortion of either the survival function or the distribution function, the relationship
between f and g no longer holds.

Therefore we can observe the differences in the two different approaches.

Definition 4. Given a distortion function f : [0, 1] → [0, 1], increasing and such
that f (0) = 0 and f (1) = 1, a vector distorted risk measure is the functional:

R f [X] =
∫
Rn+

[1− f
(

FX (x)
)

]dx.

Now we have subadditivity with a convex function f and this leads to the convexity
of the measure R f .

Remembering that a distortion is a univariate function even when we deal with
random vectors and multivariate distributions, we can also define vector Values at
Risk (VaR) and vector Conditional Values at Risk (CVaR), using slight alterations of
the usual distortions for VaR and CVaR respectively, and composing these with the
multivariate tail distributions or the distribution functions.

Definition 5. Let X be a random vector that takes on values inRn+. Vector VaR is the
distorted measure V a R [X; p] = ∫+∞

0 . . .
∫+∞

0 g
(
SX (x)

)
dx1 . . . dxn, expressed

using the distortion

g
(

SX(x)
)
=

{
0 0 ≤ SXi (xi ) ≤ 1− pi

1 1− pi < SXi (xi) ≤ 1
.

If we want to give to this formulation a more explicit form we can consider the
componentwise order for which x > V a R [X; p] stands for xi > V a R [Xi ; p] ∀i =
1, . . . , n or more lightly xi > V a RXi and we can rewrite the distortion as:

g
(

SX(x)
)
=

{
0 xi ≥ V a RXi

1 0 ≤ xi < V a RXi

.

to obtain V a R [X; p] = ∫ V a RXn
0 . . .

∫ V a RX1
0 1dx1 . . . dxn = V a RX1 . . . V a RXn .Ob-

viously this result suggests that considering a componentwise order is similar to con-
sidering an independency between the components of the random vector. Actually
we are considering only the case in which the components are concordant.
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In the same way we can define the vector Conditional Value at Risk:

Definition 6. Let X be a random vector with values inRn+. Vector CVaR is the distorted
measure CV a R [X; p] = ∫+∞

0 . . .
∫ +∞

0 g
(
SX (x)

)
dx1 . . . dxn, expressed using the

distortion:

g
(

SX(x)
)
=

⎧⎨⎩
SX(x)∏n

i=1 (1− pi )
0 ≤ SXi (xi ) ≤ 1− pi

1 1− pi < SXi (xi) ≤ 1
.

A more tractable form is given by:

g
(

SX(x)
)
=

⎧⎨⎩
SX(x)∏n

i=1 (1− pi)
xi ≥ V a RXi

1 0 ≤ xi < V a RXi

,

which allows this formula:

CV a R [X; p] =∫ V a RXn

0
. . .

∫ V a RX1

0
1dx1 . . . dxn +

∫ +∞

V a RXn

. . .

∫ +∞

V a RX1

SX (x)∏n
i=1 (1− pi)

dx1 . . . dxn =

V a R [X; p]+
∫ +∞

V a RXn

. . .

∫ +∞

V a RX1

SX (x)∏n
i=1 (1− pi )

dx1 . . . dxn .

The second part of the formula is not easy to render explicitly if we do not introduce
an independence hypothesis.

If we follow Definition 4 instead of 3 we can introduce a different formulation for
CVaR, very useful in proving a good result proposed later on.

The increasing convex function f used in the definition of CVaR is the following:

f
(

FX(x)
)
=

⎧⎪⎨⎪⎩
0 F Xi (xi ) < pi 0 ≤ xi < V a RXi

FX(x)− 1+∏n
i=1 (1− pi)∏n

i=1 (1− pi )
F Xi (xi ) ≥ pi xi ≥ V a RXi

Definition 7. Let X be a random vector that takes on values in Rn+ and f be an
increasing function f : [0, 1] → [0, 1], such that f (0) = 0 and f (1) = 1 and defined
as above. The Conditional Value at Risk distorted by such an f is the following:

CV a R [X; p] =
∫ V a RXn

0
. . .

∫ V a RX1

0
1dx1 . . . dxn +

∫ +∞

V a RXn

. . .

∫ +∞

V a RX1[
1− FX(x)− 1+∏n

i=1 (1− pi)∏n
i=1 (1− pi )

]
dx1 . . . dxn =∫ +∞

0
. . .

∫ +∞

0
1− [FX(x)− 1+∏n

i=1 (1− pi)]+∏n
i=1 (1− pi )

dx1 . . . dxn.
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We recall here that if 0 ≤ xi < V a RXi , or F Xi < pi , then FX < mini {pi}, while
if xi ≥ V a RXi or F Xi ≥ pi then FX ≥ maxi

{∑n
i=1 pi − (n − 1), 0

}
. Only in

the bivariate case do we then know that SX = FX − 1 + SX1 + SX2. Therefore if
FX ≤ mini {pi }, also FX ≤ 1−∏n

i=1(1 − pi ). This lets us consider the bounds for
the joint distribution, not just for the marginals. Finally we can present an interesting
result regarding the representation of subadditive distorted risk measures through
convex combinations of Conditional Values at Risk.

Theorem 3. Let X ∈ X . Consider a subadditive multivariate distortion in the form
R f [X] = ∫

Rn+[1 − f
(
FX (x)

)
]dx. Then there exists a probability measure μ on

[0, 1] such that: R f [X] = ∫ 1
0 CV a R [X; p] dμ(p) .

Proof. The multivariate distorted measure R f [X] = ∫
Rn+[1− f

(
FX (x)

)
]dx is sub-

additive if f is a convex, increasing function such that: f : [0, 1] → [0, 1] with
f (0) = 0 and f (1) = 1. Let p = 1 −∏n

i=1 (1− pi), then a probability measure

μ(p) exists such that this function f can be represented as: f (u) = ∫ 1
0
(u−p)+
(1−p) dμ(p)

with p ∈ [0, 1]. Then, ∀X ∈ X , we can write

R f [X] =
∫
Rn+

[1− f
(

FX (x)
)

]dx

=
∫
Rn+

[1−
∫ 1

0

(
FX (x)− 1+∏n

i=1 (1− pi)
)
+∏n

i=1 (1− pi)
]dμ(p) dx

=
∫
Rn+

dx
∫ 1

0
[1−

(
FX (x)− 1+∏n

i=1 (1− pi )
)
+∏n

i=1 (1− pi )
]dμ(p)

=
∫ 1

0
dμ(p)

∫
Rn+

[1−
(
FX (x)− 1+∏n

i=1 (1− pi)
)
+∏n

i=1 (1− pi)
]dx

=
∫ 1

0
CV a R [X; p] dμ(p) . ��

Since not every result about stochastic dominance works in a multivariate setting, we
restrict our attention to the bivariate one. However, this is interesting because it takes
into consideration the riskiness not only of the marginal distributions, but also of the
joint distribution, tracing out a course of action to multivariate generalisations. It is
worth noting that this procedure has something to do with concordance measures (or
measures of dependence), which we will describe later on.

We propose some observations about VaR and CVaR formulated through distor-
tion functions when X is a random vector with values in R2+; we have:

V a R [X; p] = V a RX1 V a RX2

and

CV a R [X; p] = V a RX1 V a RX2 +
∫ +∞

V a RX2

∫ +∞

V a RX1

SX (x1, x2)

(1− p1) (1 − p2)
dx1dx2.
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Under independence hypothesis we can rewrite CVaR in this manner:

CV a R [X; p] = V a RX1 V a RX2

+ 1

(1− p1) (1− p2)

∫ +∞

V a RX2

∫ +∞

V a RX1

SX1 (x1) SX2 (x2) dx1dx2.

Then we consider∫ +∞

V a RX2

∫ +∞

Va RX1

SX1 (x1) SX2 (x2) dx1dx2 =

(1− p1) (1− p2)V a RX1 V a RX2 + (1− p1)V a RX1

∫ +∞

V a RX2

x2d SX2 (x2)+

(1− p2)V a RX2

∫ +∞

V a RX1

x1d SX1 (x1)+
∫ +∞

V a RX1

x1d SX1 (x1)

∫ +∞

V a RX2

x2d SX2 (x2) ,

which leads, with the first part, to:

CV a R [X; p] = 2V a RX1 V a RX2 − V a RX1 E
[
X2|X2 > V a RX2

]−
V a RX2 E

[
X1|X1 > V a RX1

]+ E
[
X2|X2 > V a RX2

]
E
[
X1|X1 > V a RX1

]
.

4 Measures of concordance

Concordance between two random variables arises if large values tend to occur with
large values of the other and small values occur with small values of the other. So
concordance considers nonlinear associations between random variables that corre-
lation might miss. Now, we want to consider the main characteristics a measure of
concordance should have. We restrict our attention to the bivariate case.

In 1984 Scarsini ( [10]) defined a set of axioms that a bivariate dependence or-
dering of distributions should have in order that higher ordering means more positive
concordance.

By a measure of concordance we mean a function that attaches to every continuous
bivariate random vector a real number α(X1, X2) satisfying the following properties:

1. −1 ≤ α(X1, X2) ≤ 1;
2. α(X1, X1) = 1;
3. α(X1,−X1) = −1;
4. α(−X1, X2) = α(X1,−X2) = −α(X1, X2);
5. α(X1, X2) = α(X2, X1);
6. if X1 and X2 are independent, then α(X1, X2) = 0;
7. if (X1, X2) �C (Y1, Y2) then α(X1, X2) ≤ α(Y1, Y2)
8. if {X}n is a sequence of bivariate random vectors converging in distribution to X,

then limn→∞ α(Xn) = α(X).
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Now we consider the dihedral group D4 of the symmetries on the square [0, 1]2. We
have D4 = {e, r, r2 , r3, h, hr, hr2 , hr3} where e is the identity, h is the reflection
about x = 1

2 and r is a 90◦ counterclockwise rotation.
A measure μ on [0, 1]2 is said to be D4-invariant if its value for any Borel set

A of [0, 1]2 is invariant with respect to the symmetries of the unit square that is
μ(A) = μ(d(A)).
Proposition 2. Ifμ is a bounded D4-invariant measure on [0, 1]2, there existα, β ∈ R
such that the function defined by

ρ((X1, X2)) = α
∫

[0,1]2
F(X1,X2)(x1, x2)dμ(F

X1 (x1), F X2(x2))− β

is a concordance measure.

Proof. A measure of concordance associated to a continuous bivariate random vector
depends only on the copula associated to the vector since a measure of concordance
is invariant under invariant increasing transformation of the random variables. So the
result follows from Theorem 3.1 of [6]. ��

5 A vector-valued measure

In Definition 1 we have introduced the concept of product stop-loss transform for
random vectors. We use this approach to give a definition for a new measure that we
call Product Stop-loss Premium.

Definition 8. Consider a non-negative bivariate random vector X and calculate the
Value at Risk of its single components. Product Stop-loss Premium (PSP) is defined

as follows: PS P [X; p] = E
[(

X1 − V a RX1

)
+
(
X2 − V a RX2

)
+
]
.

Of course this definition could be extended also in a general case, writing:

PS P [X; p] = E
[(

X1 − V a RX1

)
+ . . .

(
Xn − V a RXn

)
+
]
,

but some properties will be different, because not everything stated for the bivariate
case works in the multivariate one.

Our aim is to give a multivariate measure that can detect the joint tail risk of the
distribution. In doing this we also have a representation of the marginal risks and
thus the result is a measure that describes the joint and marginal risk in a simple and
intuitive manner.

We examine in particular the case X1 > V a RX1 and X2 > V a RX2 simultane-
ously, since large and small values will tend to be more often associated under the
distribution that dominates the other one.

Random variables are concordant if they tend to be all large together or small
together and in this case we have a measure with non-trivial values when the vari-
ables exceed given thresholds together and are not constant, otherwise we have
PS P [X; p] = 0.



Some classes of multivariate risk measures 71

It is clear that concordance affects this measure, and in general we know that
concordance behaviour influences risk management of large portfolios of insurance
contracts or financial assets. In these portfolios the main risk is the occurrence of
many joint default events or simultaneous downside evolutions of prices.

PSP for multivariate distributions is interpreted as a measure that can keep the
dependence structure of the components of the random vector considered, when spec-
ified thresholds are exceeded by each component with probability pi ; but indeed it
is also a measure that can evaluate the joint as well as the marginal risk. In fact, we
have:

PS P [X; p] = E
[(

X1 − V a RX1

)
+
(
X2 − V a RX2

)
+
]
=∫ +∞

V a RX2

∫ +∞

V a RX1

SX (x) dx1dx2 − V a RX2 E
[
X1|X1 > V a RX1

]
−V a RX1 E

[
X2|X2 > V a RX2

]+ V a RX1 V a RX2 .

Let us denote with CV a R[X; p] the CVaR restricted to the bivariate independent
case, with X1 > V a RX1 and X2 > V a RX2 , then we have:

CV a R [X; p] = E
[
X1|X1 > V a RX1

]
E
[
X2|X2 > V a RX2

]−
V a RX1 E

[
X2|X2 > V a RX2

]− V a RX2 E
[
X1|X1 > V a RX1

]+ V a RX1 V a RX2 .

We can conclude that these risk measures are the same for bivariate vectors with
independent components, on the condition of these restrictions.

We propose here a way to compare dependence, introducing a stochastic order
based on our PSP measure.

Proposition 3. If X,Y ∈ R2, then X �S M Y ⇐⇒ PS P[X; p] ≤ PS P[Y; p] ∀p
holds.

Proof. If X �S M Y then E[ f (X)] ≤ E[ f (Y)] for every supermodular function f ,
therefore also for the specific supermodular function that defines our PSP and then
follows PS P[X; p] ≤ PS P[Y; p]. Conversely if

PS P[X; p] ≤ PS P[Y; p] and X,Y ∈ R2,

we have ∫ +∞

V a RX2

∫ +∞

V a RX1

SX (t) dt ≤
∫ +∞

V a RY2

∫ +∞

V a RY1

SY (t) dt

with V a RX2 = V a RY2 and V a RX1 = V a RY1 . It follows that SX (t) ≤ SY (t), which
leads to X �C Y. From Theorem 1 follows X �S M Y. ��
Obviously PSP is also consistent with the concordance order.

Another discussed property for risk measures is subadditivity; risk measures that
are subadditive for all possible dependence structures of the vectors do not reflect the
dependence between (X1 − α1)+ and (X2 − α2)+.
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We can note that our PSP is not always subadditive; in fact, if we take the non-
negative vectors X,Y ∈ X , the following relation is not always satisfied:

E
[(

X1 + Y1 − V a RX1 − V a RY1

)
+
(
X2 + Y2 − V a RX2 − V a RY2

)
+
]
≤

E
[(

X1 − V a RX1

)
+
(
X2 − V a RX2

)
+
]
+ E

[(
Y1 − V a RY1

)
+
(
Y2 − V a RY2

)
+
]
.

After verifying all the possible combinations among scenarios

X1 > V a RX1 , X1 < V a RX1 , X2 > V a RX2 , X2 < V a RX2 ,

Y1 > V a RY1 , Y1 < V a RY1 , Y2 > V a RY2 , Y2 < V a RY2 ,

we can conclude that the measure is not subadditive when:

• the sum of the components is concordant and such that:

Xi + Yi > V a RXi + V a RYi ∀i = 1, 2,

with discordant components of at most one vector;
• the sum of the components is concordant and such that:

Xi + Yi > V a RXi + V a RYi ∀i = 1, 2,

with both vectors that have concordant components, but with a different sign: i.e.,

Xi > (<)V a RXi and Yi < (>)V a RYi ∀i;
• Xi > V a RXi and Yi > V a RYi ∀i simultaneously.

Hence, in these cases, the measure reflects the dependence structure of the vectors
involved.

6 Conclusions

In this paper we have proposed a mathematical framework for the introduction of
multivariate measures of risk. After considering the main properties a vector measure
should have, and recalling some stochastic orders, we have outlined our results on
multivariate risk measures. First of all, we have generalised the theory about dis-
torted risk measures for the multivariate case, giving a representation result for those
measures that are subadditive and defining the vector VaR and CVaR. Then, we have
introduced a new risk measure, called Product Stop-Loss Premium, through its defini-
tion, its main properties and its relationships with CVaR and measures of concordance.
This measure lets us also propose a new stochastic order. We can observe that, in the
literature, there are other attempts to study multivariate risk measures, we cite for
example [1–3,7] and [9], but they all approach the argument from different points of
view. Indeed, [9] is the first work that deals with multivariate distorted risk measures,
but it represents only an outline for further developments, as we have done in the
present work.

More recently, the study of risk measures has focused on weakening the definition
of convenient properties for risk measures, in order to represent the markets in a more
faithful manner, or on the generalisation of the space that collects the random vectors.
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Assessing risk perception by means of ordinal models

Paola Cerchiello, Maria Iannario, and Domenico Piccolo

Abstract. This paper presents a discrete mixture model as a suitable approach for the anal-
ysis of data concerning risk perception, when they are expressed by means of ordered scores
(ratings). The model, which is the result of a personal feeling (risk perception) towards the
object and an inherent uncertainty in the choice of the ordinal value of responses, reduces the
collective information, synthesising different risk dimensions related to a preselected domain.
After a brief introduction to risk management, the presentation of the CUB model and related
inferential issues, we illustrate a case study concerning risk perception for the workers of a
printing press factory.

Key words: risk perception, CUB models, ordinal data

1 Introduction

During the past quarter-century, researchers have been intensively studying risk from
many perspectives. The field of risk analysis has rapidly grown, focusing on issues of
risk assessment and risk management. The former involves the identification, quan-
tification and characterisation of threats faced in fields ranging from human health
to the environment through a variety of daily-life activities (i.e., bank, insurance, IT-
intensive society, etc.). Meanwhile, risk management focuses on processes of com-
munication, mitigation and decision making. In normal usage, the notion of “risk”
has negative connotations and involves involuntary and random aspects. Moreover,
the conceptual analysis of the risk concept wavers from a purely statistical definition
(objective) to a notion based on the mind’s representation (subjective). In this con-
text, perception of risk plays a prominent role in people’s decision processes, in the
sense that different behaviours depend on distinct risk perception evaluation. Both
individual and group differences have been shown to be associated with differences
in perceptions of the relative risk of choice options, rather than with differences in
attitude towards (perceived) risk, i.e., a tendency to approach or to avoid options
perceived as riskier [23, 24]. Risk is subjectively defined by individuals and is in-
fluenced by a wide array of psychological, social, institutional and cultural factors
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[22]. However, there is no consensus on the relationship between personality and risk
perception [5].

Another fundamental dimension related to the concept of risk deals with the
dichotomy between experts’ perceptions and those of the common people. The role of
experts is central in several fields, especially when quantitative data are not sufficient
for the risk assessment phase (i.e., in operational risk). Typically, experts’ opinions
are collected via questionnaires on ordinal scales; thereby several models have been
proposed to elaborate and exploit results: linear aggregation [9], fuzzy methods [2,
25] and Bayesian approaches [4].

Our contribution follows this research path, proposing a class of statistical model
able to measure the perceptions expressed either by experts or common people. In
particular we focus on the problem of risk perception related to the workplace with
regards to injury. Thus, some studies focusing on the relationship between organisa-
tional factors and risk behaviour in the workplace [21] suggest that the likelihood of
injuries is affected especially by the following variables: working conditions, occupa-
tional safety training programmes and safety compliance. Rundmo [20] pointed out
how the possibility of workplace injuries is linked to the perception of risk frequency
and exposure.

2 CUB models: description and inference

A researcher faced with a large amount of raw data wants to synthesise it in a way
that preserves essential information without too much distortion. The primary goal of
statistical modelling is to summarise massive amounts of data within simple structures
and with few parameters. Thus, it is important to keep in mind the trade-off between
accuracy and parsimony. In this context we present an innovative data-reduction
technique by means of statistical models (CUB) able to map different results into
a parametric space and to model distinct and weighted choices/perceptions of each
decision-maker.

CUB models, in fact, are devoted to generate probability structures adequate to
interpret, fit and forecast the subject’s perceived level of a given “stimulus” (risk, sen-
sation, opinion, perception, awareness, appreciation, feeling, taste, etc.). All current
theories of choice under risk or uncertainty assume that people assess the desirability
and likelihood of possible outcomes of choice alternatives and integrate this informa-
tion through some type of expectation-based calculus to reach a decision. Instead, the
approach of CUB models is motivated by a direct investigation of the psychological
process that generates the human choice [15].

Generally, the choices – derived by the perception of risk – are of a qualitative
(categorical) nature and classical statistical models introduced for continuous phe-
nomena are neither suitable nor effective. Thus, qualitative and ordinal data require
specific methods to avoid incongruities and/or loss of efficiency in the analysis of real
data. With this structure we investigate a probabilitymodel that produces interpretable
results and a good fit. It decodes a discrete random variable (MUB, introduced by
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D’Elia and Piccolo [8]) and we use CUB models when we relate the responses to sub-
jects’ covariates. The presence of Uniform and shifted Binomial distributions and the
introduction of Covariates justify the acronym CUB. This model combines a personal
feeling (risk awareness) towards the object and an inherent uncertainty in the choice
of the ordinal value of responses when people are faced with discrete choices.

The result for interpreting the responses of the raters is a mixture model for ordered
data in which we assume that the rank r is the realisation of a random variable R that
is a mixture of Uniform and shifted Binomial random variables (both defined on the
support r = 1, 2, . . . ,m), with a probability distribution:

Pr(R = r) = π (m−1
r−1 )(1 − ξ )r−1ξm−r + (1 − π) 1

m
, r = 1, 2, . . . ,m . (1)

The parameters π ∈ (0, 1] and ξ ∈ [0, 1], and the model is well defined for a
given m > 3.

The risk-as-feelings hypothesis postulates that responses to risky situations (in-
cluding decision making) result in part from direct (i.e., not correctly mediated) emo-
tional influences, including feelings such as worry, fear, dread or anxiety. Thus, the
first component, feeling-risk awareness, is generated by a continuous random vari-
able whose discretisation is expressed by a shifted Binomial distribution. This choice
is motivated by the ability of this discrete distribution to cope with several differ-
ent shapes (skewness, flatness, symmetry, intermediate modes, etc.). Moreover, since
risk is a continuous latent variable summarised well by a Gaussian distribution, the
shifted Binomial is a convenient unimodal discrete random variable on the support
{1, 2, . . . ,m}.

At the same time, feeling states are postulated to respond to factors, such as the
immediacy of a risk, that do not enter into cognitive evaluations of the risk and also
respond to probabilities and outcome values in a fashion that is different from the way
in which these variables enter into cognitive evaluations. Thus, the second compo-
nent, uncertainty, depends on the specific components/values (knowledge, ignorance,
personal interest, engagement, time spent to decide) concerning people. As a conse-
quence, it seems sensible to express it by a discrete Uniform random variable. Of
course, the mixture (1) allows the perception of any people to be weighted with re-
spect to this extreme distribution. Indeed, only ifπ = 0 does a person act as motivated
by a total uncertainty; instead, in real situation, the quantity (1 − π) measures the
propensity of each respondent towards the maximal uncertainty.

An important characterisation of this approach is that we can map a set of ex-
pressed ratings into an estimated model via (π, ξ ) parameters. Thus, an observed
complex situation of preferences/choices may be simply related to a single point in
the parametric space.

In this context, it is reasonable to assume that the main components of the choice
mechanism change with the subjects’ characteristics (covariates). Thus, CUB models
are able to include explanatory variables that are characteristics of subjects and which
influence the position of different response choices. It is interesting to analyse the
values of the corresponding parameters conditioned to covariate values.
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In fact, better solutions are obtained when we introduce covariates for relating
both feeling and uncertainty to the subject’s characteristic. Generally, covariates im-
prove the model fitting, discriminate among different sub-populations and are able
to make more accurate predictions. Moreover, this circumstance should enhance the
interpretation of parameters’ estimates and the discussion of possible scenarios.

Following a general paradigm [14, 18], we relate π and ξ parameters to the
subjects’ covariates through a logistic function. The chosen mapping is the simplest
one among the many transformations of real variables into the unit interval and a
posteriori it provides evidence of ease of interpretation for the problems we will be
discussing.

When we introduce covariates into a MU B random variable, we define these
structures as CUB(p, q) models characterised by a general parameter vector θ =
(π, ξ )′ via the logistic mappings:

(π | y
i
) = 1

1+ e−y
i
β
; (ξ | wi) =

1

1+ e−wiγ
; i = 1, 2, . . . , n. (2)

Here, we denote by y
i

and wi the subject’s covariates for explaining πi and ξi ,
respectively. Notice that (2) allows the consideration of models without covariates
(p = q = 0); moreover, the significant set of covariates may or may not present
some overlapping [11, 13, 19].

Finally, inferential issues for CUB models are tackled by maximum likelihood
(ML) methods, exploiting the E-M algorithm [16, 17]. The related asymptotic infer-
ence may be applied using the approximate variance and covariance matrix of the ML
estimators [14]. This approach has been successfully applied in several fields, espe-
cially in relation to evaluations of goods and services [6] and other fields of analysis
such as social analysis [10, 11], medicine [7], sensometric studies [19] and linguistics
[1].

The models we have introduced are able to fit and explain the behaviour of a
univariate rating variable while we realise that the expression of a complete ranking
list of m objects/items/services by n subjects should require a multivariate setting.
Thus, the analysis that will be pursued in this paper should be interpreted as a marginal
if we studied the rank distributions of a single item without reference to the ranks
expressed towards the remaining ones.

Then in the following section, we analyse both the different items and injuries;
afterwards we propose a complex map that summarises the essential information
without distortion or inaccuracy.

3 Assessing risk perception: some empirical evidence

3.1 Data analysis

A cross-sectional study was performed in a printing press factory in Northern Italy
that manufactures catalogues, books and reproductions of artworks. The staff of the
factory consists of 700 employees (300 office workers and 400 blue-collar workers).



Assessing risk perception by means of ordinal models 79

The study focused on the blue-collar population of six different departments, each
dealing with a specific industrial process. The subjects in the cohort are distributed
among the following six units, whose main activities are also described. In the Plates
department, workers must set plates and cylinders used during the printing opera-
tions and then carried out in the Rotogravure and Offset departments. The Packaging
department is responsible for the bookbinding and packaging operations, while the
Plants department operates several systems (e.g., electrical and hydraulic) and pro-
vides services (e.g., storage and waste disposal) that support the production side of the
company. Lastly, the Maintenance department workers perform a series of operations
connected with the monitoring and correct functioning of the different equipment of
the plant.

With the purpose of studying injury risk perception among company workers,
a structured “Workplace Risk Perception Questionnaire” was developed. The ques-
tionnaire asked the respondents to express their opinions on a series of risk factors
present in their workplace. A 7-point Likert scale was used to elicit the workers’ an-
swers whose ranges are interpreted as: 1 = “low perceived risk”; 7 = “high perceived
risk”. Moreover, we pay particular attention to socio-demographic characteristics
like ‘gender’ (dichotomous variable ’0’=men and ’1’=women) , ‘number of working
years’ within the company (continuous variable ranging form 1 to 30) and ‘type of
injury’ (dichotomous variable ’0’= not severe injury and ’1’= severe injury). Finally,
n = 348 validated questionnaires were collected.

3.2 Control and measure risk perception: a map

As already discussed, we built a class of model to evaluate, control and measure the
risk perception and, means of monitoring activity, to inform the stakeholders of the
direction of new policies. In this case we show a map of synthesis which contains
whole information related to different risk dimensions.

In Figure 1 we plot for each item the reactions of feeling and uncertainty expressed
by people. We can observe that the uncertainty is concentrated between 0 and 0.6, a
range indicating a high level of indecision. The characteristic of feeling, however, is
extended over the whole parametric space. Both aspects illustrate how the responses
interact to determine behaviour. Moreover, we deepen some specific aspects of risk-
related phenomena that are regarded as more interesting.

In the case of control, for example, we can observe a dichotomous behaviour:
less sensitivity for injuries such as eye-wound, hit, moving machinery clash (in these
cases people do not seem to ask for more control), and more for other injuries where
people, on their scale of risk, consider the aspect of control as a sensible variable for
improving the conditions of their job.

Instead, an interesting evaluation is referred to as training, as it is considered an
important variable of the survey. Less evidence appears for other items shared among
different levels and whose estimates are spread over the parametric space.
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Fig. 1. Assessing risk perception: a map of items. 1=Structural Collapse (SC), 2=Short
Circuit (SH), 3=Moving Machinery Clash (MC), 4=Eye Wound (EW), 5=Collision (CO),
6=Fire/Explosion (FE), 7=Slipping (SL), 8=Strain (ST), 9=Cut (CU), 10=Hit (HI)

3.3 Perception of fire/explosion risk

In this context we analyse the degree of danger, a principal item in measuring risk
perception and we focus on the responses of samples with respect to fire/explosion
risk. More specifically, we consider the degree of danger that people perceive with
respect to fire risk and we connect it with some covariates.

In this kind of analysis, sensible covariates have to be introduced in the model
by means of a stepwise strategy where a significant increase in the log-likelihoods
(difference of deviances) is the criterion to compare different models. In order to
simplify the discussion, we present only the full model and check it with respect to a
model without covariates.
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In Table 1 we list the estimation of parameters of a CUB(0,3) with gender (Gen),
working years (Year) and serious injury (Serinj) as sensible covariates.

Table 1. Parameters

Covariates Parameters Estimates (Standard errors)

Uncertainty π 0.440 (0.060)

Constant γ0 1.515 (0.319)
Gender γ1 1.029 (0.573)
Working years γ2 −0.032 (0.015)
Serious injury γ3 −0.928 (0.323)

Log-likelihood functions of CUB(0,0) and CUB(0,3) estimated models are �00 =
−660.07 and �03 = −651.81, respectively. As a consequence, the model with co-
variates adds remarkable information to the generating mechanism of the data since
2 ∗ (�03 − �00) = 16.52 is highly significant when compared to the χ2

0.05 = 7.815
percentile with g = 3 degrees of freedom.

We may express the feeling parameters as a function of covariates in the following
way:

ξi = 1

1+ e−1.515−1.029 Geni+0.032 Y eari+0.928 Serinji
, i = 1, 2, . . . , n, (3)

which synthesises the perception of danger of fire/explosion risk with respect to the
chosen covariates. More specifically, this perception increases for men and for those
who have worked for many years (a proxy of experience) and decreases for the part
of sample that had not suffered from a serious accident. For correct interpretation, it
must be remembered that if items are scored (as a vote, increasing from 1 to m as
liking increases) then (1− ξ ) must be considered as the actual measure of preference
[10]. Although the value of the response is not metric (as it stems from a qualitative
judgement), it may be useful for comparative purposes to compute the expected value
of R, since it is related to the continuous proxy that generates the risk perception.

More specifically, Figure 2 shows the expectation and its relation to the varying
working years and for all the profiles of gender and serious injury.

4 Conclusions

In this paper, we obtained some results about direct inference on the feeling/risk
awareness and uncertainty parameters by means of CUB models with and without
covariates. The experiments confirmed that this new statistical approach gives a dif-
ferent perspective on the evaluation of psychological processes and mechanisms that
generate/influence risk perception in people. The results show that CUB models are a
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Fig. 2. Expected score as a function of working years, given gender and serious injury

suitable and flexible tool for examining and quantifying the change of response over
one or more categorical and/or continuous covariates, and they provide a deeper in-
sight into these kinds of dataset. They also allowed the summary of much information
and some interesting evaluation of specific points investigated when covariates are
both absent and present.

Moreover, we stress that the proposed model is a manifold target approach: in fact,
it can be profitably applied to a variety of fields, ranging from credit and operational
risk [3] to reputational and churn risk. Finally, it represents a convincing tool to exploit
opinions expressed by field experts.
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A financial analysis of surplus dynamics for
deferred life schemes∗

Rosa Cocozza, Emilia Di Lorenzo, Albina Orlando, and Marilena Sibillo

Abstract. The paper investigates the financial dynamics of the surplus evolution in the case
of deferred life schemes, in order to evaluate both the distributable earnings and the expected
worst occurence for the portfolio surplus. The evaluation is based on a compact formulation
of the insurance surplus defined as the difference between accrued assets and present value of
relevant liabilities. The dynamic analysis is performed by means of Monte Carlo simulations
in order to provide a year-by-year valuation. The analysis is applied to a deferred life scheme
exemplar, considering that the selected contract constitutes the basis for many life insurance
policies and pension plans. The evaluation is put into an asset and liability management deci-
sion-making context, where the relationships between profits and risks are compared in order
to evaluate the main features of the whole portfolio.

Key words: financial risk, solvency, life insurance

1 Introduction

The paper investigates the financial dynamics of surplus analysis with the final aim
of performing a breakdown of the distributable earnings. The question, put into an
asset and liability management context, is aimed at evaluating and constructing a sort
of budget of the distributable earnings, given the current information. To this aim, a
general reconstruction of the whole surplus is performed by means of an analytical
breakdown already fully developed elsewhere [1], and whose main characteristic is
the computation of a result of the portfolio, that actuaries would qualify as surplus,
accountants as income and economists as profit.

The analysis is developed with the aim of evaluating what share of each year’s
earnings can be distributed without compromising future results. This share is only a
sort of minimum level of distributed earnings which can serve as a basis for business
decisions and that can be easily updated year-by-year as market conditions modify.
Then the formal model is applied to a life annuity cohort in a stochastic context in

∗ Although the paper is the result of a joint study, Sections 1, 2 and 4 are by R. Cocozza,
whilst Section 3 is by E. Di Lorenzo, A. Orlando and M. Sibillo.
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order to exemplify the potential of the model. In this paper deferred schemes are
selected considering that they can be regarded as the basis for many life insurance
policies and pension plans. Nevertheless, the model can be applied, given the neces-
sary adjustments, to any kind of contract as well as to non-homogeneous portfolios.

The rest of the paper is organised as follows. Section 2 introduces the logical
background of the model itself, while Section 3 detaches the mathematical framework
and the computational application. Section 4 comments on the numerical results
obtained and Section 5 concludes.

2 The model

As stated [1], the surplus of the policy is identified by the difference between the
present value of the future net outcomes of the insurer and the (capitalised) flows paid
by the insureds. This breakdown is evaluated year by year with the intent to compile
a full prospective account of the surplus dynamics. In the case of plain portfolio
analysis, the initial surplus is given by the loadings applied to pure premiums; in the
case of a business line analysis, the initial surplus, set as stated, is boosted by the
initial capital allocated to the business line or the product portfolio.

The initial surplus value, in both cases, can be regarded as the proper initial capital
whose dynamic has to be explored with the aim of setting a general scheme of dis-
tributable and undistributable earnings. More specifically, given that at the beginning
of the affair the initial surplus is set as S0, the prospective future t-outcomes, defined
as St , can be evaluated by means of simulated results to assess worst cases given a
certain level of probability or a confidence interval.

The build up of these results, by means of the selected model and of Monte Carlo
simulations (see Section 3), provides us with a complete set of future outcomes at
the end of each period t. These values do not depend on the amount of the previous
distributed earnings. Those results with an occurrence probability lower than the
threshold value (linked to the selected confidence interval) play the role of worst
cases scenarios and their average can be regarded as the expected worst occurrence
corresponding to a certain level of confidence when it is treated as a Conditional
Value-at-Risk (CVaR). Ultimately, for each period of time, we end up with a complete
depiction of the surplus by means of a full set of outcomes, defined by both expected
values and corresponding CVaR.

The results we obtain for each period can therefore be used as a basis for the
evaluation of the distributable earnings, with the final aim of assessing the distributable
surplus share. If the CVaR holds for the expected worst occurrence given a level of
confidence, its interpretation is pragmatically straightforward: it is the expected worst
value of the surplus for the selected confidence level. So for any t-period, the CVaR
estimates the threshold surplus at the confidence level selected and automatically sets
the maximum distributable earnings of the preceding period. In other words, the CVaR
of St can be regarded as the maximum distributable amount of St−1; at the same time:

• the ratio of the CVaR of St to St−1 can be regarded as the distributable share (DS)
of the t − 1 result; and
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• the ratio of the CVaR of St minus St−1 to the t − 1 result can be regarded as the
worst expected Return on Surplus (RoS) for the selected level of confidence.

Analogous conclusions can be inferred when the analysis is referred to a business line
and the surplus is enhanced by the allocated capital: the interpretation of the result is
similar and even clearer, as the last ratio is a proper worst expected return on equity.

From a methodological point of view, we would like to stress that the analysis
and, therefore, the simulation procedure could be performed with reference to all
the risk factors relevant to the time evolution of the portfolio. Many dynamics can
simultaneously contribute to the differentials that depend on risk factors linked to
both the assets in which premiums are invested and the value of liabilities for which
capitalised premiums are deferred. Together with the demographic dynamic, the most
important factor is the nature of the assets: if these are financial, the risks faced will
be mainly financial, they will depend directly on the asset type and will not have any
autonomous relevance. Besides, the crux of the problem is the difference between
the total rate of return on assets and the rate of interest originally applied in premium
calculation, so that it can be precisely addressed as investment risk, in order to highlight
the composite nature of relevant risk drivers. At the same time, other factors can
contribute to the difference such as the quality of the risk management process, with
reference to both diversification and risk pooling. This implies that the level of the
result and its variability is strictly dependent on individual company elements that
involve both exogenous and endogenous factors.

Since our focus is on the financial aspect of the analysis, we concentrate in the
following of the paper only on the question of the investment rate, excluding any
demographic component and risk evaluation from our analysis. Bearing in mind this
perspective, the rate actually used as a basis for the simulation procedure has to be
consistent with the underlying investment and the parameters used to describe the rate
process have to be consistent with the features of the backing asset portfolio. There-
fore, once we decide the strategy, the evaluation is calibrated to the expected value
and estimated variance of the proper return on asset as set by the investment portfo-
lio. In other words, if we adopt, for instance, a bond strategy the relevant parameters
will be estimate from the bond market, while if we adopt an equity investment, the
relevant values will derive from the equity market, and so on, once we have defined
the composition of the asset portfolio.

3 Surplus analysis

3.1 The mathematical framework

In the following we take into account a stochastic scenario involving the financial and
the demographic risk components affecting a portfolio of identical policies issued to
a cohort of c insureds aged x at issue.

We denote by Xs the stochastic cash flow referred to each contract at time s and by
Ns the number of claims at time s, {Ns} being i.i.d. and multinomial (c,E[1s]), where
the random variable 1s takes the value 1 if the insured event occurs, 0 otherwise.
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The value of the business at time t is expressed by the portfolio surplus St at
that time, that is the stochastic difference of the value of the assets and the liabilities
assessed at time t . In general we can write:

St =
∑

s

Ns Xse
∫ t

s δudu, (1)

where δu is the stochastic force of interest and Xs is the difference between premiums
and benefits at time s.

Assuming that the random variables Ns are mutually independent on the random
interest δs and denoting by Ft the information flow at time t ,

St = E[St|Ft ] =
∑

s

cXs E[1s]E[e
∫ t

s δudu ]. (2)

Formula (2) can be easily specialised in the case of a portfolio of m-deferred life
annuities, with annual level premiums P payable at the beginning of each year for a
period of n years (n ≤ m) and constant annual instalments, R, paid at the end of each
year, payable if the insured is surviving at the corresponding payment date. It holds:

St = E[St] =
∑

s

cXs s px E[e
∫ t

s δudu] (3)

where s px denotes the probability that the individual aged x survives at the age x + s
and

Xs =

⎧⎪⎨⎪⎩
P if s < n

−R if s > m

0 if n < s < m.

(4)

As widely explained in the previous section, the surplus analysis provides useful tools
for the equilibrium appraisal, which can be synthesised by the following rough but
meaningful and simple relationship:

Prob(St > 0) = ε. (5)

For a deeper understanding of the choice of ε, refer to [1]. From a more general
perspective, we can estimate the maximun loss Sα of the surplus at a certain valuation
time t with a fixed confidence level α, defined as

Prob(St > Sα) = α, (6)

that is:
Sα = F−1(1 − α), (7)

F being the cumulative distribution function of St.
In the following we will take advantage of a simulative procedure to calculate the

quantile surplus involved in (6), basing our analysis on the portfolio mean surplus at
time t .
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We focus on capturing the impact on the financial position at time t – numerically
represented by the surplus on that date – of the financial uncertainty, which constitutes
a systematic risk source, and is thus independent of the portfolio size. In fact in this
case the pooling effect does not have any consequences, in contrast to the effect of
specific risk sources, as the accidental deviations of mortality.

Formally the valuation of the mean surplus can be obtained observing that it
is possible to construct a proxy of the cumulative distribution function of St since
(cf. [4])

lim
c→∞P

(∣∣∣∣ Ns

c
− E[1s]

∣∣∣∣ ≥ ε) = 0,

hence, when the number of policies tends to infinity, St/c converges in distribution
to the random variable

�t =
∑

s

XsE[1s]e
∫ t

s δudu . (8)

In the case of the portfolio of m-deferred life annuities described above, we set:

xs =
{

P if s < n

−R if s > m
, ys =

{
R if s > m

−P if s < n
,

so, making explicit the surplus’ formalisation, we can write

St =
c∑

i=1

⎛⎝min(Kxi ,t)∑
s=0

xse
∫ t

s δudu −
min(Kxi ,T )∑

s=t+1

yse−
∫ s

t δudu

⎞⎠
where Kxi denotes the curtate future lifetime of the ith insured aged x at issue and T
is the contract maturity (T ≤ ω− x , ω being the ultimate age). We can point out that
the second term on the right-hand side represents the mathematical provision at time
t .

So, remembering the homogeneity assumptions about the portfolio components,
formula 8 can be specialised as follows:

�t = E[

⎛⎝min(Kx ,t)∑
s=0

xse
∫ t

s δudu −
min(Kx ,T )∑

s=t+1

yse−
∫ s

t δudu

⎞⎠ |{δu}u≥0] = (9)

=
∑
s≤t

xss pxE[e
∫ t

s δudu ]−
∑
s>t

yss pxE[e−
∫ s

t δudu ].

3.2 The computational application

As the computational application of the preceding model we consider a portfolio of
unitary 20-year life annuities with a deferment period of 10 years issued to a group of
1000 male policyholders aged 40. The portfolio is homogeneous, since it is assumed
that policyholders have the same risk characteristics and that the future lifetimes
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are independent and identically distributed. As far as the premiums are concerned,
we build up the cash flow mapping considering that premiums are paid periodically
at the beginning of each year of the deferment period. The market premium has a
global loading percentage of 7% compensating for expenses, safety and profit. Pure
premiums are computed by applying 2% as the policy rate and by using as lifetables
the Italian IPS55.

Since our analysis is focused on the financial aspect, the single local source of
uncertainty is the spot rate, which is a diffusion process described by a Vasicek model

dr (t) = k (μ− r (t)) dt + σdW (t) , r (0) = r0, (10)

where k, μ, σ and r0 are positive constants and μ is the long-term rate. As informa-
tive filtration, we use the information set available at time 0. As a consequence, for
instance, in calculating the flows accrued up to time t, the starting value r0 for the
simulated trajectories is the value known at time 0. Analogously, in discounting the
flows of the period subsequent to t, the starting value of the simulated trajectories is
E [rt |F0]. The parameter estimation is based on Euribor-Eonia data with calibration
set on 11/04/2007 (cf. [2]), since we make the hypothesis that the investment strategy
is based on a roll-over investment in short-term bonds, as we face an upward term
structure. The estimated values are μ = 4.10%, σ = 0.5% and r0 = 3.78%.

In order to evaluate the Expected Surplus and the CVaR in a simulation framework,
we consider the Vasicek model to describe the evolution in time of the global rate of
return on investments earned by the asset portfolio. The α-quantile, qα, of the surplus
distribution is defined as:

Prob {S (t) < qα} = 1− α. (11)

In the simulation procedure we set α = 99%. The expected (1 − α) worst case is
given by the following:

E [worst cases (1− α)] = (1− α)−1
∫ 1

α
qpdp, (12)

qp being the p-quantile of the surplus distribution. The last equation is then the
average of the surplus value lower than the α-quantile, qα.

4 Results

Recalling Section 2, the simulation results provide us with the expected value of
the surplus for each period, the first value at time 0 being the portfolio difference
between the pure premium and the market premium. Therefore, scrolling down the
table we can very easily see the evolution of the surplus over time together with the
corresponding CVaR.

As far as the time evolution is concerned, the surplus shows an increasing trend,
which is consistent with the positive effect of the financial leverage, since we invest
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Table 1. Surplus behaviour and related parameters

Time E (St) CvaR DS (99%) RoS (99%)

0 1649,899
1 1732,851 179,9519 10.91% −89.09%
2 1820,197 362,4452 20.92% −79.08%
3 1912,03 556,0326 30.55% −69.45%
4 2008,6 727,887 38.07% −61.93%
5 2110,173 890,2828 44.32% −55.68%
6 2217,03 1051,625 49.84% −50.16%
7 2329,47 1211,922 55.66% −45.34%
8 2447,811 1333,802 57,26% −42, 74%
9 2572,389 1409,132 57.57% −42.43%
10 2703,561 1470,693 55.17% −42.83%
11 2841,708 1478,472 54.69% −45.31%
12 2987,235 1416,793 49.86% −50.14%
13 3140,569 1332,953 44.62% −55.38%
14 3302,167 1228,486 39.12% −60.88%
15 3472,516 1109,346 33.59% −66.41%
16 3652,13 982,2259 28.29% −71.71%
17 3841,561 840,4843 23.01% −76.99%
18 4041,392 660,9939 17.21% −82.79%
19 4252,246 443,7866 10.98% −89.02%

for the whole period of time at a rate which is systematically higher (μ = 4.10% and
r0 = 3.78%) than the premium rate (2%), thus giving rise to a return on assets always
higher than the average rate of financing. As far as the CVaR is concerned, it shows a
dynamic which is totally consistent with the mathematical provision time evolution, as
one can expect as has already been shown elsewhere [3], the financial risk dynamic is
mainly driven by the mathematical provision time progression. Accordingly, the time
evolution of the RoS, as defined in Section 2, is directly influenced by the mathematical
provision and its absolute value, as can easily be seen, is dependent on the confidence
level chosen. As far as the connection with the reserve dynamic is concerned, we
can state that both DS and worst expected RoE prove to be fully consistent with the
traditional and pragmatic idea that the lower the reserve the higher the risk of the
business. Therefore, distributable earnings can be quantified and managed, through
this approach, in order to minimise the ruin probabilityon the basis of both the general
investment strategy and the specific market condition available at time of issue.

5 Conclusions and future research prospect

The sketched model proves to be a way to quantify the amount of distributable earnings
year-by-year with reference to a specific portfolio of policies as it gives the oppor-
tunity to build upon a complete distribution budget. Since we concentrate solely on
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the financial dynamics, the first extension could be the inclusion of a demographic
component and the modelling of the surplus dynamic by means also of stochastic
demographic rates, in order to incorporate, where appropriate, the systematic and
unsystematic components. Another extension could be the evaluation at a whole se-
ries of critical confidence intervals in order to end up with a double-entry DS table
where the definition of its levels can be graduated by means of different levels of
probability, in order to control how the actual distributed amount can influence the
future performance of the portfolio.
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Checking financial markets via Benford’s law: the
S&P 500 case

Marco Corazza, Andrea Ellero and Alberto Zorzi

Abstract. In general, in a given financial market, the probability distribution of the first signif-
icant digit of the prices/returns of the assets listed therein follows Benford’s law, but does not
necessarily follow this distribution in case of anomalous events. In this paper we investigate the
empirical probability distribution of the first significant digit of S&P 500’s stock quotations.
The analysis proceeds along three steps. First, we consider the overall probability distribution
during the investigation period, obtaining as result that it essentially follows Benford’s law,
i.e., that the market has ordinarily worked. Second, we study the day-by-day probability distri-
butions. We observe that the majority of such distributions follow Benford’s law and that the
non-Benford days are generally associated to events such as the Wall Street crash on February
27, 2007. Finally, we take into account the sequences of consecutive non-Benford days, and
find that, generally, they are rather short.

Key words: Benford’s law, S&P 500 stock market, overall analysis, day-by-day analysis,
consecutive rejection days analysis

1 Introduction

It is an established fact that some events, not necessarily of an economic nature,
have a strong influence on the financial markets in the sense that such events can
induce anomalous behaviours in the quotations of the majority of the listed assets.
For instance, this is the case of the Twin Towers attack on September 11, 2001.
Of course, not all such events are so (tragically) evident. In fact, several times the
financial markets have been passed through by a mass of anomalous movements which
are individually not perceptible and whose causes are generally unobservable.

In this paper we investigate this phenomenon of “anomalous movements in fi-
nancial markets” in a real stock market, namely the S&P 500, by using the so-called
Benford’s law. In short (see the next section for more details), Benford’s law is the
probability distribution associated with the first significant digit1 of numbers belong-
ing to a certain typology of sets. As will be made clear in section 2, it is reasonable to

1 Here significant digit is meant as not the digit zero.
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guess that the first significant digit of financial prices/returns follows Benford’s law
in the case of ordinary working of the considered financial markets, and that it does
not follow such a distribution in anomalous situations.

The remainder of this paper is organised as follows. In the next section we provide
a brief introduction to Benford’s law and the intuitions underlying our approach. In
section 3 we present a short review of its main financial applications. In section
4 we detail our methodology of investigation and give the results coming from its
application to the S&P 500 stock market. In the last section we provide some final
remarks and some cues for future researches.

2 Benford’s law: an introduction

Originally, Benford’s law was detected as empirical evidence. In fact, some scientists
noticed that, for extensive collections of heterogeneous numerical data expressed in
decimal form, the frequency of numbers which have d as the first significant digit,
with d = 1, 2, . . ., 9, was not 1/9 as one would expect, but strictly decreases as d
increases; it was about 0.301 if d = 1, about 0.176 if d = 2, . . ., about 0.051 if d = 8
and about 0.046 if d = 9. As a consequence, the frequency of numerical data with the
first significant digit equal to 1, 2 or 3 appeared to be about 60%. The first observation
of this phenomenon traces back to Newcomb in 1881 (see [9]), but a more precise
description of it was given by Benford in 1938 (see [2]). After the investigation of
a huge quantity of heterogeneous numerical data,2 Benford guessed the following
general formula for the probability that the first significant digit equals d:

Pr(first significant digit= d) = log10

(
1+ 1

d

)
, d = 1, . . . , 9.

This formula is now called Benford’s law.
Only in more recent times the Benford’s law obtained well posed theoretical

foundations. Likely, the two most common explanations for the emergence of prob-
ability distributions which follow Benford’s law are linked to scale invariance and
multiplicative processes (see [11] and [6]).3 With attention to the latter explanation –
which is of interest for our approach – and without going into technical details, Hill
proved, under fairly general conditions, using random probability measures, that�if
[probability] distributions are selected at random and random samples are taken
from each of these distributions, the significant digits of the combined sample will
converge to Benford distribution� (see [6]). This statement offers the basis for the
main intuition underlying our paper. In fact, we consider the stocks of the S&P 500
market as the randomly selected probability distributions, and the prices/returns of
each of these different assets as the generated random samples. The first significant

2 For instance, lake surface areas, river lengths, compounds molecular weights, street address
numbers and so on.

3 In other studies it has been proved that also powers of [0, 1]-uniform probability distribution
asymptotically satisfy Benford’s law (see [1] and [7]).
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digit of such prices/returns should follow the Benford distribution. But, if some ex-
ceptional event affects these stocks in ways similar among them, the corresponding
asset prices/returns could be considered “less random” than that stated in [6], and the
probability distribution of their first significant digit should depart from the Benford
one. In this sense the fitting, or not, to Benford’s law provides an indication of the
ordinary working, or not, of the corresponding financial market.

3 Benford’s law: financial applications

Investigations similar to ours have been sketched in a short paper by Ley (see [8]),
which studied daily returns of the Dow Jones Industrial Average (DJIA) Index from
1900 to 1993 and of the Standard and Poor’s (S&P) Index from 1926 to 1993. The
author found that the distribution of the first significant digit of the returns roughly
follows Benford’s law. Similar results have been obtained for stock prices on single
trading days by Zhipeng et al. (see [12]).

An idea analogous to the one traced in the previous section, namely that the
detection of a shunt from Benford’s law might be a symptom of data manipulation,
has been used in tax-fraud detection by Nigrini (see [10]), and in fraudulent economic
and scientific data by Günnel et al. and by Diekmann, respectively (see [5] and [4]).

Benford’s law has been used also to discuss tests concerning the presence of
“psychological barriers” and of “resistance levels” in stock markets. In particular
De Ceuster et al. (see [3]) claimed that differences of the distribution of digits from
uniformity are a natural phenomenon; as a consequence they found no support for the
psychological barriers hypothesis.

All these different financial applications support the idea that in financial markets
that are not “altered”, Benford’s law holds.

4 Do the S&P 500’s stocks satisfy Benford’s law?

The data set we consider consists of 3067 daily close prices and 3067 daily close
logarithmic returns for 361 stocks belonging to the S&P 500 market,4 from August
14, 1995 to October 17, 2007. The analysis we perform proceeds along three steps:

– in the first one we investigate the overall probability distribution of the first sig-
nificant digit both on the whole data set of prices and on the whole data set of
returns;

– in the second step we study the day-by-day distribution of the first significant digit
of returns;

– finally, in the third step we analyse the sequences of consecutive days in which
the distribution of the first significant digit of returns does not follow Benford’s
law, i.e., the consecutive days in which anomalous behaviours happen.

4 In this analysis we take into account only the S&P 500 stocks that are listed for each of the
days belonging to the investigation period.
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4.1 Overall analysis

Here we compare the overall probability distributions of the first significant digit of
the considered prices and returns against Benford’s law and the uniform probability
distribution (see Fig. 1) by means of the chi-square goodness-of-fit test. Uniform
probability distribution is used as the (intuitive) benchmark alternative to the (coun-
terintuitive) Benford’s law.

At a visual inspection, both the empirical probability distributions seem to be
rather Benford-like (in particular, the one associated to returns). Nevertheless, in
both the comparisons the null is rejected. In Table 1 we report the values of the
associated chi-square goodness-of-fit tests with 8 degrees of freedom (we recall that
χ2

8,0.95 = 15.51).
From a qualitative point of view, our results are analogous to the ones obtained

by Ley (see [8]). In particular, that author observed that, despite the fact that the
chi-square goodness-of-fit tests on DJIA and S&P Indexes suggest rejection of the
null, this was due to the large number of observations considered. In fact, the same
kind of analysis performed only on 1983–1993 data suggested acceptance of the
null. Moreover, the rejection with respect to the uniform probability distribution is
stronger and stronger than the rejection with respect to Benford’s law. In other words,
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Fig. 1. Overall empirical probability distributions

Table 1. Overall calculated chi-square

Reference probability distribution χ2 w.r.t. prices χ2 w.r.t. returns

Benford 151527.74 7664.84
Uniform 780562.24 673479.62
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looking at chi-square as a distance, the empirical probability distributionsare closer to
Benford’s law than to the uniform probability distribution. In this sense we agree with
Ley (see [8]) claiming that the distributions of the first significant digit of prices and
returns essentially follow Benford’s law. In other terms, the S&P 500 stock market
behaviour as a whole in the period August 14, 1995 to October 17, 2007 can be
considered as “ordinary”.

Finally, we observe that the empirical probability distribution related to returns is
significantly closer to Benford’s law than the empirical probability distributionrelated
to prices. In particular, the latter is 19.77 times further away from Benford’s law than
the former. This evidence is theoretically coherent with that stated in the paper of
Pietronero et al. (see [11]), since logarithmic returns are obtained from prices by a
multiplicative process.

4.2 Day-by-day analysis

Here, we address our attention to returns since their empirical probability distribution
is closer to Benford’s law than that of prices. We day-by-day perform the same kind
of analysis considered in the previous subsection, but only with respect to Benford’s
law.

Over the investigated 3067 days, the null is rejected 1371 times, i.e., in about
44.70% of cases. In Figure 2 we represent the values of the day-by-day calculated chi-
square goodness-of-fit tests (the horizontal white line indicates the value of χ2

8,0.05).

Day-by-day analysis with respect to returns: 14 August, 1995 – 17 October, 2007
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Fig. 2. Day-by-day calculated chi-square
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We deepen our analysis taking into account also a confidence level α equal to 1% (we
recall that χ2

8,0.99 = 20.09); it results that the null is rejected 890 times, i.e., in about
29.02% of cases.

In order to check if such rejection percentages are reasonable, we perform the
following computational experiment:

– First, for each of the considered 361 stocks we generate a simulated time series of
its logarithmic returns which has the same length as the original time series, and
whose probability distribution follows a Gaussian one with mean and variance
equal to the real ones estimated for the stock5 (the Gaussian probability distribu-
tion is chosen for coherence with the classical theory of financial markets);

– Second, we perform a day-by-day analysis on the generated financial market in
the same way as for the true financial market.

Repeating the experiment 50 times, we obtain the following mean values of the
rejection percentages: 57.92% if α = 5% (about 1776 cases) and 33.50% if α = 1%
(about 1027 cases). This results have not to be considered particularly surprising. In
fact, to each of the considered stocks we associate always the same kind of probability
distribution, the Gaussian one, instead of selecting it at random as would be required
to obtain a Benford distribution (see section 2).

The fact that the rejection percentages in a classical-like market are greater than the
corresponding percentages in the true one denotes that a certain number of deviations
from Benford’s law, i.e., a certain number of days in which the financial market is
not ordinary working, is physiological. Moreover, the significant differences between
rejection percentages concerning the classical-like market and the true one can be
interpreted as a symptom of the fact that, at least from a distributional point of view,
the true financial market does not always follow what is prescribed by the classical
theory.

In Table 2 we report the 45 most rejected days at a 5% significance level with
the corresponding values of the chi-square goodness-fit-of tests with 8 degrees of
freedom.

We notice that some of the days and periods reported in Table 2 are characterised
by well known events. For instance, the Wall Street crash on February, 2007 (the most
rejected day) and the troubles of important hedge funds since 2003 (24.44% of the first
45 most rejected days falls in 2003). Nevertheless, in other rejection days/periods the
link with analogous events cannot generally be observed. In such cases the day-by-
day analysis can be profitaby used to detect hidden anomalous behaviours in financial
markets. On the other hand, the most accepted day is September 5, 1995, whose value
of the chi-square goodness-fit-of test is 0.91. In Figure 3 we graphically compare the
empirical probability distributionsof the most rejected and of the most accepted days
against Benford’s law and the uniform probability distribution.

5 In generating this simulated financial market, we do not consider the correlation structure
existing among the returns of the various stocks because, during the investigation period,
such a structure does not appear particularly relevant. So, the simulated financial market
can be reckoned as a reasonable approximation of the true one.



Checking financial markets via Benford’s law: the S&P 500 case 99

Table 2. Most rejected days and related calculated chi-square

Rank Day χ2 Rank Day χ2 Rank Day χ2

1 02.27.2007 265.55 16 10.01.2002 100.19 31 06.22.2007 80.86
2 07.29.2002 201.43 17 08.04.1998 99.96 32 09.26.2002 78.90
3 01.02.2003 177.33 18 03.17.2003 98.81 33 03.10.2003 78.44
4 03.24.2003 152.84 19 06.07.2007 96.93 34 10.01.2003 77.21
5 01.24.2003 122.93 20 06.17.2002 93.67 35 03.21.2003 75.63
6 10.27.1997 122.89 21 12.27.2002 92.29 36 04.14.2000 75.22
7 03.13.2007 119.38 22 08.05.2002 90.05 37 06.05.2006 74.57
8 08.29.2007 118.19 23 03.30.2005 86.39 38 07.20.2007 74.27
9 07.24.2002 117.10 24 04.14.2003 85.39 39 08.22.2003 74.10

10 03.08.1996 115.01 25 02.24.2003 84.14 40 02.22.2005 73.40
11 08.06.2002 113.42 26 08.08.2002 84.05 41 08.05.2004 72.96
12 08.03.2007 111.14 27 03.02.2007 82.86 42 05.30.2003 72.24
13 08.28.2007 106.23 28 05.25.2004 81.47 43 07.10.2007 71.97
14 05.10.2007 101.04 29 06.13.2007 81.47 44 04.11.1997 71.44
15 09.03.2002 100.76 30 09.07.2007 81.29 45 10.28.2005 71.23
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Fig. 3. Empirical probability distributions of the most rejected and most accepted days

Finally, we spend a few words on the day of the Twin Towers attack, which
has been chosen as the central one of the data set. We remark that 42.89% of all
the rejected days falls before this day and 57.11% of them after. Moreover, if we
limit our attention to the first 45 most rejected days, the difference between such
percentages considerably increases to 11.11% before and 88.89% after, respectively.
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These results show that the S&P 500 stock market was subject to anomalous activities
after September 11, 2001 rather than before.

4.3 Consecutive rejection days analysis

Here, addressing our attention to returns once more, we analyse the sequences of
consecutive rejection days detected using α = 5%. In Table 3 we report the number
of such sequences having lengths from 1 day to 12 days, respectively (12 days is the
maximum length detected in the investigation period). For deepening the investigation,
we also report the results obtained using α = 1%.

We observe that the length of the large majority of the sequences of consecutive
rejection days is rather low. This fact can be interpreted as the capability of the S&P
500 stock market to “absorb” anomalous events in short time periods.

On the contrary, given such a capability, the presence of long sequences of con-
secutive rejection days is an indicator of malaise of the market. For instance, this is
the case of a 9-day sequence (September 20, 2001 to October 2, 2001) that started im-
mediately after the Twin Towers attack and of a 6-day sequence (February 27, 2007 to
March 6, 2007) that started on the day of the Wall Street crash. Moreover, analogously
to what we already observed in the previous subsection, since the events/causes as-
sociated to such sequences are not always observable, the consecutive rejection days
analysis might be profitably used for detecting continued anomalous behaviours in
financial markets.

Table 3. Sequences of consecutive rejection days

Sequence length # with α = 5% # with α = 1%

1 412 366
2 148 105
3 71 52
4 48 12
5 24 7
6 13 2
7 7 1
8 1 0
9 3 0

10 1 1
11 0 0
12 1 0
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5 Conclusions

To the best of our knowledge, several aspects concerning the use of Benford’s law-
based analyses in financial markets have not yet been investigated. Among the various
ones, we consider the following:

– Given the few studies on this topic, the actual capability of this kind of approach
to detect anomalous behaviours in financial markets has to be carefully checked
and measured. To this end, the systematic applications of these approaches to a
large number of different financial markets is needed;

– From a methodological point of view, we guess that restricting the analysis we
performed in this paper to the different sectors compounding the financial market
could be useful for detecting, in the case of anomalous behaviours of the market
as a whole, which sectors are the most reliable;

– We guess also that, in order to make this analysis more careful, we should at
least take into account the probability distribution of the second significant digit
(see [6]), i.e.,

Pr(second significant digit = d) = log10

9∑
k=1

(
1+ 1

10k + d

)
, d = 0, . . . , 9; 6

– Finally, the results we presented in this paper are ex post. Currently, we are be-
ginning to develop and apply a new Benford’s law-based approach in order to
check some predictive capabilities. The first very preliminary results seem to be
encouraging.
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Empirical likelihood based nonparametric testing for
CAPM

Pietro Coretto and Maria Lucia Parrella

Abstract. The Capital Asset Pricing Model (CAPM) predicts a linear relation between assets’
return and their betas. However, there is empirical evidence that such a relationship does not
necessarily occur, and in some cases it might even be nonlinear. In this paper we explore
a nonparametric approach where the linear specification is tested against a nonparametric
alternative. This methodology is implemented on S&P500 data.

Key words: CAPM, goodness-of-fit test, empirical likelihood

1 Introduction

An asset pricing model provides a method for assessing the riskiness of cash flows
from a project. The model provides an estimate of the relationship between that risk-
iness and the cost of capital. According to the “capital asset pricing model” (CAPM),
the only relevant measure of a project’s risk is a variable unique to this model, known
as the project’s beta. In the CAPM, the cost of capital, i.e., the return, is a linear func-
tion of the the beta of the project being evaluated. A manager who has an estimate
of the beta of a potential project can use the CAPM to estimate the cost of capital for
the project. If the CAPM captures investors’ behaviour adequately, then the historical
data should reveal a positive linear relation between return on financial assets and
their betas. Also, no other measure of risk should be able to explain the differences in
average returns across financial assets that are not explained by CAPM betas. The fact
that CAPM theory predicts the existence of a cross-section linear relation between
returns and betas can be empirically tested. To this end we propose a nonparametric
testing methodology (see [10] and [3] among others).

The first test of the CAPM was run by Fama and MacBeth [7] and their study
validated the theory. The authors tested the linearity against some parametric nonlinear
alternatives. However subsequent empirical analysis highlighted that the validity of
the CAPM could depend on the testing period. There is a huge amount of literature
on this topic (for a comprehensive review see [11]), however, final conclusions have
not been made.

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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The famous Fama-MacBeth contribution (and the following) tests the linear spec-
ification against a number of nonlinear parametric specifications. The main contri-
bution of this paper is that we test the linear specification of the CAPM against
a nonlinear nonparametric specification. And by this we do not confine the test to
a specific (restricting) nonlinear alternative. Our testing method is based on kernel
smoothing to form a nonparametric specification for the null hypothesis that the re-
lation between returns and betas is linear against the alternative hypothesis that there
is a deviation from the linearity predicted by the CAPM. We apply our methodology
to the S&P 500 market.

The paper is organised as follows: we introduce the theoretical model, we intro-
duce the Fama and MacBeth two-stage parametric estimation procedure, we outline
the nonparametric testing methodology and finally we discuss some empirical findings
based on the analysis of the S&P 500 market.

2 The CAPM in a nutshell

CAPM was first developed by Sharpe and Treynor; Mossin, Lintner and Black brought
the analysis further. For a comprehensive review see [5] and [1]. We will refer to SLB
as the Sharpe-Lintner-Black version of the model. The SLB model is based on the
assumption that there is a positive trade-off between any asset’s risk and its expected
return. In this model, the expected return on an asset is determined by three variables:
the risk-free rate of return, the expected return on the market portfolio and the asset’s
beta. The last one is a parameter that measures each asset’s systematic risk, i.e., the
share of the market portfolio’s variance determined by each asset.

2.1 Theoretical model

The CAPM equation is derived by imposing a number of assumptions that we discuss
briefly. An important building-block of the CAPM theory is the so-called perfect
market hypothesis. This is about assuming away any kind of frictions in trading and
holding assets. Under the perfect market hypothesis, unlimited short-sales of risky
assets and risk-free assets are possible.

The second assumption is that all investors choose their portfolios based on mean
(which they like) and variance (which they do not like). This assumption means that
people’s choices are consistent with Von-Neumann- Morgenstern’s axiomatisation.

All investors make the same assessment of the return distribution. This is referred
to as “homogenous expectations”. The implication of this hypothesis is that we can
draw the same minimum-variance frontier for every investor.

Next is the “market equilibrium” hypothesis (i.e., supply of assets equals demand).
The market portfolio is defined as the portfolio of assets that are in positive net supply,
weighted by their market capitalisations. Usually it is assumed that the risk-free
instrument is in zero net supply. On the demand side, the net holdings of all investors
equal aggregate net demand. The last assumption states that all assets are marketable,
i.e., there is a market for each asset.



Empirical likelihood based nonparametric testing for CAPM 105

On the basis of these assumptions we can derive a model that relates the expected
return of a risky asset with the risk-free rate and the return of market portfolio; in
the latter, all assets are held according to their value weights. We will denote R̃ j a
random variable that describes the return of risky asset j . Let R̃ f be the risk-free rate
and R̃M the return on market portfolio. Under the assumptions above and assuming
that the following expectations exist, the theory of CAPM states that there exists the
following relation:

E[R̃ j ] = E[R̃ f ]+ β j

(
E[R̃M ]− E[R̃ f ]

)
. (1)

The term β j in the CAPM equation (1) is the key to the whole model’s implications.
β j represents the risk asset j contributes in the market portfolio, measured relative to
the market portfolio’s variance:

β j = Cov[R̃ j , R̃M ]

Var[R̃M ]
. (2)

β is a measure of systematic risk: since it is correlated with the market portfolio’s
variance and the market portfolio is efficient, an investor cannot possibly diversify
away from it. The theory predicts that each asset’s return depends linearly on its beta.
Notice that the CAPM equation is a one-period model; this means that this equation
should hold period by period. In order to estimate and test the CAPM equation date
by date, we need to make further assumptions in order to estimate the betas first.

2.2 Testing strategy

The beauty of the CAPM theory is that in order to predict assets’ return we only
need information about prices and no further expensive information is needed. The
tests conducted over the last 45 years have brought up different issues and contrasting
views and results. Whereas the first test found no empirical evidence for the theory of
equilibriumasset prices, a very famous test, conducted in 1973 by Fama and MacBeth
(see [7]), provided evidence in favour of the validity of the SLB-CAPM model. How-
ever, later studies (e.g., Fama and French [6]) have challenged the positive and linear
relationship between betas and returns (i.e., CAPM’s theory’s main conclusion) by
introducing other variables which proved to have a much greater explanatory power
but at some costs.

The main contributionof this paper is a nonparametric test about the linear specifi-
cation of the CAPM. Our nonparametric testing approach is based on the comparison
between the predicted returns obtained via the parametric linear model implied by the
CAPM and the returns predicted by a kernel estimator. This testing strategy implies
two steps: the first step (or “parametric step”) is to estimate the predicted returns
based on the CAPM equation; the second step (or nonparametric step) is to predict
the returns on the basis of a kernel regression. We describe the two steps in detail.
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2.3 The parametric step

We complete the first step by using the same methodology developed by Fama and
MacBeth [7]. In order to apply this methodology we need to make some further as-
sumptions. The CAPM is a model of expected returns in a one-period economy. What
we actually observe, though, is a time series of asset prices and other variables from
which we can compute the realised returns over various holding periods. We need
to assume that investors know the return distribution over one particular investment
period. In order to estimate the parameters of that distribution it is convenient to
assume that the latter is stationary. In addition, we assume that returns are drawn
independently over time. Although the last assumption appears to be too strong, sev-
eral empirical studies proved that this cannot seriously affect the first-step estimation
(see [7]). The latter comment applies in particular when short sequences of daily
returns are used to estimate the betas (see below).

What about the “market portfolio”? Can the market portfolio be easily identified?
It is worth remembering that the CAPM covers all marketable assets and it does not
distinguishbetween different types of financial instruments. This is the focus of Roll’s
Critique [14]. As a market proxy we will use the S&P500 index. The CAPM provides
us with no information about the length of the time period over which investors choose
their portfolios. It could be a day, a month, a year or a decade.

Now we describe the Fama-MacBeth estimation methodology. We have a time
series of assets’ prices recorded in some financial market. Let us assume that Rj,t is
the log-return at time t for the asset j , where j = 1, 2, . . . , S and t = 1, 2, . . . , T .
Let RM,t be the market log-return at time t . The relation (1) has to hold at each t for
each asset. We have to estimate the CAPM for each t . To do the latter we need a time
series of βs.

The first stage is to obtain a time series of estimated betas based on a rolling
scheme. For each asset j = 1, 2, . . . , S, and for fixedw and p = 1, 2, . . . , T −w+1,
we take the pairs {R j,t , RM,t }t=p,p+1,...,p+w−1 and we estimate the market equation

R j,t = α j,p + β j,p RM,t + ε j,t , (3)

where {ε j,t }t=p,p+1,...,p+w−1 is an i.i.d. sequence of random variables with zero mean
and finite variance. The (3) is estimated for each j = 1, 2, . . . , S, to obtain β j for
periods p = 1, 2, . . . , T −w+1. The estimated β̂ j,p is the estimate of the systematic
risk of the j th asset in period p. From this first regression we also store the estimated

standard deviation of the error term, say σ̂ j,p =
√

V̂ar(ε̂ j,t). The latter is a measure
of the unsystematic risk connected to the j th asset in period p. The use of σ̂ j,p will
be clear afterwards.

In the second stage for each period p = 1, 2, . . . , T − w + 1 we estimate the
linear model implied by the CAPM applying a cross-section (across j = 1, 2, . . . , S)
linear regression of assets’ returns on their estimated betas. For each period p =
1, 2, . . . , T −w + 1 the second-stage estimation is:

Rj,p+1 = γ A
1 + γ A

2 β̂ j,p + ξ A
j,p+1, (4)
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where {ξ A
j,p} j=1,2,...,S is an i.i.d. sequence of random variables having zero mean

and finite variance. Notice that we regress Rj,p+1 on β̂ j, p; this is because it is
assumed that investors base current investment decisions on the most recent available
β. The Fama-MacBeth testing procedure consisted in testing the linear relation (4) for
each period p. If the linear model (4) holds in period p, that means that the model (1)
statistically holds in period p. For a long time it has been thought that when the CAPM
fails this is due to the fact that unsystematic risk affects returns as well as possible
nonlinearities in betas. Two further second-stage equations have been considered to
check for the aforementioned effects. The first alternative to (4) is:

R j,p+1 = γ B
1 + γ B

2 β̂ j,p + γ B
3 σ̂ j,p + ξ B

j,p+1, (5)

where we add a further regressor which is the unsystematic risk measure. The second
alternative is:

Rj,p+1 = γ C
1 + γ C

2 β̂
2
j,p + γ C

3 σ̂ j,p + ξC
j,p+1, (6)

where the betas enter in the regression squared. In (5) and (6) we assume that the
errors {ξ B

j,p} j=1,2,...,S and {ξC
j,p} j=1,2,...,S are two i.i.d. sequence of random variables

with zero mean and finite variance. As for (4), (5) and (6) are also estimated for each
period p = 1, 2, . . . , T − w + 1. The models A, B and C represented by equations
(4),(5) and (6) are estimated and tested in the famous paper by Fama and MacBeth [7].

3 The nonparametric goodness-of-fit test

In this section we apply the method proposed by Härdle et al. [8] for testing the linear
specification of the CAPM model, that is, models A, B and C defined in the second
stage of the previous step. This goodness-of-fit test is based on the combination of
two nonparametric tools: the Nadaraya-Watson kernel estimator and the Empirical
Likelihood of Owen [13]. Here we briefly describe the testing approach, then, in the
next section, we apply it to the CAMP model estimated on the S&P500 stock market.

Let us consider the following nonparametric model

Rj,p+1 = m
(
X j,p

)+ e j,p+1,
j = 1, 2, . . . , S
p = 1, 2, . . . , T − w + 1

(7)

where Rj,p+1 is the log-return of period p for the asset j , X j,p ∈ Rd is the vector
of d regressors observed in period p for the asset j and e j,p+1 is the error, for which
we assume that E(e j,p+1|X j,p) = 0 for all j . We also assume that the regressors
X j,p and the errors e j,p are independent for different j s, but we allow some condi-
tional heteroscedasticity in the model. The main interest lies in testing the following
hypothesis

H0 : m(x) = mγ (x) = γ T x versus H1 : m(x) �= mγ (x), (8)

where mγ (x) = γ T x is the linear parametric model and γ is the vector of unknown
parameters belonging to a parameter space � ∈ Rd+1. Let us denote with mγ̂ (x) the
estimate of mγ (x) given by a parametric method consistent under H0.
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The Nadaraya-Watson estimator of the regression function m(x) is given by

m̂h(x) =
∑S

j=1 R j,p+1 Kh(x − X j,p)∑S
j=1 Kh(x − X j,p)

, (9)

where Kh(u) = h−d K (h−1u) and K is a d-dimensional product kernel, as defined in
[8]. The parameter h is the bandwidth of the estimator, which regulates the smoothing
of the estimated function with respect to all regressors. We use a common bandwidth
because we assume that all the regressors have been standardised.

When applied to kernel estimators, empirical likelihood can be defined as follows.
For a given x, let p j (x) be nonnegative weights assigned to the pairs (X j,p, Rj,p+1),
for j = 1, . . . , S. The empirical likelihoodfor a smoothed version of mγ̂ (x) is defined
as

L{m̃γ̂ (x)} = max

⎧⎨⎩
S∏

j=1

p j (x)

⎫⎬⎭ , (10)

where the maximisation is subject to the following constraints

S∑
j=1

p j(x) = 1;
S∑

j=1

p j(x)K
(

x− X j,p

h

) [
R j,p+1 − m̃γ̂ (x)

] = 0. (11)

As is clear from equation (11), the comparison is based on a smoothed version of the
estimated parametric function mγ̂ (x) (see [8] for a discussion), given by

m̃γ̂ (x) =
∑S

j=1 mγ̂ (X j,p)Kh(x − X j,p)∑S
j=1 Kh(x − X j,p)

. (12)

By using Lagrange’s method, the empirical log-likelihood ratio is given by

l{m̃ γ̂ (x)} = −2 log[L{m̃γ̂ (x)}SS]. (13)

Note that SS comes from the maximisation in (10), since the maximum is achieved
at p j (x) = S−1.

Theorem 1. Under H0 and the assumptions A.1 in [8], we have

l
{
m̃γ̂ (x)

} d−→ χ2
1 . (14)

Proof (sketch). The proof of the theorem is based on the following asymptotic equiv-
alence (see [4] and [8])

l
{
m̃γ̂ (x)

} ≈ [
(Shd )1/2

{
m̂h (x)− m̃γ (x)

}
V 1/2(x; h)

]2

, (15)

where V (x; h) is the conditional variance of R j,p+1 given X j,p = x. For theorem 3.4
of [2], the quantity in brackets is asymptotically N(0, 1). ��
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As shown in theorem 1, the empirical log-likehood ratio is asymptotically equivalent
to a Studentised L2-distance between m̃γ (x) and m̂h(x), so it may be compared to the
statistic tests used in [9] and [12]. The main attraction of the test procedure described
here is its ability to automatically studentising the statistic, so we do not have to
estimate V (x; h), contrary to what happens with other nonparametric goodness-of-fit
tests. Based on Theorem 1 and on the assumed independence of the regressors, we
use the following goodness-of-fit test statistic

S∗∑
r=1

l
{
m̃γ̂ (xr,p )

}
, (16)

which is built on a set of S∗ < S points xr,p , selected equally spaced in the support of
the regressors. The statistic in (16) is compared with the percentiles of aχ2 distribution
with S∗ degrees of freedom.

4 Empirical results and conclusions

In this section we discuss some results obtained by estimating the models A, B and C
presented in equations (4), (5) and (6) and we apply the nonparametric step to test the
linearity of such models. Note that here we consider specifically the linear functions
under the null, but the hypotheses stated in (8) might refer to other functional forms
for mγ (x).

The market log-return is given by the S&P500 index, while the asset log-returns
are the S = 498 assets included in the S&P stock index. The time series are observed
from the 3rd of January 2000 to the 31st of December 2007, for a total of 1509 time
observations. We consider three different rolling window lengths, that is w = 22,
66 and 264, which correspond roughly to one, three and twelve months of trading.
The total number of periods in the cross-section analysis (second stage of the Fama
and MacBeth method) is 1487 when w = 22, 1443 when w = 66 and 1245 when
w = 264.

For each asset, we estimate the coefficients β̂ j,p , j = 1, . . . , S, p = 1, . . . , T −
w+1 from equation (3). We obtain a matrix of estimated betas, of dimension (1510−
w, 498). For each resulting period we estimate the cross-section models A, B and C
and we apply the nonparametric testing scheme. The assumptions A.1 in [8] are
clearly satisfied for the data at hand. The bandwidth used in the kernel smoothing in
(9), (11) and (12) has been selected automatically for each period p, by considering
optimality criteria based on a generalised cross-validation algorithm. In (16) we have
considered S∗ = 30 equally spaced points. It is well known that kernel estimations
generally suffer from some form of instability in the tails of the estimated function,
due to the local sparseness of the observations. To avoid such problems, we selected
the S∗ points in the internal side of the support of the regressors, ranging on the central
95% of the total observed support.

In Table 1 we summarise the results of the two testing procedures (parametric and
nonparametric) described in previous sections.
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Table 1. Percentage of testing periods for each specified model and window when cases 1–4
occur. Cases 1–4 are as follows. Case 1: the estimated linear coefficients in the parametric
step are jointly equal to zero at level α = 5%, and we do not reject the H0 hypothesis in
the nonparametric stage at the same level; Case 2: the estimated linear coefficients in the
parametric step are jointly equal to zero at level α = 5%, and we reject the H0 hypothesis
in the nonparametric stage at the same level; Case 3: the estimated linear coefficients in the
parametric step are jointly different from zero at level α = 5%, and we do not reject the H0
hypothesis in the nonparametric stage at the same level; Case 4: the estimated linear coefficients
in the parametric step are jointly different from zero at level α = 5%, and we reject the H0
hypothesis in the nonparametric stage at the same level

Window Regressors (model)

β β, σ β2, σ

(Model A) (Model B) (Model C)

Case 1

w = 22 49.42 45.595 57.78
w = 66 43.87 44.144 51.195
w = 264 43.449 43.213 52.099

Case 2

w = 22 31.141 13.114 23.925
w = 66 38.41 16.078 28.373
w = 264 38.41 12.53 28.148

Case 3

w = 22 10.155 26.564 9.695
w = 66 8.238 23.909 10.409
w = 264 9.183 25.141 9.465

Case 4

w = 22 9.284 14.728 8.6
w = 66 9.483 15.87 10.023
w = 264 8.959 19.116 10.288

As Case 1 we label the percentage of testing periods where the estimated linear
coefficients in the parametric step are jointly equal to zero at the testing level α = 5%,
and we do not reject the H0 hypothesis (e.g., the linear relation statistically holds) in
the nonparametric stage at the same level. This case is of particular interest because
the percentage of testing periods when it occurs is not smaller than 43% for all rolling
windows and all sets of regressors. If we combine the results of the two stages (both
the parametric and the nonparametric) this means that in almost half of the testing
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periods we validate the linearity of the regression function, but this is probably a
constant.

As Case 2 we label the percentage of testing periods where the estimated linear
coefficients in the parametric step are jointly equal to zero at level α = 5%, and we
reject the H0 hypothesis in the nonparametric stage at the same level. That is, no
linear relationship can be detected but there is some evidence of nonlinear structures.

As Case 3 we report the percentage of testing periods where the estimated linear
coefficients in the parametric step are jointly different from zero at level α = 5%, and
we do not reject the H0 hypothesis in the nonparametric stage at the same level. The
case is in favour of the CAPM theory because here we are saying that the estimated
linear coefficients in the parametric step are jointly different from zero at level α =
5%, and we do not reject the linearity hypothesis (H0) in the nonparametric stage at
the same level. This means that when this situation occurs we are validating the idea
behind the CAPM, that is: historical information on prices can be useful to explain the
cross-section variations of assets’ returns. For this case the best occurs for model B,
which is the one that uses the pair of regressors (β, σ). The statistical conclusion we
draw from case 3 is that whenw = 22 for 26.6% of the testing periods we validate the
linear relation between assets’ returns, βs and the nonsystematic risk (σ ). Moreover
this result does not depend on the rolling window (even though w = 66 produces
slightly better results).

Finally, as Case 4 we label the percentage of testing periods where the esti-
mated linear coefficients in the parametric step are jointly different from zero at level
α = 5%, and we reject the H0 hypothesis in the nonparametric stage at the same
level. That is, a relationship is present but the nonparametric testing step supports the
evidence for nonlinear effects. It is worthwhile to observe that for all the cases con-
sidered, conclusions do not seem to be related to the particular choice of the rolling
window. They remain basically stable when moving across different choices. Despite
the limitations of the present analysis the open question remains whether the betas
are a determinant of the cross-section variations of assets’ return at all. From this
study we cannot conclude that model B is validated. But certainly, this occurs in
approximately one quarter of the testing periods. This encourages us to investigate
other possibilities that could reveal stronger paths in the data. There are several issues
that would be worth investigating further: dependence structures, group structures in
the risk behaviour of assets, robustness issues and nonparametric specifications of the
first stage.
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Lee-Carter error matrix simulation:
heteroschedasticity impact on actuarial valuations

Valeria D’Amato and Maria Russolillo

Abstract. Recently a number of approaches have been developed for forecasting mortality. In
this paper, we consider the Lee-Carter model and we investigate in particular the hypothesis
about the error structure implicitly assumed in the model specification, i.e., the errors are ho-
moschedastic. The homoschedasticity assumption is quite unrealistic, because of the observed
pattern of the mortality rates showing a different variability at old ages than younger ages.
Therefore, the opportunity to analyse the robustness of estimated parameter is emerging. To
this aim, we proposean experimental strategy in order to assessthe robustness of the Lee-Carter
model by inducing the errors to satisfy the homoschedasticity hypothesis. Moreover, we apply
it to a matrix of Italian mortality rates. Finally, we highlight the results through an application
to a pension annuity portfolio.

Key words: Lee-Carter model, mortality forecasting, SVD

1 Introduction

The background of the research is based on the bilinear mortality forecasting methods.
These methods are taken into account to describe the improvements in the mortality
trend and to project survival tables. We focus on the Lee-Carter (hereinafter LC)
method for modelling and forecasting mortality, described in Section 2. In particular,
we focus on a sensitivity issue of this model and in order to deal with it, in Section 3,
we illustrate the implementation of an experimental strategy to assess the robustness
of the LC model. In Section 4, we run the experiment and apply it to a matrix of Italian
mortality rates. The results are applied to a pension annuity portfolio in Section 5.
Finally, Section 6 concludes.

2 The Lee-Carter model: a sensitivity issue

The LC method is a powerful approach to mortality projections. The traditional LC
model analytical expression [7] is the following:

ln
(
Mx,t

) = αx + βxκt + Ex,t , (1)
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describing the log of a time series of age-specific death rates mx,t as the sum of
an age-specific parameter independent of time αx and a component given by the
product of a time-varying parameter κt , reflecting the general level of mortality and
the parameter βx , representing how rapidly or slowly mortality at each age varies
when the general level of mortality changes. The final term Ex,t is the error term,
assumed to be homoschedastic (with mean 0 and variance σ 2

ε ).
On the basis of equation (1), if M̃x,t is the matrix holding the mean centred

log-mortality rates, the LC model can be expressed as:

M̃x,t = ln
(
Mx,t

)− αx = βxκt + Ex,t . (2)

Following LC [7], the parameters βx and κt can be estimated according to the Sin-
gular Value Decomposition (SVD) with suitable normality constraints. The LC model
incorporates different sources of uncertainty, as discussed in LC [8], Appendix B: un-
certainty in the demographic model and uncertainty in forecasting. The former can
be incorporated by considering errors in fitting the original matrix of mortality rates,
while forecast uncertainty arises from the errors in the forecast of the mortality index.
In our contribution, we deal with the demographic component in order to consider
the sensitivity of the estimated mortality index. In particular, the research consists
in defining an experimental strategy to force the fulfilment of the homoschedasticity
hypothesis and evaluate its impact on the estimated κt .

3 The experiment

The experimental strategy introduced above, with the aim of inducing the errors to
satisfy the homoschedasticity hypothesis, consists in the following phases [11]. The
error term can be expressed as follows:

Êx,t = M̃x,t − β̂x κ̂t , (3)

i.e., as the difference between the matrix M̃x,t , referring to the mean centred log-
mortality rates and the product between βx and κt deriving from the estimation of the
LC model. The successive step consists in exploring the residuals by means of statis-
tical indicators such as: range, interquartile range, mean absolute deviation (MAD) of
a sample of data, standard deviation, box-plot, etc. Afterward, we proceed in finding
those age groups that show higher variability in the errors. Once we have explored
the residuals Êx,t , we may find some non-conforming age groups. We rank them
according to decreasing non-conformity, i.e., from the more widespread to the more
homogeneous one. For each selected age group, it is possible to reduce the variability
by dividing the entire range into several quantiles, leaving aside each time the fixed
α% of the extreme values. We replicate each running under the same conditions a
large number of times (i.e., 1000). For each age group and for each percentile, we
define a new error matrix. The successive runnings give more and more homogeneous
error terms. By way of this experiment, we investigate the residual’s heteroschedas-
ticity deriving from two factors: the age group effect and the number of altered values
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in each age group. In particular, we wish to determine the hypothetical pattern of
κt by increasing the homogeneity in the residuals. Thus, under these assumptions,
we analyse the changes in κt that can be derived from every simulated error matrix.
In particular, at each running we obtain a different error matrix E x,t , which is used
for computing a new data matrix M x, t , from which it is possible to derive the cor-
respondent κt . To clarify the procedure analytically, let us introduce the following
relation: [

M̃x,t − E x,t
] = Mx,t → βxκt , (4)

where Mx,t is a new matrix of data obtained by the difference between M̃x , t (the
matrix holding the raw mean centred log mortality rates) and E x,t (the matrix holding
the mean of altered errors). From Mx,t , if βx is fixed, we obtain the κt as the ordinary
least square (OLS) coefficients of a regression model. We replicate the procedure by
considering further non-homogenous age groups with the result of obtaining at each
step a new κt . We mean to carry on the analysis by running a graphical exploration
of the different κt patterns. Thus, we plot the experimental results so that all the κt ’s
are compared with the ordinary one. Moreover, we compare the slope effect of the
experimental κt through a numerical analysis.

4 Running the experiment

The experiment is applied to a data matrix holding the Italian mean centred log-
mortality rates for the male population from 1950 to 2000 [6]. In particular, the rows
of the matrix represent the 21 age groups [0], [1–4], [5–9], . . ., [95–99] and the
columns refer to the years 1950–2000. Our procedure consists of an analysis of the
residuals’ variability through some dispersion indices which help us to determine the
age groups in which the model hypothesis does not hold (see Table 1).

We can notice that the residuals in the age groups 1–4, 5–9, 15–19 and 25–29
(written in bold character) are far from being homogeneous. Thus the age groups
1–4, 15–19, 5–9, 25–29 will be sequentially, and according to this order, entered in
the experiment. Alongside the dispersion indices, we provide a graphical analysis by
displaying the boxplot for each age group (Fig. 1), where on the x-axis the age groups
are reported and on the y-axis the residuals’ variability. If we look at the age groups
1–4 and 15–19 we can notice that they show the widest spread compared to the others.
In particular, we perceive that for those age groups the range goes from −2 to 2.

For this reason, we explore to what extent the estimated κt are affected by such a
variability. A way of approaching this issue can be found by means of the following
replicating procedure, implemented in a Matlab routine. For each of the four age
groups we substitute the extreme residual values with the following six quantiles:
5%, 10%, 15%, 20%, 25%, 30%. Then we generate 1000 random replications (for
each age group and each interval). From the replicated errors (1000 times × 4 age
groups× 6 percentiles) we compute the estimated κt (6× 4× 1000 times) and then
we work out the 24 averages of the 1000 simulated κt . In Figure 2 we show the 24,000
estimated κt through a Plot-Matrix, representing the successive age groups entered in
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Table 1. Different dispersion indices to analyse the residuals’ variability

Age IQ Range MAD Range STD

0 0.107 0.059 0.300 0.075
1–4 2.046 0.990 4.039 1.139
5–9 1.200 0.565 2.318 0.653
10–14 0.165 0.083 0.377 0.099
15–19 1.913 0.872 3.615 1.007
20–24 0.252 0.131 0.510 0.153
25–29 0.856 0.433 1.587 0.498
30–34 0.536 0.250 1.151 0.299
35–39 0.240 0.186 0.868 0.239
40–44 0.787 0.373 1.522 0.424
45–49 0.254 0.126 0.436 0.145
50–54 0.597 0.311 1.290 0.367
55–59 0.196 0.151 0.652 0.187
60–64 0.247 0.170 0.803 0.212
65–69 0.207 0.119 0.604 0.147
70–74 0.294 0.171 0.739 0.202
75–79 0.230 0.117 0.485 0.133
80–84 0.346 0.187 0.835 0.227
85–89 0.178 0.099 0.482 0.124
90–94 0.307 0.153 0.701 0.186
95–99 0.071 0.042 0.220 0.051

Fig. 1. Box-plot of the residuals’variability for each age group, starting from 0 up to 95–99
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Fig. 2. κt resulting from different experimental conditions: the age group (on the rows) and the
different percentiles (on the columns) effect

the experiment in the four rows and the successive increment in the percentage of outer
values which have been transformed in the 6 columns. We can notice the different κt

behaviour in the four rows as more age groups and percentiles are considered.
For better interpretation of these results, we have plotted a synthetic view of the

resulting average of the 1000 κt under the 24 conditions (see Fig. 3) and compared
them with the series derived by the traditional LC estimation.

Fig. 3. A comparison between the 24 averaged κt (in red) and the original one (in black)
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In Figure 3, where on the x-axis there are the years from 1950 to 2000 and on the
y-axis there are the κt values, we represent the 24,000 κt grouped according to the
24 different experimental conditions. We can observe the impact on the κt series of
the age groups change and of the increase of percentage of random values considered
in the selected age groups. We can notice that the κt derived by the experiment (in
red) tends to be flatter than the original one (drawn in black), i.e., there are changes
in homogeneity on the κt for each of the four age groups. By comparing the ordinary
κt to the simulated ones, we obtain information about the effect of the lack of ho-
moschedasticity on the LC estimates. To what extent does it influence the sensitivity
of the results? We note that the more homogenous the residuals are, the flatter the κt

is. From an actuarial point of view, the κt series reveals an important result: when we
use the new κt series to generate life tables, we find survival probabilities lower than
the original ones. The effect of that on a pension annuity portfolio will be illustrated
in the following application.

5 Numerical illustrations

In this section, we provide an application of the previous procedure for generating
survival probabilities by applying them to a pension annuity portfolio in which bene-
ficiaries enter the retirement state at the same time. In particular, having assessed the
breaking of the homoschedasticity hypothesis in the Lee-Carter model, we intend to
quantify its impact on given quantities of interest of the portfolio under consideration.
The analysis concerns the dynamic behaviour of the financial fund checked year by
year arising from the two flows in and out of the portfolio, the first consisting in the
increasing effect due to the interest maturing on the accumulated fund and the second
in the outflow represented by the benefit payments due in case the pensioners are still
alive. Let us fix one of the future valuation dates, say corresponding to time κ, and
consider what the portfolio fund is at this valuation date. As concerns the portfolio
fund consistency at time κ, we can write [2]:

Zκ = Zκ−1
(
1+ i∗κ

)+ Nκ P with κ = 1, 2, · · · , n − 1, (5)

Zκ = Zκ−1
(
1+ i∗κ

)− Nκ R with κ = n, n + 1, · · · , � − x, (6)

where N0 represents the number of persons of the same age x at contract issue t = 0
reaching the retirement state at the same time n, that is at the age x + n, and i∗κ is a
random financial interest rate in the time period (k − 1, k). The formulas respectively
refer to the accumulation phase and the annuitisation phase.

5.1 Financial hypotheses

Referring to the financial scenario, we refer to the interest rate as the rate of return
on investments linked to the assets in which insurer invests. In order to compare, we
consider both a deterministic interest rate and a stochastic interest rate framework.
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As regards the former, we assume that the deposited portfolio funds earn at the finan-
cial interest rate fixed at a level of 3%. As regards the latter, we adopt the Vasicek
model [12]. This stochastic interest rate environment seems to be particularly suit-
able for describing the instantaneous global rate of return on the assets linked to the
portfolio under consideration, because of potential negative values. As is well known,
this circumstance is not in contrast with the idea of taking into account a short rate
reflecting the global investment strategy related to the portfolio [9].

5.2 Mortality hypotheses

As concerns the mortality model, we consider the survival probabilities generated
by the above-described simulation procedure (hereinafter simulation method) and by
the classical estimation of the Lee-Carter model (traditional method). In the former
methodology we consider the κt series arising from the experiment. Following the
Box-Jenkins procedure, we find that an ARIMA (0,1,0) model is more feasible for
our time series. After obtaining the κt projected series, we construct the projected life
table and then we extrapolate the probabilities referred to insured aged x = 45. In
Figure 4 we report the survival probability distribution as a function of different LC
estimation methods: the traditional and the simulation methods. We can notice that
the pattern of simulated probabilities lies under the traditional probabilities.Moreover
this difference increases as the projection time increases.

Thus, referring to the financial and the demographic stochastic environments
described above, we evaluate the periodic portfolio funds. As regards the premium
calculation hypotheses, we use two different assumptions (simulated LC, classical
LC) and the fixed interest rate at 4%. We use the same mortality assumptions made in
the premium calculation even for the portfolio fund dynamics from the retirement age
on, i.e., which means to resort to a sort of homogeneity quality in the demographic

Fig. 4. Comparison between the two different methods for generating survival probabilities on
the basis of the Lee-Carter model: traditional and simulation method



120 V. D’Amato and M. Russolillo

Fig. 5. Portfolio of 1000 pension annuities, x = 45, t = 20, r = 100. Fixed rate at 3%

description, in the light of the main results of [2]. In the following graphs (see Figs. 5
and 6) we represent the portfolio funds along with the potential whole contract life, i.e.,
both into the accumulation phase and into the annuitisation phase. The portfolio funds
trend is calculated on a pension annuity portfolio referred to a cohort of c = 1000
beneficiaries aged x = 45 at time t = 0 and entering in the retirement state 20 years
later, that is at age 65. The cash flows are represented by the constant premiums P,
payable at the beginning of each year up to t = 20 in case the beneficiary is still alive
at that moment (accumulation phase) and by the constant benefits R = 100 payable at
the beginning of each year after t = 20 (annuitisation phase) in case the beneficiary
is still alive at that moment. Figure 5 shows how the portfolio funds increase with

Fig. 6. Portfolio of 1000 pension annuities, x = 45, t = 20, r = 100. Stochastic rate of return
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better survival probabilities. In particular, in this figure is represented the portfolio
funds earning interest, term by term, at the fixed rate of return of 3%, from the time
issue on. As a first result we find out that the portfolio fund amount is overestimated
when the survival probabilities are calculated on the basis of the projection of the
traditional LC estimation. On the basis of the results reported above, we can notice
how the lack of homoschedasticity affects the portfolio risk assessment.

Finally, we evaluate the portfolio fund consistency from the contract issue on,
adopting the Vasicek model for describing the instantaneous global rate of return
on the assets linked to the portfolio under consideration. As in the previous case,
Figure 6 shows that the traditional forecasting method blows up the portfolio funds
amount both into the accumulation and into the annuitisation phases. Our findings are
confirmed also in the case of the stochastic rate of return. For this reason, we provide
evidence that the lack of homoschedasticity has a strong effect on the actuarial results.

6 Conclusions

The simulation procedure proposed in this paper is characterised by an experimental
strategy to stress the fulfilment of the homoschedasticity hypothesis of the LC model.
In particular, we simulate different experimental conditions to force the errors to
satisfy the model hypothesis in a fitting manner. Besides, we develop the κt series for
generating more realistic survival probabilities. Finally we measure the impact of the
two different procedures for generating survival probabilities, using the traditional
and simulation methods, on a portfolio of pension annuity. The applications, referred
to the male population, show that the probabilities generated on the basis of the
simulation procedure are lower than the probabilities obtained through the traditional
methodology by the LC model. In particular, if we apply the simulated projections
to a financial valuation of periodic portfolio funds of pension annuity portfolio, we
can observe lower corresponding values than the traditional one, in both the so-
called accumulation and annuitisationphases. Especially, we can notice more sizeable
portfolio funds in the event of traditional methodology. In other words, the insurer’s
financial position would be overestimated by means of the traditional method in
comparison with the simulation method. The results of the appraisal arise from the
different behaviours of the residuals. In fact, in the traditional methodology, we get
heteroschedasticity in the residuals for some age groups which can lead to more
optimistic survival projections. On the other hand, on the basis of the simulation
procedure, the final result shows how a more regular residual matrix leads to a flatter
κt series according to the LC model hypothesis. This circumstance determines more
pessimistic survival projections.

Acknowledgement. This paper is partially supported by MIUR grant “Problemi di proiezione
del fenomeno sopravvivenza”(responsible: M. Russolillo).
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Estimating the volatility term structure

Antonio Dı́az, Francisco Jareño, and Eliseo Navarro

Abstract. In this paper, we proceed to estimate term structure of interest rate volatilities,
finding that these estimates depend significantly on the model used to estimate the term structure
(Nelson and Siegel or Vasicek and Fong) and the heteroscedasticity structure of errors (OLS
or GLS weighted by duration). We conclude in our empirical analysis that there are significant
differences between these volatilities in the short (less than one year) and long term (more than
ten years). Finally, we can detect that three principal components explain 90% of the changes
in volatility term structure. These components are related to level, slope and curvature.

Key words: volatility term structure (VTS), term structure of interest rates (TSIR), GARCH,
principal components (PCs)

1 Introduction

We define the term structure of volatilities as the relationship between the volatil-
ity of interest rates and their maturities. The importance of this concept has been
growing over recent decades, particularly as interest rate derivatives have developed
and interest rate volatility has become the key factor for the valuation of assets such
as caplets, caps, floors, swaptions, etc. Moreover, interest rate volatility is one of
the inputs needed to implement some term structure models such as those of Black,
Derman and Toy [4] or Hull and White [12], which are particularly popular among
practitioners.

However, one of the main problems concerning the estimation of the volatility
term structure (VTS) arises from the fact that zero coupon rates are unobservable.
So they must be previously estimated and this requires the adoption of a particular
methodology. The problem of the term structure estimation is an old question widely
analysed in the literature and several procedures have been suggested over the last
thirty years.

Among the most popular methods are those developed by Nelson and Siegel [14]
and Vasicek and Fong [17]. In Spain, these methods have been applied in Núñez [15]
and Contreras et al. [7] respectively.

A large body of literature focuses on the bond valuation ability of these alternative
models without analysing the impact of the term structure estimation method on

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
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second or higher moments of the zero coupon rates. Nevertheless, in this paper we
focus on the second moment of interest rates derived from alternative term structure
methods. So, the aim of this paper is to analyse if there are significant differences
between the estimates of the VTS depending on the model used for estimating the
term structure of interest rates (TSIR).

In this study we compare Nelson and Siegel [14], N SO , Vasicek and Fong [17],
V F O , and both models using two alternative hypotheses about the error variance. First
we assume homoscedasticity in the bond price errors and so does the term structure
as estimated by OLS. Alternatively, a heteroscedastic error structure is employed
estimating by GLS weighting pricing errors by the inverse of its duration, N SG and
V F G .

In the literature, to minimise errors in prices is usual in order to optimise any
model for estimating the TSIR. Nevertheless, this procedure tends to misestimate
short-term interest rates. This is because an error in short-term bond prices induces
an error in the estimation of short-term interest rates greater than the error in long-term
interest rates produced by the same error in long-term bond prices. In order to solve
this problem, it is usual to weight pricing errors by the reciprocal of bond Macaulay’s
duration.1

Once estimates of TSIR are obtained, we proceed to estimate interest rate volatil-
ities using conditional volatility models (GARCH models).

In addition, we try to identify the three main components in the representation of
the VTS for each model. Some researchers have studied this subject, finding that a
small number of factors are able to represent the behaviour of the TSIR [3, 13, 15].
Nevertheless, this analysis has not been applied, to a large extent, to the VTS (except,
e.g., [1]).

We apply our methodology to the VTS from estimates of the Spanish TSIR. The
data used in this empirical analysis are the Spanish Treasury bill and bond prices of
actual transactions from January 1994 to December 2006.

We show statistically significant differences between estimates of the term struc-
ture of interest rate volatilities depending on the model used to estimate the term
structure and the heteroscedasticity structure of errors (N SO , N SG , V F O and V FG),
mainly in the short-term (less than one year) and in the long-term (more than ten years)
volatility. This inspection could have significant consequences for a lot of issues re-
lated to risk management in fixed income markets. On the other hand, we find three
principal components (PCs) that can be interpreted as level, slope and curvature and
they are not significantly different among our eight proposed models.

The rest of our paper is organised as follows. The next section describes the
data used in this paper and the methodologies employed to estimate the TSIR: the
Nelson and Siegel [14], NS, and Vasicek and Fong [17], VF, models. The third section
describes the model used to estimate the term structure of volatilities. The fourth
section analyses the differences in the VTS from our eight different models. Finally,
the last two sections include a principal component analysis of VTS and, finally,
summary and conclusions.

1 This correction is usual in official estimations of the central banks [2].
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2 Data

The database we use in this research contains daily volume-weighted averages of all
the spot transaction prices and yields of all Spanish Treasury bills and bonds traded
and registered in the dealer market or Bank of Spain’s book entry system. They are
obtained from annual files available at the “Banco de España” website.2 We focus on
27 different maturities between 1 day and 15 years. Our sample runs from January
1994 to December 2006.

First of all, in order to refine our data, we have eliminated from the sample those
assets with a trading volume less than 3 million euros (500 million pesetas) in a single
day and bonds with term to maturity less than 15 days or larger than 15 years. Besides,
in order to obtain a good adjustment in the short end of the yield curve, we always
include in the sample the one-week interest rate from the repo market.

From the price (which must coincide with the quotient between effective volume
and nominal volume of the transaction) provided by market, we obtain the yield to
maturity on the settlement day. Sometimes this yield diverges from the yield reported
by the market. Controlling for these conventions, we recalculate the yield using com-
pound interest and the year basis ACT/ACT for both markets.3

We estimate the zero coupon bond yield curve using two alternative methods. The
first one we use fits Nelson and Siegel’s [14] exponential model for the estimation
of the yield curve.4 The second methodology is developed in Contreras et al. [7]
where the Vasicek and Fong [17] term structure estimation method (V F O ) is adapted
to the Spanish Treasury market. V F O uses a non-parametric methodology based on
exponential splines to estimate the discount function. A unique variable knot, which is
located to minimise the sum of squared residuals, is used to adjust exponential splines.

With respect to the estimation methodology we apply both OLS and GLS. In the
second case we adjust the bond price errors by the inverse of the bond Macaulay
duration in order to avoid penalisation of more interest rate errors in the short end of
the term structure.

In Figure 1 we illustrate the resulting estimations of the term structure in a single
day depending on the weighting scheme applied to the error terms. It can be seen how
assuming OLS or GLS affects mainly the estimates in the short and long ends of the
TSIR even though in both cases we use the Nelson and Siegel model.5

2 http://www.bde.es/banota/series.htm. Information reported is only about traded issues. It
contains the following daily information for each reference: number of transactions, settle-
ment day, nominal and effective trading volumes, maximum, minimum and average prices
and yields.

3 These divergences are due to simple or compound interest and a 360-day or 365-day year
basis depending on the security term to maturity. http://www.bde.es/banota/actuesp.pdf

4 See, for example, Dı́az and Skinner [10], Dı́az et al. [8] and Dı́az and Navarro [9] for a more
detailed explanation. Also, a number of authors have proposed extensions to the NS model
that enhance flexibility [16].

5 When using the Vasicek and Fong model, these differences are mainly shown in the short
term. We observe differences depending on the model employed (VF or NS) even when the
same error weighting scheme is used.
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Fig. 1. TSIR estimated by N S O and N SG (01.07.1994)

In summary, we use four different estimation models: Nelson and Siegel [14],
N SG , and Vasicek and Fong [17], V FG , which take into account residuals weighted
by the reciprocal of maturity, and N SO and V F O , that is, with non-weighted residuals.
These alternative estimation procedures provide the input of the subsequent functional
principal component analysis.

3 GARCH models

VTS is an essential issue in finance, so it is important to have good volatilityforecasts,
which are based on the fact that volatility is time-varying in high-frequency data. In
general, we can assume that there are several reasons to model and forecast volatility.
First of all, it is necessary to analyse the risk of holding an asset6 and the value of
an option which depends crucially of the volatility of the underlying asset. Finally,
more efficient estimators can be obtained if heteroscedasticity in the errors is handled
properly.

In order to achieve these forecasts, extensive previous literature has used autore-
gressive conditional heteroscedasticity (ARCH) models, as introduced by Engle [11]
and extended to generalized ARCH (GARCH) in Bollerslev [5]. These models nor-
mally improve the volatility estimates, to a large extent, compared with a constant
variance model and they provide good volatility forecasts, so they are widely used
in various branches of econometrics, especially in financial time series analysis. In
fact, it is usually assumed that interest rate volatility can be accurately described by
GARCH models.

6 In fact, VaR estimates need as the main input the volatility of portfolio returns.
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Taking into account a great variety of models (GARCH, ARCH-M, TGARCH,
EGARCH ...), we identify the best one for each estimate of the TSIR: Nelson and
Siegel (N SO ), Vasicek and Fong (V F O ) and both models weighted by duration (N SG

and V F G ), using Akaike Information Criterion (AIC). We select the ML aproach for
estimating the GARCH parameters.7 In particular, GARCH models fit very well when
we use N SO and V F G . Nevertheless, T-GARCH and E-GARCH seem to be the best
models for V F O and N SG estimations, respectively.

4 Differences in the volatility from different models

In this section we study the differences between the volatility term structure from dif-
ferent estimation models of the TSIR (N SO , V F O , N SG and V F G) and conditional
volatility models (GARCH models in each previous case). In the first type of model,
we obtain the historical volatility using 30-, 60- and 90-day moving windows and the
standard deviation measure. We show the results with a 30-day moving window.

As a whole we can see a repeating pattern in the shape of the VTS: initially
decreasing, then increasing until one to two years term and finally we can observe a
constant or slightly decreasing interest rate volatility as we approach the long term
of the curve. This is consistent with Campbell et al. [6], who argue that the hump of
the VTS in the middle run can be explained by reduced forecast ability of interest
rate movements at horizons around one year. They argue that there is some short-
run forecastability arising from Federal Reserve operating procedures, and also some
long-run forecastability from business-cycle effects on interest rates.

At first glance, volatility estimates for the different models used to estimate the
interest rate term structure reveal how the methodology employed to estimate zero
coupon bonds may have an important impact, both in level and shape, on the subse-
quent estimate of the VTS. This can be more clearly seen in Figure 2, where we show
the VTS for our 8 cases on some particular days:

Historical Volatility (03.01.94)  Historical Volatility (29.12.2006) 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4 6 8 10 12 14 16

NS(O) NS(G) VF(O) VF(G)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 2 4 6 8 10 12 14 16

NS(O) NS(G) VF(O) VF(G)

more differences in the 
short-term 

more differences in 
the long-term 

Fig. 2. Volatility Term Structure (VTS) among different models

7 The selected model for each maturity and estimation model of the TSIR is available, but we
do not exhibit these results so as to lighten the article.
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In order to improve our analysis, we proceed to measure the average differences
between volatility estimates using two alternative and different methods. We can
detect that these differences seem to be higher in the short term (less than one year)
and in the long term (more than ten years). Finally, we use some statistics to test
whether volatility series have the same mean, median and variance (Table 1). In order
to perform this analysis, we obtain an Anova-F test for the mean analysis, Kruskal-
Wallis and van der Waerden test for the median analysis and, finally, a Levene and
Brown-Forsythe test for analysing the significance of the VTS variance.

Table 1. Tests of equality of means, medians and variances among different models for each
maturity

Maturity (years) 
Test 0.25 0.5 0.75 1 3 5 10 12 15 

F 477.8088 c 254.7131 c 97.67177 c 27.64625 c 0.653847 0.305357 2.175614 b 5.938809 c 175.7461 c

K-W 4349.893 c 2636.512 c 1151.682 c 433.3387 c 7.505526 3.589879 6.862232 44.18141 c 1141.098 c

vW 4454.727 c 2607.419 c 1100.201 c 379.1995 c 8.914100 4.463184 11.93060 55.15105 c 1170.865 c

L 194.7067 c 80.67102 c 20.38274 c 4.522192 c 0.106095 0.259973 4.682544 c 6.543890 c 165.7889 c

B-F 145.3684 c 58.94565 c 14.20114 c 2.158965 b 0.092483 0.217367 2.481528 b 3.134396 c 91.89411 c

a p < 0.10, b p < 0.05, c p < 0.01 
F: Anova-F Test, K-W: Kruskal-Wallis Test, vW: van der Waerden Test, L: Levene Test, B-F: Brown-Forsythe Test

On the one hand, statistics offer evidence against the null hypothesis of homo-
geneity for the shorter maturities (below to 1 year) and also for the longer maturities
(more than 10 years), in mean and median. On the other hand, statistics to test for
whether the volatility produced by the eight models has the same variance show the
same results as mean and median analysis, that is, we find evidence against the null
hypothesis for the shorter and longer maturities.

To summarise, this analysis shows that volatility estimates using different models
and techniques display statistically significant differences, mainly in the shorter and
longer maturities, as would be expected.

5 A principal component analysis of
volatility term structure (VTS)

In this section, we try to reduce the dimensionality of the vector of 27 time series
of historical/conditional volatilities,8 working out their PCs, because this analysis is
often used to identify the key uncorrelated sources of information.

This technique decomposes the sample covariance matrix or the correlation matrix
computed for the series in the group. The row labelled “eigenvalue” in Table 2 reports
the eigenvalues of the sample second moment matrix in descending order from left to
right. We also show the variance proportion explained by each PC. Finally, we collect
the cumulative sum of the variance proportion from left to right, that is, the variance
proportion explained by PCs up to that order. The first PC is computed as a linear

8 Note that we analyse volatility changes (see, for example, [3]).
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Table 2. Main results of the principal component analysis

NSO NSG VFO VFG GNSO GNSG GVFO GVFG

Historical Volatility Conditional Volatility 
First Principal Component 

Eigenvalue 14.47963 14.42727 12.50790 14.95705 15.11595 14.52248 13.30651 15.23433 
Var. prop. 0.536283 0.534343 0.463255 0.553965 0.559850 0.537870 0.492834 0.564234 

Cum. prop. 0.536283 0.534343 0.463255 0.553965 0.559850 0.537870 0.492834 0.564234
Second Principal Component 

Eigenvalue 8.191949 7.305261 7.484512 6.623200 7.767501 7.520611 7.930251 6.769219 
Var. prop. 0.303406 0.270565 0.277204 0.245304 0.287685 0.278541 0.293713 0.250712 

Cum. prop. 0.839688 0.804909 0.740460 0.799268 0.847535 0.816411 0.786547 0.814946 
Third Principal Component 

Eigenvalue 2.440719 2.549777 2.997161 2.321565 2.149763 2.366136 2.400861 2.120942 
Var. prop. 0.090397 0.094436 0.111006 0.085984 0.079621 0.087635 0.088921 0.078553 

Cum. prop. 0.930085 0.899345 0.851466 0.885252 0.927156 0.904045 0.875467 0.893499 
Fourth Principal Component 

Eigenvalue 1.216678 1.318653 2.161253 1.388741 1.234067 1.270866 1.866241 1.237788 
Var. prop. 0.045062 0.048839 0.080046 0.051435 0.045706 0.047069 0.069120 0.045844 

Cum. prop. 0.975147 0.948184 0.931512 0.936687 0.972862 0.951114 0.944588 0.939343 
Fifth Principal Component 

Eigenvalue 0.500027 0.711464 0.755749 0.812430 0.473576 0.690566 0.677145 0.788932 
Var. prop. 0.018520 0.026351 0.027991 0.030090 0.017540 0.025577 0.025079 0.029220 

Cum. prop. 0.993667 0.974534 0.959503 0.966777 0.990402 0.976691 0.969667 0.968563 
G-before the name of the model indicates that we have used a GARCH model 

combination of the series in the group with weights given by the first eigenvector. The
second PC is the linear combination with weights given by the second eigenvector
and so on.

We can emphasise the best values for the percentage of cumulative explained
variance for each PC: 56% in case of GV FG (first PC), 84% in case of GN S O

(second PC) and 93% (third PC), 97% (fourth PC) and 99% (fifth PC) in case of
N SO . Thus, the first five factors capture, at least, 97% of the variation in the volatility
time series.

In this section, we can assert that the first three PCs are quite similar among dif-
ferent models. Particularly, the first PC keeps quasi constant over the whole volatility
term structure (VTS) and the eight models. So, we can interpret it as the general level
of the volatility (level or trend). With respect to the second PC, it presents coeffi-
cients of opposite sign in the short term and coefficients of the same sign in the long
term, so this component can be interpreted as the difference between the levels of
volatility between the two ends of the VTS (slope or tilt). Finally, the third PC shows
changing signs of the coefficients, so this PC could be interpreted as changes in the
curvature of the VTS (curvature). So, an important insight is that the three factors
may be interpreted in terms of level, slope and curvature.

With regard to the fourth and fifth PC, they present some differences among each
model; nevertheless, these PCs can be related with higher or lower hump of the VTS.

In order to finish this analysis, we want to test whether the first three PCs, which
clearly reflect level, slope and curvature of the VTS, and the last two PCs are different
among our eight models (historical and conditional volatilities).

Considering the results from Table 3, we can assert that statistics related to dif-
ferences in mean evidence homogeneity in mean for our eight models as we cannot
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Table 3. Tests of equality of means, medians and variances among different models

TEST PC1 PC2 PC3 PC4 PC5 
F 0.012749 0.056012 0.020015 0.179951 0.024021 

K-W 1.016249 2.452214 3.810190 11.82140 55.13159 c

vW 0.518985 0.795634 2.032438 8.070648 45.21040 c

L 4.033919 c 23.92485 c 16.57419 c 66.74642 c 67.33491 c

B-F 4.064720 c 23.87826 c 16.51119 c 65.80991 c 67.06584 c

a p < 0.10, b p < 0.05, c p < 0.01 
F: Anova-F Test, K-W: Kruskal-Wallis Test, vW: van der Waerden Test, L: Levene Test,  
B-F: Brown-Forsythe Test

reject the null hypothesis. In case of differences in median, we find evidence against
the null hypothesis of equal medians for the fifth PC. Nevertheless, the other PCs
offer evidence in favour of the null hypothesis.

On the other hand, statistics to test whether the PC variance produced by our eight
models is the same or not also appear in Table 3. For all the PCs, these statistics offer
strong evidence against the null hypothesis.

Summarising, in this section we have concluded that the first three PCs can be
related to level, slope and curvature of the VTS and, besides, these PCs are not
significantly different in mean and median among our eight models. Nevertheless,
PC4 and PC5 are significantly different between our models.

6 Conclusions

This paper aims to provide new insights into the behaviour of the VTS of interest rates
by using historical volatility estimates from four different models of the term structure
of interest rate (TSIR) and applying alternative conditional volatility specifications
(using GARCH models) from 1994 to 2006. We have used the mentioned models,
and we have worked out the volatility time series using 30-, 60- and 90-day moving
windows in order to construct the VTS.

First of all, the results of our analysis show that there are statistically significant
differences between estimates of the term structure of interest rate volatilities de-
pending on the model used to estimate the term structure and the heteroscedasticity
structure of errors (N SO , N SG , V F O and V F G ), mainly in the short term (less than
one year) and in the long term (more than ten years), but these differences do not
depend on procedures to estimate the VTS. Secondly, the previous evidence suggests
that the dynamics of term structures of volatilities can be well described by relatively
few common components. The possible interpretation of these principal components
in terms of level, slope and curvature can describe how the VTS shifts or changes
shape in response to a shock on a PC.

We find that the first three PCs are quite similar among different models and they
can be identified as trend, tilt and curvature. Regarding the fourth and fifth PCs, they
can be related with higher or lower hump of the VTS. Also, the first three PCs are not
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significantly different in mean and median among our eight models. Nevertheless,
PC4 and PC5 are significantly different between our models.
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Exact and approximated option pricing in a stochastic
volatility jump-diffusion model

Fernanda D’Ippoliti, Enrico Moretto, Sara Pasquali, and Barbara Trivellato

Abstract. We propose a stochastic volatility jump-diffusion model for option pricing with
contemporaneous jumps in both spot return and volatility dynamics. The model admits, in the
spirit of Heston, a closed-form solution for European-style options. To evaluate more complex
derivatives for which there is no explicit pricing expression, such as barrier options, a numerical
methodology, based on an “exact algorithm” proposed by Broadie and Kaya, is applied. This
technique is called exact as no discretisation of dynamics is required. We end up testing the
goodness of our methodology using, as real data, prices and implied volatilities from the DJ
Euro Stoxx 50 market and providing some numerical results for barrier options and their Greeks.

Key words: stochastic volatility jump-diffusion models, barrier option pricing, rejection sam-
pling

1 Introduction

In recent years, many authors have tried to overcome the Heston setting [11]. This
is due to the fact that the ability of stochastic volatility models to price short-time
options is limited [1,14]. In [2], the author added (proportional) log-normal jumps to
the dynamics of spot returns in the Heston model (see [10] for log-uniformjumps) and
extended the Fourier inversion option pricing methodology of [11, 15] for European
and American options. This further improvement has not been sufficient to capture
the rapid increase of volatility experienced in financial markets. One documented
example of this feature is given by the market stress of Fall 1987, when the volatility
jumped up from roughly 20% to over 50 %. To fill this gap, the introduction of jumps in
volatilityhas been considered the natural evolution of the existing diffusive stochastic
volatility models with jumps in returns. In [9], the authors recognised that “although
the motivation for jumps in volatility was to improve on the dynamics of volatility, the
results indicate that jumps in volatility also have an important cross-sectional impact
on option prices”.

In this context, we formulate a stochastic volatility jump-diffusion model that, in
the spirit of Heston, admits a closed-form solution for European-style options. The
evolution of the underlying asset is driven by a stochastic differential equation with

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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jumps that contains two diffusion terms: the first has constant volatility,as in the Black
and Scholes (B&S) model [4], while the latter is of the Heston type. The dynamics
of the volatility follow a square-root process with jumps. We suppose that the arrival
times of both jumps are concurrent, hence we will refer to our model as a stochastic
volatility with contemporaneous jumps (SVCJ) model. We claim that two diffusion
terms in the dynamics of spot returns make our model more flexible than the Heston
one.

Valuation of non-European options usually requires numerical techniques; in most
cases some kind of discretisation is necessary so that a pricing bias is present. To avoid
this flaw, we opt for the “exact simulation” approach developed by Broadie and Kaya
(B&K) [5, 6] for stochastic volatility and other affine jump-diffusion models. This
method is based on both a Fourier inversion technique and some conditioning argu-
ments so to simulate the evolution of the value and the variance of an underlying
asset. Unlike B&K’s algorithm, to determine the integral of the variance, we replace
the inverse transform method with a rejection sampling technique. We then compare
the results of the closed-form expression for European-style option prices with their
approximated counterparts using data from the DJ Euro Stoxx 50 derivative market.
Having found that the modified algorithm returns reliable values, we determine prices
and Greeks for barrier options for which no explicit formula exists.

2 Stochastic volatility jump-diffusion model

Let (�,F ,Q) be a complete probability space where Q is a risk-neutral probability
measure and consider t ∈ [0, T ]. We suppose that a bidimensional standard Wiener
process W = (W1,W2) and two compound Poisson processes Z S and Zv are defined.
We assume that W1, W2, Z S and Zv are mutually independent. We suppose that

d S(t) = S(t−)
[
(r − λ jS) dt + σS dW1(t)+ ξ

√
v(t−) dW2(t)+ d Z S(t)

]
, (1)

dv(t) = k∗(θ∗ − v(t−)) dt + σv
√
v(t−) dW2(t)+ d Zv(t), (2)

where S(t) is the underlying asset,
√
v(t) is the volatility process, and parameters

r, σS, ξ, k∗, θ∗ and σv are real constants (r is the riskless rate). The processes Z S(t)
and Zv (t) have the same constant intensity λ > 0 (annual frequency of jumps). The
process Z S(t) has log-normal distributionof jump sizes; if JS is the relative jump size,

then log(1+ JS) is distributed according to theN
(

log(1+ jS)− 1
2 δ

2
S, δ

2
S

)
law, where

jS is the unconditional mean of JS. The process Zv (t) has an exponential distribution
of jump sizes Jv > 0 with mean jv . Note that JS ∈ (−1,+∞) implies that the stock
price remains positive for all t ∈ [0, T ]. The variance v(t) is a mean reverting process
with jumps where k∗, θ∗ and σv are, respectively, the speed of adjustment, the long-
run mean and the variation coefficient. If k∗, θ∗, σv > 0, 2k∗θ∗ ≥ σ2

v , v(0) ≥ 0 and
Jv > 0, then the process v(t) is positive for all t ∈ [0, T ] with probability 1 (see [12]
in the no-jump case) and captures the large positive outliers in volatility documented
in [3]. Jumps in both asset price and variance occur concurrently according to the
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counting process N(t). The instantaneous correlation between S and v , when a jump

does not occur, is ρ(t) = ξ
√
v(t)/

(
σ 2

S + ξ 2v(t)
)
, depends on two parameters and is

stochastic because it contains the level of volatility in t . We claim that this improves the
Heston model in which correlation between the underlying and volatility is constant.
Further, ξ in ρ(t) gauges the B&S constant volatility component

(
σ2

S

)
with the one

driven by v(t) (see [7]). Lastly, the instantaneous variance of returns σ2
S + ξ 2v(t)

is uniformly bounded from below by a positive constant, and this fact proves to be
useful in many control and filtering problems (see [13]).

3 Closed formula for European-style options

By analogy with B&S and Heston formulæ, the price of a call option with strike price
K and maturity T written on the underlying asset S is

C(S, v, t) = S P1(S, v, t)− K e−r(T−t)P2(S, v, t), (3)

where Pj (S, v, t), j = 1, 2, are cumulative distribution functions (cdf). In particular,
P̃j (z) := Pj (ez ), z ∈ R, j = 1, 2, are the conditional probabilities that the call
option expires in-the-money, namely,

P̃j (log S, v, t ; log K ) = Q{log S(T ) ≥ log K | log S(t) = S, v(t) = v}. (4)

Using a Fourier transform method one gets

P̃j (log S, v, t ; log K ) =
1
2
+ 1

π

∫ ∞

0
R

(
e−iu1 log K ϕ j (log S, v, t ; u1, 0)

iu1

)
du1, (5)

whereR(z) denotes the real part of z ∈ C, and ϕ j (log S, v, t ; u1, u2) , j = 1, 2, are
characteristic functions. Following [8] and [11], we guess

ϕ j (Y, v, t ; u1, u2) =
exp

[
C j (τ ; u1, u2)+ J j (τ ; u1, u2)+ D j (τ ; u1, u2)v + iu1Y

]
, (6)

where Y = log S, τ = T−t and j = 1, 2. The explicit expressions of the characteristic
functions are obtained to solutions to partial differential equations (PDEs) (see [7] for
details); densities p̃ j (Y, v, t ; log K ) of the distributionfunctions F̃j (Y, v, t ; log K ) =
1− P̃j (Y, v, t ; log K ) are then

p̃ j (Y, v, t ; log K ) =
− 1

π

∫ ∞

0
R

(
−e−iu1 log Kϕ j (Y, v, t ; u1, 0)

)
du1, j = 1, 2. (7)
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4 Generating sample paths

Following [5,6], we now give a Monte Carlo simulation estimator to compute option
price derivatives without discretising processes S and v . The main idea is that, by
appropriately conditioning on the paths generated by the variance and jump processes,
the evolution of the asset price can be represented as a series of log-normal random
variables. This method is called Exact Simulation Algorithm (ESA) for the SVCJ
Model. In Step 3 of this method, the sampling from a cdf is done through an inverse
transform method. Since the inverse function of the cdf is not available in closed form,
the authors apply a Newton method to obtain a value of the distribution. To avoid the
inversion of the cdf, we use a rejection sampling whose basic idea is to sample from
a known distribution proportional to the real cdf (see [7]). This modification involves
an improvement of efficiency of the algorithm, as the numerical results in Table 2
show.

To price a path-dependent option whose payoff is a function of the asset price
vector (S(t0), . . . , S(tM)) (M = 1 for a path-independent option), let 0 = t0 < t1 <
. . . < tM = T be a partition of the interval [0, T ] into M possibly unequal segments
of length �ti := ti − ti−1, for i = 1, . . . ,M . Now consider two consecutive time
steps ti−1 and ti on the time grid and assume v(ti−1) is known. The algorithm can be
summarised as follows:

Step 1. Generate a Poisson random variable with mean λ�ti and simulate ni , the
number of jumps. Let τi,1 be the time of the first jump after ti−1. Set u := ti−1

and t := τi,1 (u < t ). If t > ti , skip Steps 5. and 6.
Step 2. Generate a sample from the distribution of v(t) given v(u), that is, a non-

central chi-squared distribution.
Step 3. Generate a sample from the distribution of

∫ t
u v(q)dq given v(u) and v(t):

this is done by writing the conditional characteristic function of the integral
and then the density function. We simulate a value of the integral applying
the rejection sampling.

Step 4. Recover
∫ t

u

√
v(q)dW2(q) given v(u), v(t) and

∫ t
u v(q)dq .

Step 5. If t ≤ ti , generate Jv by sampling from an exponential distributionwith mean
jv. Update the variance value by setting ṽ(t) = v(t)+ J (1)v , where J (1)v is the
first jump size of the variance.

Step 6. If t < ti , determine the time of the next jump τi,2 after τi,1. If τi,2 ≤ ti , set
u := τi,1 and t := τi,2. Repeat the iteration Steps 2–5. up to ti . If τi,2 > ti ,
set u := τi,1 and t := ti . Repeat once the iteration Steps 2–4.

Step 7. Define the average variance between ti−1 and ti as

σ 2
i =

niδ
2
S + σ 2

S�ti
�ti

, (8)

and an auxiliary variable

βi = eni log(1+ jS)−λjS�ti− ξ2

2

∫ ti
ti−1

v(q)dq+ξ ∫ ti
ti−1

√
v(q)dW2(q). (9)
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Using (8) and (9), the value S(ti) given S(ti−1) can be written as

S(ti ) = S(ti−1)βi exp

{(
r − σ

2
i

2

)
�ti + σ i

√
�ti R

}
, (10)

where R ∼ N (0, 1), hence S(ti ) is a lognormal random variable.

5 Barrier options and their Greeks

To price barrier options, we choose to apply the conditional Monte Carlo (CMC)
technique, first used in finance in [16]. This method is applicable to path-dependent
derivatives whose prices have a closed-form solution in the B&S setting. It exploits
the following variance-reducing property of conditional expectation: for any random
variables X and Y , var[E[X |Y ]] ≤ var[X ], with strict inequality excepted in trivial
cases.

Now, we illustrate the CMC method for discrete barrier options. Let C(S(0),
K , r, T, σ) denote the B&S price of a European call option with constant volatility
σ , maturity T , strike K , written on an asset with initial price S(0). The discounted
payoff for a discrete knock-out option with barrier H > S(0) is given by

f (X ) = e−rT (S(T )− K )+1{max1≤i≤M S(ti)<H }, (11)

where S(ti ) is the asset price at time ti for a time partition 0 = t0 < t1 < . . . < tM =
T . Using the law of iterated expectations, we obtain the following unconditional price
of the option

E
[
e−rT (S(T )− K )+1{max1≤i≤M S(ti)<H }

]
= E

[
E
[

e−rT (S(T )− K )+ 1{max1≤i≤M S(ti)<H }
∣∣∣ ∫ T

0
v(q)dq,

∫ T

0
v(q)dW2(q), JS

]]
= E

[
C (S(0)βM , K , r, T, σM ) 1{max1≤i≤M S(ti)<H }

]
, (12)

where σM and βM are defined in (8) and (9), respectively.
This approach can also be used to generate an unbiased estimator for delta, gamma

and rho, exploiting the likelihood ratio (LR) method.
Suppose that p ∈ Rn is a vector of parameters with probability density gp(X ),

where X is a random vector that determines the discounted payoff function f (X )
defined in (11). The option price is given by

α(p) = E [ f (X )] , (13)

and we are interested in finding the derivative α′(p). From (13), one gets

α′(p) = d

dp
E [ f (X )] =

∫
Rn

f (x)
d

dp
gp(x)dx = E

[
f (X )

g ′p(x)
gp(x)

]
. (14)
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The expression f (X )
g′p (x)
gp (x)

is an unbiased estimator of α′(p) and the quantity
g′p(x)
gp(x)

is
called score function. Note that this latter does not depend on f (X ) and that the Greek
for each option is computed according to which quantity is considered a parameter
in the expression of g.

Consider a discrete knock-out barrier option whose payoff is given by (11).
From (14), it follows that the LR estimator for the option Greeks are given by the
product of f (X ) and the score function. The score function is determined by using
the key idea of CMC method: by appropriately conditioning on the paths generated
by the variance and jump processes, the evolution of the asset price S is a log-normal
random variable (see (10)), hence its conditional density is

g(x) = 1

xσ i
√
�ti
φ(di (x)), (15)

where σ i is defined in (8), φ(·) is the standard normal density function and

di(x) =
log

(
x

S(ti−1)βi

)
− (r − 1

2σ
2
i )�ti

σ i
√
�ti

. (16)

Now, to find the estimator of delta and gamma, i.e., the first and the second derivative
with respect to the price of the underlying asset, respectively, we let p = S in (14)
and compute the derivative of g in S(0). After some algebra, we have(

∂g(x)

∂S

)
S=S(0)

= di (x)φ(di (x))

x S(0)σ 2
i�ti

. (17)

Dividing this latter by g(x) and evaluating the expression at x = S(t1), we have the
following score function for the LR delta estimator

d1

S(0)σ 1
√
�t1
, (18)

where di is defined in (16), and σ i in (8). The case of the LR gamma estimator is
analogous. The estimator of delta is given by

e−rT (S(T )− K )+1{max1≤i≤M S(ti)<H }
(

d1

S(0)σ 1
√
�t1

)
, (19)

and the estimator of gamma is

e−rT (S(T )− K )+1{max1≤i≤M S(ti)<H }

(
d2

1 − d1σ 1
√
�t1 − 1

S2(0)σ 2
1�t1

)
. (20)

To compute the estimator of rho, it is sufficient to compute the derivative of g with
respect to r,

e−rT (S(T )− K )+1{max1≤i≤M S(ti)<H }

(
−T +

M∑
i=1

di
√
�ti
σ i

)
. (21)
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6 Numerical results

In this section, we apply our model to the DJ Euro Stoxx 50 market (data provided by
Banca IMI, Milan), using the set of parameters reported in Table 1. These parameters
have been chosen in order to test the efficiency of our algorithm and obtain a good
approximation of market volatilities. Model calibration is beyond the scope of this
paper and is left for further research.

Table 1. Values of parameters of the models (1) and (2)

θ∗ k∗ σS σv ξ λ jS δS jv

0.175 0.25 0.08 0.2 −0.4 0.05 0.025 0.02 0.03

The Dow Jones Euro Stoxx 50 (DJ50) ‘blue-chip’ index covers the fifty EuroZone
largest sector leaders whose stocks belong to the Dow Jones Euro Stoxx Index. DJ50’s
option market is very liquid and ranges widely in both maturities (from one month to
ten years) and strike prices (moneyness from 90% up to 115%). It is worth noting that
indexes carry dividends paid by companies so that a dividend yield d has to be properly
considered by subtracting it from the drift term in the dynamics of S. Volatilities in

Table 2 (column 2) represent the term
√
σ 2

S + ξ 2v(0) (the instantaneous variance of
spot return at t = 0, and not simply σS as in the B&S model), where v(0) is the initial
value of the stochastic volatility dynamics. It follows that we can obtain v(0) from
v(0) = (

σ 2
M K T − σ2

S

)
/ξ 2, where σM K T is the market volatility.

Exact versus approximated pricing

We present some numerical comparisons of the ESA described in Section 4 and other
simulation methods. For this purpose, we use European call options on November 23,
2006; relevant data are shown in Table 2. We compare prices derived with different
methods: the closed formula (3) (column 4), the ESA modified with the rejection
sampling (column 5), the ESA proposed in [5, 6] (column 6), and a Monte Carlo
estimator (see (5) in [6]) (column 7). For the ESAs, we simulate 100,000 variance
paths and 1000 price paths conditional on each variance path and jumps. Prices in
column 5 are very similar to those obtained with the closed formula (3) and improve
the approximation obtained using the original ESA. Our results also confirm that ESA
is more efficient than a standard Monte Carlo approach, as stated in [5, 6]. The time
needed to obtain each price with the ESA in column 5 is about 545 seconds with a
FORTRAN code running on an AMD Athlon MP 2800+, 2.25 GHz processor. This
computational time is shorter than that reported in [5,6] for a comparable number of
simulations.

This is an encouraging result for pricing options that do not have closed-form
formulæ such as barrier options and Greeks.
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Table 2. Comparison among prices of European options with spot price S(0) = 4116.40, time
to maturity 1 year, riskless rate r = 3.78% and dividend yield d = 3.37% on November 23,
2006

Moneyness % Strike mkt vol Closed ESA ESA MC
K σM K T formula (3) (rejection) (B&K) price

90.0 3704.76 0.1780 530.43 530.65 531.18 529.42
95.0 3910.58 0.1660 383.14 383.65 383.31 382.38
97.5 4013.49 0.1600 316.19 316.61 316.76 315.50

100.0 4116.40 0.1550 255.95 255.98 256.22 255.29
102.5 4219.31 0.1500 201.77 201.45 201.42 201.07
105.0 4322.22 0.1450 154.22 154.62 153.92 153.43
110.0 4528.04 0.1380 83.71 83.45 83.32 82.60
115.0 4733.86 0.1320 40.13 40.03 38.84 38.59

Valuation of barrier options and Greeks

We provide some numerical results on the valuation of discrete “up-and-out” barrier
call options whose prices are given by (12), with M = 2 monitoring times, and
two different barriers H = {5000; 5500}. To have a sort of benchmark, we use the
same data as the European case. Barrier option prices are computed simulating 1200
volatility paths and 40 price paths conditional on each variance path and jumps.

By comparing the prices of European and barrier options (H = 5000) with the
same moneyness (see Tables 2 and 3), the relative change in price ranges from 24%
(moneyness 90%) to 70% (moneyness 115%). The higher the moneyness, the less
likely the option will expire with a positive payoff, either because the underlying hits
the barrier before the maturity, knocking-down the option, or because the option is,
at expiration, out-of-the-money. This feature is also present when the barrier level
changes, as in Table 3.

Table 3. Prices of barrier options with two different barriers, spot price S(0) = 4116.40, time
to maturity 1 year, riskless rate r = 3.78% and dividend yield d = 3.37% on November 23,
2006

Moneyness % Strike K mkt vol σM K T H = 5000 H = 5500

90.0 3704.76 0.1780 415.0204 519.1443
95.0 3910.58 0.1660 298.2722 374.2468
97.5 4013.49 0.1600 239.5962 308.4141

100.0 4116.40 0.1550 189.5186 249.8215
102.5 4219.31 0.1500 142.6677 196.8798
105.0 4322.22 0.1450 103.9032 149.7763
110.0 4528.04 0.1380 45.5808 79.8648
115.0 4733.86 0.1320 12.1330 35.8308
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Finally, Table 4 reports delta and gamma for European and barrier options for
different strikes. The overall time required to obtain each barrier option price (Table 3)
along with its Greeks (Table 4) is about 1600 seconds.

Table 4. Simulation estimates of Greeks for European and barrier options with the following
option parameters: barrier H = 5000, spot price S(0) = 4116.40, time to maturity T − t = 1
(year), riskless rate r = 3.78% and dividend yield d = 3.37% on November 23, 2006

Moneyness Strike Delta Delta Gamma Gamma
% K (European) (barrier) (European) (barrier)

97.50 4013.49 0.61919 0.263209 0.00054727 0.0006277
100.00 4116.40 0.56006 0.241053 0.00060312 0.0005138
102.50 4219.31 0.49546 0.210052 0.00065031 0.0003766
105.00 4322.22 0.42850 0.182986 0.00068271 0.0002149

7 Conclusions

An alternative stochastic volatility jump-diffusion model for option pricing is pro-
posed. To capture all empirical features of spot returns and volatility, we introduce a
jump component in both dynamics and we suppose that jumps occur concurrently. This
pricing model admits, in the spirit of Heston, a closed-form solution for European-
style options. To evaluate path-dependent options, we propose a modified version of
the numerical algorithm developed in [5, 6] whose major advantage is the lack of
discretisation bias. In particular, we replace the inversion technique proposed by the
authors with a rejection sampling procedure to improve the algorithm efficiency. We
firstly apply our methodology to price options written on the DJ Euro Stoxx 50 index,
and then we compare these prices with values obtained applying the closed-form ex-
pression, the Broadie and Kaya algorithm and a standard Monte Carlo simulation (see
Table 2). The numerical experiments confirm that prices derived with the ESA modi-
fied by the rejection sampling provide the most accurate approximation with respect
to the closed formula values. On the basis of this result, we perform the valuation of
barrier options and Greeks whose values cannot be expressed by explicit expressions.
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Second edition. Ellipse, Édition Marketing, Paris (1997)

13. Mania, M., Tevzadze, R., Toronjadze, T.: Mean-variance hedging under partial informa-
tion. SIAM Journal on Control and Optimization, 47, 2381–2409 (2008)

14. Pan, J.: The jump-risk premia implicit in option: evidence from an integrated zime-series
study. J. Finan. Econ. 63, 3–50 (2002)

15. Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic
approach. Rev. Finan. Stud. 4, 727–752 (1991)

16. Willard, G.A.: Calculating prices and sensitivities for path-dependent derivatives securi-
ties in multifactor models. J. Deriv. 1, 45–61 (1997)



A skewed GARCH-type model for multivariate
financial time series

Cinzia Franceschini and Nicola Loperfido

Abstract. Skewness of a random vector can be evaluated via its third cumulant, i.e., a ma-
trix whose elements are central moments of order three. In the general case, modelling third
cumulants might require a large number of parameters, which can be substantially reduced if
skew-normality of the underlying distribution is assumed. We propose a multivariate GARCH
model with constant conditional correlations and multivariate skew-normal random shocks.
The application deals with multivariate financial time series whose skewness is significantly
negative, according to the sign test for symmetry.

Key words: financial returns, skew-normal distribution, third cumulant

1 Introduction

Observed financial returns are often negatively skewed, i.e., the third central moment
is negative. This empirical finding is discussed in [3]. [7] conjectures that negative
skewness originates from asymmetric behaviour of financial markets with respect
to relevant news. [6] conclude that \Skewness should be taken into account in the
estimation of stock returns".

Skewness of financial returns has been modelled in several ways. [12] reviews
previous literature on this topic. [5] models skewness as a direct consequence of the
feedback effect. [4] generalises the model to the multivariate case.

All the above authors deal with scalar measures of skewness, even when they
model multivariate returns. In this paper, we measure skewness of a random vector
using a matrix containing all its central moments of order three. More precisely, we
measure and model skewness of a random vector using its third cumulant and the
multivariate skew-normal distribution [2], respectively. It is structured as follows.
Sections 2 and 3 recall the definition and some basic properties of the multivariate
third moment and the multivariate skew-normal distribution. Section 4 introduces a
multivariate GARCH-type model with skew-normal errors. Section 5 introduces a
negatively skewed financial dataset. Section 6 applies the sign test for symmetry to
the same dataset. Section 7 contains some concluding remarks.

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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2 Third moment

The third moment of a p-dimensional random vector z is defined as μ3 (z) =
E
(
z ⊗ zT ⊗ zT

)
, where ⊗ denotes the Kronecker (tensor) product and third mo-

ment is finite [9, page 177]. The third central moment is defined in a similar way:
μ3 (z) = μ3 (z − μ), where μ denotes the expectation of z. For a p-dimensional ran-
dom vector the third moment is a p× p2 matrix containing p(p+1)(p+2)/6 possibly
distinct elements. As an example, let z = (Z1, Z2, Z3)

T and μi jk = E
(
Zi Z j Zk

)
,

for i, j, k = 1, . . . , 3. Then the third moment of z is

μ3 (z) =
⎛⎝μ111 μ112 μ113 μ211 μ212 μ213 μ311 μ312 μ313
μ121 μ122 μ123 μ221 μ222 μ223 μ321 μ322 μ323
μ131 μ132 μ133 μ231 μ232 μ233 μ331 μ332 μ333

⎞⎠ .
In particular, if all components of z are standardised, its third moment is scale-free,
exactly like many univariate measures of skewness.

Moments of linear transformations y = Az admit simple representations in terms
of matrix operations. For example, the expectation E(y) = AE(z) is evaluated via
matrix multiplication only. The variance V (y) = AV (z)AT is evaluated using both
the matrix multiplication and transposition. The third moment μ3 (y) is evaluated
using the matrix multiplication, transposition and the tensor product:

Proposition 1. Let z be a p-dimensional random vector with finite third moment
μ3 (z) and let A be a k × p real matrix. Then the third moment of Az is μ3 (Az) =
Aμ3 (z)

(
AT ⊗ AT

)
.

The third central moment of a random variable is zero, when it is finite and the
corresponding distribution is symmetric. There are several definitions of multivariate
symmetry. For example, a random vector z is said to be centrally symmetric at μ if
z−μ andμ−z are identically distributed [15]. The following proposition generalises
this result to the multivariate case.

Proposition 2. If the random vector z is centrally symmetric and the third central
moment is finite, it is a null matrix.

Sometimes it is more convenient to deal with cumulants, rather than with moments.
The following proposition generalises to the multivariate case a well known identity
holding for random variables.

Proposition 3. The third central moment of a random vector equals its third cumulant,
when they both are finite.

The following proposition simplifies the task of finding entries of μ3 (z) correspond-
ing to E

(
Zi Z j Zk

)
.

Proposition 4. Let z = (
Z1, . . . , Z p

)T
be a random vector whose third moment

μ3 (z) is finite. Then μ3 (z) = (M1 , . . . , M p
)
, where Mi = E

(
Zi zzT

)
.
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Hence E
(
Zi Z j Zk

)
is in the ith row and in the j th column of the kth matrix Mk .

There is a simple relation between the third central moment and the first, second and
third moments of a random vector [9, page 187]:

Proposition 5. Let μ = μ1 (z), μ2 (z), μ3 (z) the first, second and third moments
of the random vector z. Then the third central moment of z can be represented by

μ3 (z) − μ2 (z) ⊗ μT − μT ⊗ μ2 (z) − μ
[
μV

2 (z)
]T + 2μ ⊗ μT ⊗ μT , where AV

denotes the vector obtained by stacking the columns of the matrix A on top of each
other.

3 The multivariate skew-normal distribution

We denote by z ∼ S Np (�, α) a multivariate skew-normal random vector [2] with
scale parameter � and shape parameter α. Its probability density function is

f (z;�, α) = 2φp (z; �)�
(
αT z

)
, z, α ∈ R p , � ∈ R p × R p, (1)

where�(·) is the cumulative distribution function of a standard normal variable and
φp (z; �) is the probability density function of a p-dimensional normal distribution
with mean 0p and correlation matrix �. Expectation, variance and third central mo-
ment of z ∼ S Np (�, α) (i.e., its first three cumulants) have a simple analytical form
[1, 8]:

E (z) =
√

2

π
δ, V (z) = �− 2

π
δδT , μ3 (z) =

√
2

π

(
4

π
− 1

)
δ⊗ δT ⊗ δT , (2)

where δ = �α/√1+ αT�α. As a direct consequence, the third cumulant of z ∼
S Np (�, α) needs only p parameters to be identified, and is a matrix with negative
(null) entries if and only if all components of δ are negative (null) too.

The second and third moments of z ∼ S Np (�, α) have a simple analytical form
too:

μ2 (z) = E
(

zzT
)
= �, (3)

μ3 (z) =
√

2

π

[
δT ⊗ �+ δ

(
�V

)T +�⊗ δT − δ⊗δT ⊗ δT
]
. (4)

Expectation of zzT depends on the scale matrix � only, due to the invariance prop-
erty of skew-normal distributions: if z ∼ S Np (�, α) then zzT ∼ W (�, 1), i.e., a
Wishart distribution depending on the matrix � only [11]. As a direct consequence,
the distribution of a function g (·) of z satisfying g (z) = g (−z) does not depend
either on α or on δ.

The probability density function of the ith component zi of z ∼ S Np (�, α) is

f (zi) = 2φ (zi)�

⎛⎝ δi zi√
1− δ2

i

⎞⎠ , (5)
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where δi is the ith component of δ and φ denotes the pdf of a standard normal
distribution. The third moment of the corresponding standardised distribution is

√
2 (4− π)

⎛⎝ δi√
π − 2δ2

i

⎞⎠3

. (6)

Hence positive (negative) values of δi lead to positive (negative) skewness. More-
over, positive values of δi lead to Fi (0) > 1− Fi (0) when x > 0, with Fi denoting
the cdf of zi .

4 A skewed GARCH-type model

In order to describe skewness using a limited number of parameters, we shall introduce
the following model for a p-dimensional vector of financial returns xt :

xt = Dtεt , εt = zt − E (zt) , zt ∼ S Np (�, α) , Dt = diag
(
σ1t , . . . , σpt

)
(7)

σ 2
kt = ω0k +

q∑
i=1

ωik x2
k,t−i +

q+p∑
j=q+1

ω jkσ
2
k,t+q− j , (8)

where ordinary stationarity assumptions hold and {zt} is a sequence of mutually
independent random vectors.

The following proposition gives the analytical moment of the third cumulant
μ3(xt ) of a vector xt belonging to the above stochastic process. In particular it shows
that μ3(xt ) is negative (null) when all the elements in the vector δ are negative (null)
too.

Proposition 6. Let {xt , t ∈ Z } be a stochastic process satisfying (10), (11) and
E
(
σitσ j tσht

)
< +∞ for i, j, h = 1, . . . , p. Then

μ3 (xt ) = μ3 (xt ) =
√

2

π

(
4

π
− 1

)
�μ3 (σt ) (�⊗ �) , (9)

where � = diag
(
δ1, . . . , δp

)
and σt =

(
σ1t , . . . , σpt

)T
.

Proof. We shall write μ3 ( y|w) and μ3 ( y|w) to denote the third moment and the
third cumulant of the random vector y, conditionally on the random vector w. From
the definition of {xt , t ∈ Z } we have the following identities:

μ3 (xt | σt) = μ3 {Dt [zt − E (zt)]| σt } = μ3 (Dt zt | σt) . (10)

Apply now linear properties of the third cumulant:

μ3 (xt |σt ) = Dtμ3 (zt) (Dt ⊗ Dt) . (11)
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By assumption the distribution of zt is multivariate skew-normal:

μ3 (xt | σt) =
√

2

π

(
4

π
− 1

)
Dt

(
δ ⊗ δT ⊗ δT

)
(Dt ⊗ Dt ) . (12)

Consider now the following mixed moments of order three:

E
(

Xit X jt Xkt
∣∣σt

) =√
2

π

(
4

π
− 1

)
(δiσit )

(
δ jσ j t

)
(δkσkt ) i, j, k = 1, . . . , p. (13)

We can use definitions of � and σt to write the above equations in matrix form:

μ3 ( xt | σt ) =
√

2

π

(
4

π
− 1

)
(�σt ) ⊗ (�σt )

T ⊗ (�σt )
T . (14)

Ordinary properties of tensor products imply that

μ3 (xt | σt ) =
√

2

π

(
4

π
− 1

)
�

(
σt ⊗ σ T

t ⊗ σ T
t

)
(�⊗ �) . (15)

By assumption E
(
σitσ j tσht

)
< +∞ for i, j, h = 1, . . . , p, so that we can take

expectations with respect to σt :

μ3 (xt ) =
√

2

π

(
4

π
− 1

)
�E

(
σt ⊗ σ T

t ⊗ σ T
t

)
(� ⊗ �) . (16)

The expectation in the right-hand side of the above equation equals μ3 (σt). Moreover,
since P (σit > 0) = 1, the assumption E

(
σitσ j tσht

)
< +∞ for i, j, h = 1, . . . , p

also implies that E (σit ) < +∞ for i = 1, . . . , p and that the expectation of xt equals
the null vector. As a direct consequence, the third moment equals the third cumulant
of xt and this completes the proof. ��

5 Data analysis

This section deals with daily percent log-returns (i.e., daily log-returns multiplied by
100) corresponding to the indices DAX30 (Germany), IBEX35 (Spain) and S&PMIB
(Italy) from 01/01/2001 to 30/11/2007. The mean vector, the covariance matrix and
the correlation matrix are⎛⎝−0.0064

0.030
0.011

⎞⎠ ,
⎛⎝1.446 1.268 1.559

1.268 1.549 1.531
1.559 1.531 2.399

⎞⎠ and

⎛⎝1.000 0.847 0.837
0.847 1.000 0.794
0.837 0.794 1.000

⎞⎠ , (17)

respectively. Not surprisingly, means are negligible with respect to standard deviations
and variables are positively correlated. Figure 1 shows histograms and scatterplots.
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Fig. 1. Scatterplots and histograms for DAX30, IBEX35 and S&PMIB
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We shall measure skewness using the following indices, defined as:

A1 =
n∑

i=1

(
xi − x

s

)3

, A2 = q1 − 2q2 − q3

q3 − q1
and A3 = 3

s
(x − q2) , (18)

where qi is the ith quartile (i = 1, 2, 3). Their values for the three series are reported
in Table 1.

Table 1. Skewness coefficients

A1 A2 A3

S&PMib −0.227 −1.049 −0.095
Ibex35 −0.046 −1.104 −0.081
Dax30 −0.120 −1.076 −0.089

All indices suggest negative skewness. In order to assess multivariate skewness,
we shall consider the third cumulant and the third moment. The third sample cumulant
is

m3 (X ) = 1

n

n∑
i=1

(xi −m) ⊗ (xi − m)T ⊗ (xi − m)T , (19)

where xi is the transpose of the ith row of the n× p data matrix X and m is the mean
vector. The third sample cumulants of the above data are

−
⎛⎝ 0.394 0.201 0.396 0.201 0.092 0.242 0.396 0.242 0.414

0.201 0.092 0.242 0.092 0.088 0.146 0.242 0.146 0.216
0.396 0.242 0.414 0.242 0.146 0.216 0.414 0.216 0.446

⎞⎠ . (20)

The most interesting feature of the above matrix is the negative sign of all its
elements. The third moment has a similar structure, since all entries but one are
negative:

−
⎛⎝ 0.422 0.173 0.340 0.173 0.025 0.199 0.340 0.199 0.3940

0.173 0.025 0.190 0.025 -0.053 0.035 0.199 0.035 0.109
0.340 0.190 0.390 0.199 0.035 0.109 0.394 0.109 0.365

⎞⎠ . (21)

We found the same pattern in other multivariate financial time series from small
markets.

6 Sign tests for symmetry

This section deals with formal testing procedures for the hypothesis of symmetry.
When testing for symmetry, the default choice for a test statistic is the third stan-
dardised moment, which might be inappropriate for financial data. Their dependence
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structure and their heavy tails make it difficult to understand its sampling properties.
On the contrary, the sign test for symmetry possesses very appealing sampling prop-
erties, when the location parameter is assumed to be known [10, page 247]. When
dealing with financial returns, it is realistic to assumed to be known and equal to zero,
for theoretical as well as for empirical reasons. From the theoretical point of view, it
prevents systematic gains or losses. From the empirical point of view, as can be seen
in (17), means of observed returns are very close to zero. The following paragraphs in
this section state model’s assumptions, describe the sign test for symmetry and apply
it to the data described in the previous section.

We shall assume the following model for a p-dimensional vector of financial
returns xt : xt = Dtεt , E(εt ) = 0, Dt = diag

(
σ1t , . . . , σpt

)
and

σ 2
kt = ω0k +

q∑
i=1

ωik x2
k,t−i +

q+p∑
j=q+1

ω jkσ
2
k,t+q− j , (22)

where ordinary stationarity assumptions hold and {εt} is a sequence of mutually
independent random vectors. We shall test the hypotheses

H i jk
0 : Fi jk (0) = 1− Fi jk (0) versus H i jk

1 : Fi jk (0) < 1− Fi jk (0) (23)

for i, j, k = 1, 2, 3, where Fi jk denotes the cdf of εt ,iεt , jεt ,k . Many hypotheses H i jk
a

for i, j, k = 1, 2, 3 and a = 0, 1 are equivalent to each other and can be expressed in
a simpler way. For example, H i j j

0 and H i j j
1 are equivalent to Fi (0) = 1− Fi (0) and

Fi (0) < 1− Fi (0), respectively, where Fi denotes the cdf of εt ,i . Hence it suffices
to test the following systems of hypotheses

H i
0 : Fi (0) = 1− Fi (0) versus H i

1 : Fi (0) < 1− Fi (0) , i = 1, 2, 3 (24)

and

H 123
0 : F123 (0) = 1− F123 (0) versus H 123

1 : F123 (0) < 1− F123 (0) . (25)

Let x1, x2 and x3 denote the column vector of returns in the German, Spanish and
Italian markets. The sign test rejects the null hypothesis H i jk

0 if the number ni jk of
positive elements in the vector xi ◦ x j◦ xk is larger than an assigned value, where
“◦” denotes the Schur (or Hadamard) product. Equivalently, it rejects H i jk

0 if zi jk =
2
√

n
(

fi jk − 0.5
)

is larger than an assigned value, where fi jk is the relative frequency

of positive elements in xi ◦ x j ◦ xk and n is its length. Under H i jk
0 , ni jk ∼ Bi (n, 0.5)

and zi jk ∼ N (0, 1), asymptotically.
Table 2 reports the relative frequencies of positive components in x1, x2,x3 and

x1 ◦ x2 ◦ x3, together with the corresponding test statistics and p-values.
In all four cases, there is little evidence supporting the null hypothesis of symme-

try against the alternative hypothesis of negative asymmetry. Results are consistent
with the exploratory analysis in the previous section and motivate models describing
multivariate negative skewness.
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Table 2. Tests statistics

Indices Frequency Statistic p-value

Dax30 0.542 3.579 <0.001
Ibex35 0.561 5.180 <0.001
S&PMib 0.543 3.673 <0.001
Product 0.544 3.767 <0.001

7 Conclusions

We considered the third cumulant of multivariate financial returns, motivated it
through a real data example and modeled it through the multivariate skew-normal
distribution. Preliminary studies hint that negative third cumulants might constitute
a stylised fact of multivariate financial returns [13], but more studies are needed to
confirm or disprove this conjecture. By proposition 2, testing for central symmetry
would be a natural way for doing it. [14] gives an excellent overview of the literature
on this topic. Multivariate GARCH-type models with skew-normal errors might be
helpful in keeping under control the number of parameters, but some caution is needed
when using maximum likelihood procedures, since it is well known that sometimes
they lead to frontier estimates.

Acknowledgement. Financially supported by the Ministero dell’Università, dell’Istruzione e
della Ricerca with grant PRIN No. 2006132978.
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Financial time series and neural networks in a
minority game context

Luca Grilli, Massimo Alfonso Russo, and Angelo Sfrecola

Abstract. In this paper we consider financial time series from U.S. Fixed Income Market,
S&P500, DJ Eurostoxx 50, Dow Jones, Mibtel and Nikkei 225. It is well known that financial
time series reveal some anomalies regarding the Efficient Market Hypothesis and some scaling
behaviour, such as fat tails and clustered volatility, is evident. This suggests that financial time
series can be considered as “pseudo”-random.For this kind of time series the prediction power
of neural networks has been shown to be appreciable [10]. At first, we consider the financial
time series from the Minority Game point of view and then we apply a neural network with
learning algorithm in order to analyse its prediction power. We prove that the Fixed Income
Market shows many differences from other markets in terms of predictability as a measure of
market efficiency.

Key words: Minority Game, learning algorithms, neural networks, financial time series, Ef-
ficient Market Hypothesis

1 Minority games and financial markets

At the very beginning of the last century Bachelier [2] introduced the hypothesis
that price fluctuations follow a random walk; this resulted later in the so-called Effi-
cient Market Hypothesis (EMH). In such markets arbitrages are not possible and so
speculation does not produce any gain. Later, empirical studies showed that the im-
plications of EMH are too strong and the data revealed some anomalies. Even though
these anomalies are frequent, economists base the Portfolio Theory on the assumption
that the market is efficient. One of the most important implications of EMH is the
rationality of all agents who are gain maximisers and take decisions considering all
the information available (which have to be obtained easily and immediately) and in
general do not face any transaction costs. Is it realistic? The huge literature on this
subject shows that an answer is not easy but in general some anomalies are present in
the market. One of the main problems is rationality; as a rule, agents make satisfac-
tory choices instead of optimal ones; they are not deductive in making decisions but
inductive in the sense that they learn from experience. As a consequence, rationality
hypothesis is often replaced by the so-called “Bounded Rationality”; see [13] for

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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more details. Empirical studies also show cluster formations and other anomalies in
financial time series [3,9].

In order to model the inductive behaviour of financial agents, one of the most
famous examples is the Minority Game (MG) model. The MG is a simple model of
interacting agents initially derived from Arthur’s famous El Farol’s Bar problem [1]. A
popular bar with a limited seating capacity organises a Jazz-music night on Thursdays
and a fixed number of potential customers (players) has to decide whether to go or
not to go to the bar. If the bar is too crowded (say more than a fixed capacity level)
then no customer will have a good time and so they should prefer to stay at home.
Therefore every week players have to choose one out of two possible actions: to stay
at home or to go to the bar. The players who are in the minority win the game.

Since the introduction of the MG model, there have been, to date, 200 papers on
this subject (there is an overview of literature on MG at the Econophysics website).

The MG problem is very simple, nevertheless it shows fascinating properties and
several applications. The underlying idea is competition for limited resources and
it can be applied to different fields such as stock markets (see [5–7] for a complete
list of references). In particular the MG can be used to model a very simple market
system where many heterogeneous agents interact through a price system they all
contribute to determine. In this market each trader has to take a binary decision every
time (say buy/sell) and the profit is made only by the players in the minority group.
For instance, if the price increases it means that the minority of traders are selling and
they get profit from it. This is a simple market where there is a fixed number of players
and only one asset; they have to take a binary decision (buy/sell) in each time step
t . When all players have announced their strategies the prices are made according to
the basic rule that if the minority decides to sell, then the price grows (the sellers get
profit); if the minority decide to buy, then price falls (the buyers get profit).

In this model cooperation is not allowed; players cannot communicate and so they
all get information from the global minority. In order to make decisions, players use
the global history of the past minorities or, in most cases, a limited number of past
minorities that can be considered the time window used by the player. In our case
the global history is given by the time series of price fluctuations. Let us consider
the set of players i = {1, . . . , N} where N ∈ N (odd and fixed). Indicate with t the
time step when each player makes a decision. In the market there is one asset and the
possible decision in each time step is buy or sell; as a consequence the player i at
time t chooses σ t

i ∈ {+1,−1} (buy/sell).
In each time step t , let pt be the price of the asset at time t ; the minority (the

winning strategy) is determined by

St = −sign log

(
pt

pt−1

)
.

Consequently, the time series of price fluctuations is replaced by a time series
consisting of two possible values: +1 and −1 (the minority decisions).

In [4] it is shown that often similar results can be obtained by replacing the real
history with an artificial one.
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The main point is that we suppose that players make their decisions according to
a learning rule, as a consequence they follow an inductive behaviour and this affects
the time series of the minority decisions that is not simply a random sequence of
−1 and +1. If this is the case the time series can be defined “pseudo-random” as a
consequence of the periodicity derived from the generating rule. This periodicity is not
due to the presence of a “trend” which is buried under noise but it is a consequence of
the inductive behaviour of players and this is the reason why classical techniques such
as simple autocorrelation analysis do not give us information, by definition, on the
learning procedure. On the contrary, the neural network with an appropriate learning
algorithm can capture such “regularities” very well and consequently can predict the
time series as shown in [10]. The main result presented in [10] is that a neural network
with an appropriate learning algorithm can predict “pseudo-random” time series very
well whatever the learning algorithm. On the other hand the neural network is not
able to predict a randomly generated time series. As a consequence, if we apply a
similar analysis to financial time series in the MG context presented before, we can
test for EMH since bad results in terms of prediction power of the neural network can
suggest that EMH is fulfilled and time series are randomly generated. If this is not the
case and the prediction power is remarkable then the time series is “pseudo-random”
as a consequence of inductive behaviour of the players. The neural network approach
also reveals the time window of past decisions that players are considering in order
to make their choice. As we will see, it is dependent on the market we consider.

2 Neural network and financial time series

The main issue of this paper is to determine the predictability of financial time se-
ries taking into account the imperfection of the market as a consequence of agents’
behaviour. In [10] it is shown that, when players make their decisions according to
some learning rule, then the time series of the minority decisions is not simply a
random sequence of −1 and +1. The time series generated with learning algorithms
can be defined as “pseudo-random” time series. The reason is that, by construction, it
presents a sort of periodicity derived from the generating algorithm. This periodicity
is not evident directly from the time series but a neural network with an appropriate
learning algorithm can capture such “regularities” and consequently can predict the
time series. The authors show that, for three artificial sequences of minority deci-
sions generated according to different algorithms, the prediction power of the neural
network is very high.

In this paper we suppose that each player, in order to make her decision, is provided
with a neural network. We consider time series from U.S. Fixed Income Market,
S&P500, DJ Eurostoxx 50, Dow Jones, Mibtel and Nikkei 225 (all the time series
from Jan 2003 to Jan 2008, daily prices, data from the Italian Stock Exchange).

Following the motivations presented in [10], in this paper we consider a neural
network that uses the Hebbian Learning algorithm to update the vector of weights.
The neural network is able to adjust its parameters, at each round of the game, and
so the perceptron is trying to learn the minority decisions. If S indicates the minority
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decision and superscript + indicates the updated value of a parameter, the vector of
minority decision x whose component xt ∈ {+1,−1} is the entry of the time series
at instant t . Let us suppose that each player is provided with such a neural network
and makes her decision according to the following rules:

σi = sign(x · ωi )

ω+i = ωi − η

M
x sign

⎛⎝ N∑
j=1

sign(x · ω j )

⎞⎠ = ωi + η

M
x S,

where ω is a M-dimensional weight vector from which decisions are made. So each
player uses an M-bit window of the past minority decisions as an input in order to
adjust the weights and try to capture the “regularities” in the time series. As we can
see later, the choice of M is often crucial in order to determine the best prediction
power. It is possible to compute the number of predictions as a function of M in
order to obtain the value of M for which it is maximum. In this case the parameter
M indicates how many past price fluctuations are considered by the agent in order to
make a decision. The parameter η is the learning rate.

In [10] it is shown that it is crucial to select the window of past entries to consider
as an input for current decision correctly, that is the choice of parameter M . The
authors show that the number of corrected predictions is maximum if the neural
network uses the same M as the sequence generator. This suggests that, if an M value
exists for which the neural network predictions are maximum then it is possible to
infer that the sequence of minority decisions is generated by a learning algorithm
with exactly the same value M . If we apply the same arguments to financial markets
time series, the presence of a value M for which the number of corrected predictions
is maximum indicates that the time series is generated by a learning algorithm with
that parameter M , that is the length of the time window used by the investor, and this
is key information derived exclusively with this approach.

Moreover, to determine this value we analyse the number of predictions of the
neural network as a function of M . Figures 1, 2, 4, 5, 6 and 7 show the results of these
simulations. The result is different according to the market considered; in particular
the case of U.S. Treasury Bond seems to be the most interesting. In this market the
maximum is reached for M = 32, that is the dimension of the temporal window of
the past minority decisions to consider as an input of the neural network. The case of
S&P500, DJ Eurostoxx 50, Dow Jones, Mibtel and Nikkei 225 is completely different;
the maximum value for M is, in general, very low (M = 3 − 5). This can suggest
that in these markets investors look at the very recent past to make decisions and do
not consider what has happened in the remote past. On the other hand, Fixed Income
Market presents a different situation and it seems to be the most predictable since the
number of predicted entries is the highest one (about 60% of corrected predictions).
This can be explained according to some features that make this market different since
it must followcommon laws dictated by macroeconomic variables. As a consequence,
the data present a strong positive correlation between bonds [9]. Another reason is that
usually only large investors (like insurance companies or mutual funds) are interested
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Fig. 1. Number of corrected predictions as a function of M in the case of U.S. Treasury Bond.
The maximum is reached for M = 32
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Fig.2.Numberofcorrected predictions as a function of M in the case ofS&P500. The maximum
is reached for M = 3
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in long-term bonds, so the expectations about the market evolution are so similar that
the behaviour of long-term bond prices does not reflect any difference in the perceived
value of such assets [3].

The analysis shows that the number of corrected predictions is dependent on the
parameter M; it is not the same for the parameter η since the number of corrected
predictions remains quite constant (we report it in Fig. 3).

The neural network approach has shown the presence of a value M for which the
prediction power is maximum and this is a signal in the direction that the time series
is “pseudo-random” and agents use M as the time window. This can be interpreted
in terms of lack of EMH, but this is only partially true since the neural network
cannot predict in a significant way (in terms of number of corrected predictions)
the financial time series considered and this can indicate that these time series are
randomly generated and so these markets are efficient. This result is not surprising
since all the markets considered in this paper present a huge number of transactions
and huge volumes, and information provided to agents is immediately and easily
available. The neural network can predict, for these time series, slightly more than
50%, which is the expected value of corrected predictions in cases where choices are
randomly made, which is a signal in the direction that these markets fulfil the EMH
and results in other directions can be considered “anomalies”. A comparative analysis
reveals that the Fixed Income Markets seems to the least efficient since the number
of predictions is maximal.

3 Conclusions

In [10] the authors show that in an MG framework, a neural network that use a Hebbian
algorithm can predict almost every minority decision in the case in which the sequence
of minority decisions follows a “pseudo”-random distribution. The neural network
can capture the “periodicity” of the time series and then predict it. On the other hand
they show that the prediction power is not so good when the time series is randomly
generated. In this paper we consider financial time series from U.S. Fixed Income
Market, S&P500, DJ Eurostoxx 50, Dow Jones, Mibtel and Nikkei 225. If agents
make satisfactory choices instead of optimal ones, they are inductive in the sense that
they learn from experience and MG is a very good model for inductive behaviour of
financial agents. If financial time series are generated by some learning procedure,
then we can consider financial time series as “pseudo”-random time series and in this
case the prediction of neural networks is appreciable. So we consider the financial
time series from the Minority Game point of view and then we apply a neural network
with learning algorithm in order to analyse its prediction power as a measure of market
efficiency.

We show that the case of U.S. Treasury Bond seems to be the most interesting
since the time window of the past minorities considered by the investor is M = 32,
which is very high with respect to other markets, and for this time series the neural
network can predict about 60% of entries. This is a signal in the direction that the
Fixed Income Market is more predictable as a consequence of features that make
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Fig. 3. Number of corrected predictions as a function of η in the case of S&P500. The number
of predictions is quite constant
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Fig. 5. Number of corrected predictions as a function of M in the case of Dow Jones. The
maximum is reached for M = 4
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Fig. 6. Number of corrected predictions as a function of M in the case of DJ Eurostoxx 50.
The maximum is reached for M = 4
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Fig. 7. Number of corrected predictions as a function of M in the case of Nikkei 225. The
maximum is reached for M = 3

this market different. On the other hand the case of S&P500, DJ Eurostoxx 50, Dow
Jones, Mibtel and Nikkei 225 is completely different, as these markets’ investors
consider only the very recent past since M = 2 − 4 and the neural network can
predict slightly more than 50% of entries. This can lead us to consider these time
series as randomly generated and so consider these markets more efficient. In both
cases the neural network shows the presence of a value M for which the number of
predictions is maximum and this is the number of past entries that agents consider in
order to make decisions. This information is derived directly from the data.
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Robust estimation of style analysis coefficients

Michele La Rocca and Domenico Vistocco

Abstract. Style analysis, as originally proposed by Sharpe, is an asset class factor model aimed
at obtaining information on the internal allocation of a financial portfolio and at comparing
portfolios with similar investment strategies. The classical approach is based on a constrained
linear regression model and the coefficients are usually estimated exploiting a least squares
procedure. This solution clearly suffers from the presence of outlying observations. The aim of
the paper is to investigate the use of a robust estimator for style coefficients based on constrained
quantile regression. The performance of the novel procedure is evaluated by means of a Monte
Carlo study where different sets of outliers (both in the constituent returns and in the portfolio
returns) have been considered.

Key words: style analysis, quantile regression, subsampling

1 Introduction

Style analysis, as widely described by Horst et al. [12], is a popular and important
tool in portfolio management. Firstly, it can be used to estimate the relevant factor
exposure of a financial portfolio. Secondly, it can be a valuable tool in performance
measurement since the style portfolio can be used as a benchmark in evaluating the
portfolio performance. Finally, it can be used to gain highly accurate future portfo-
lio return predictions since it is well known from empirical studies [12] that factor
exposures seem to be more relevant than actual portfolio holdings.

The method, originally proposed by Sharpe [25], is a return-based analysis aimed
at decomposing portfolio performance with respect to the contribution of different
constituents composing the portfolio. Each sector is represented by an index whose
returns are available. The model regresses portfolio returns on constituent returns
in order to decompose the portfolio performance with respect to each constituent.
Indeed, in the framework of classical regression, the estimated coefficients mean the
sensitivity of portfolio expected returns to constituent returns. The classical approach
is based on a linear regression model, estimated by using least squares, but different
constraints can be imposed on the coefficients.
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Following Horst et al. [12], we distinguish three types of style models:

i. weak style analysis: the coefficients are estimated using an unconstrained regres-
sion model;

ii. semi-strong style analysis: the coefficients are imposed to be positive;
iii. strong style analysis: the coefficients are imposed to be positive and to sum up to

one.

The three types of style model are typically estimated as regression through the origin.
The use of the double constraint (strong style analysis) and the absence of the

intercept allow the interpretation of the regression coefficients in terms of compo-
sition quotas and the estimation of the internal composition of the portfolio [8, 9].
Notwithstanding, classical inferential procedures should be interpreted with caution,
due to the imposition of inequality linear constraints [13]. Some general results are
available for the normal linear regression model [11]; a different approach based on
Bayesian inference is formulated in [10].

In the framework of style analysis, a commonly applied solution is the approx-
imation proposed by Lobosco and Di Bartolomeo [21]. These authors obtain an ap-
proximate solution for the confidence intervals of style weights using a second-order
Taylor approximation. The proposed solution works well except when the param-
eters are on the boundaries, i.e., when one or more parameters are near 0 and/or
when a parameter falls near 1. Kim et al. proposes two approximate solutions for this
special case [14] based on the method of Andrews [1] and on the Bayesian method
proposed by Geweke [11]. A different Bayesian approach is instead discussed by
Christodoulakis [6,7].

As they are essentially based on a least-squares estimation procedure, common
solutions for the estimation of the style analysis coefficients suffer from the presence
of outliers. In this paper we investigate the use of quantile regression [18] to estimate
style coefficients. In particular we compare the classical solution for the strong style
model with robust estimators based on constrained median regression. Different sets
of outliers have been simulated both in constituent returns and in portfolio returns. The
estimators are then compared with respect to efficiency and some considerations on the
consistency of the median regression estimator is provided too. The use of the quantile
regression approach allows a further gain in efficiency as an L-estimator [15,19] can
be easily obtained using linear combinations of quantile estimators, i.e., for different
conditional quantiles.

The paper is organised as follows: in the next section the classical Sharpe-style
model is briefly introduced along with the basic notation. In Section 3 the quantile
regression approach to style analysis is described. The simulation schema and the
main results are discussed in Section 4. Finally, some concluding remarks and possible
further developments are provided in Section 5.
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2 Sharpe-style regression model

The Sharpe-style analysis model regresses portfolio returns on the returns of a variety
of investment class returns. The method thus identifies the portfolio style in the time
series of its returns and of constituent returns [12]. The use of past returns is a Hobson’s
choice as typically there is no other information available to external investors.

Let us denote by r port the random vector of portfolio returns along time and by
Rconst the matrix containing the returns along time of the ith portfolio constituent on
the ith column (i = 1, . . . , n). Data refer to T subsequent time periods. The style
analysis model regresses portfolio returns on the returns of the n constituents:

rport = Rconst wconst + e s.t.: wconst ≥ 0, 1T wconst = 1.

The random vector e can be interpreted as the tracking error of the portfolio, where
E(Rconst e = 0).

Style analysis models can vary with respect to the choice of style indexes as well
as with respect to the specific location of the response conditional distribution they
are estimating. The classical style analysis model is based on a constrained linear
regression model estimated by least squares [25, 26]. This model focuses on the
conditional expectation of portfolio returns distributionE(r port | Rconst ): estimated
compositions are interpretable in terms of sensitivity of portfolio expected returns to
constituent returns.

The presence of the two constraints imposes the coefficients to be exhaustive
and non-negative, thus allowing their interpretation in terms of compositional data:
the estimated coefficients mean constituent quotas in composing the portfolio. The
Rconst wconst term of the equation can be interpreted as the return of a weighted
portfolio: the portfolio with optimised weights is then a portfolio with the same
style as the observed portfolio. It differs from the former as estimates of the internal
composition are available [8,9]. We refer the interested reader to the paper of Kim et
al. [14] for the assumptions on portfolio returns and on constituent returns commonly
adopted in style models.

In the following we restrict our attention to the strong style analysis model, i.e.,
the model where both the above constraints are considered for estimating style coef-
ficients. Even if such constraints cause some problems for inference, the strong style
model is nevertheless widespread for the above-mentioned interpretation issues.

3 A robust approach to style analysis

Quantile regression (QR), as introduced by Koenker and Basset [18], can be viewed
as an extension of classical least-squares estimation of conditional mean models to
the estimation of a set of conditional quantile functions. For a comprehensive review
of general quantile modelling and estimation, see [16].

The use of QR in the style analysis context was originally proposed in [5] and
revisited in [2] and [3]. It offers a useful complement to the standard model as it
allows discrimination of portfolios that would be otherwise judged equivalent [4].
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In the classical approach, portfolio style is determined by estimating the influence
of style exposure on expected returns. Extracting information at places other than
the expected value should provide useful insights as the style exposure could affect
returns in different ways at different locations of the portfolio returns distribution. By
exploiting QR, a more detailed comparison of financial portfolios can then be achieved
as QR coefficients are interpretable in terms of sensitivity of portfolio conditional
quantile returns to constituent returns [5]. The QR model for a given conditional
quantile θ can be written as:

Qθ (r port | Rconst ) = Rconst wconst (θ) s.t.: wconst (θ) ≥ 0, 1T wconst (θ) = 1, ∀θ,
where θ (0 < θ < 1) denotes the particular quantile of interest.

As for the classical model, the wconsti (θ) coefficient of the QR model can be
interpreted as the rate of change of the θ th conditional quantile of the portfolio returns
distribution for a unit change in the ith constituent returns holding the values of Rconst· j, j �=i
constant.

The conditional quantiles are estimated through an optimisation function minimis-
ing a sum of weighted absolute deviation where the choice of the weight determines
the particular conditional quantile to estimate. We refer to Koenker and Ng [20] for
computing inequality constrained quantile regression.

The use of absolute deviations ensures that conditional quantile estimates are
robust. The method is nonparametric in the sense that it does not assume any specific
probability distribution of the observations. In the following we use a semiparametric
approach as we assume a linear model in order to compare QR estimates with the
classical style model. Moreover we restrict our attention to the median regression
by setting θ = 0.5. As previously stated, it is worthwile to mention that the use of
different values of θ allows a set of conditional quantile estimators to be obtained that
can be easily linearly combined in order to construct an L-estimator, in order to gain
efficiency [15,19].

4 Simulation results

In this section the finite sample properties of the proposed procedure are investigated
via a Monte Carlo study. Artificial fund returns are simulated using the following
data-generation process:

rport
t = rconst

t
′wconst + σet , t = 1, 2, . . . , T .

In particular, we considered a portfolio with 5 constituents generated by using
GARCH(1,1) processes to simulate the behaviour of true time series returns. The true
style weights have been set to wconst

i = 0.2, i = 1, 2, . . . , 5, thus mimicking a typ-
ical “buy and hold” strategy. This allows a better interpretation of simulation results
whereas the extension to different management strategies does not entail particular
difficulties. The scaling factor σ has been fixed in order to have R2 close to 0.90
while et ∼ N(0, 1). We considered additive outliers at randomly chosen positions
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both in the constituent series (in X ) and in the portfolio returns (in Y ). The positions
of outlier contamination has been set both to 1% and to 5%. We considered median
regression (θ = 0.5) and we used T =250, 500, 1000 as sample sizes. We carried out
1000 Monte Carlo runs for each simulation of the experimental set up.

Figure 1 depicts the impact of outlying observations on LS and QR estimators.
Each row of the panel graph refers to a portfolio constituent (i = 1, . . . , 5) while
the columns show the different cases of presence of outliers: no outliers, outliers
in portfolio returns (in Y ), outliers in constituent returns (in X ), and outliers both in
portfolio returns and in constituent returns (in X and Y ). In each panel the left boxplot
refers to the LS estimator while the right one depicts the QR estimator behaviour. As
expected, the impact of outlying observation can be very serious on LS estimates
of style coefficients, especially when considering outliers in the constituent series.
It is worth noticing that the variability of LS estimates increases very much and
this can have serious practical drawbacks since the style coefficients vary in the
unit interval: a large variability of the estimates induces results with limited practical
utility.Clearly, when no outlying observations are present in the data, the LS estimates
are more efficient than quantile estimates. However, the differences between the two
distributions are not so evident. Although it is well known that quantile regression
estimators are robust only in Y [16], the simulation study shows more evidence of
robustness in the case of outliers in constituent returns (third column of panels in
Fig. 1). A possible explanation can be given by considering the presence of the
double constraint, which forces each estimated coefficient to be inside the unit interval.
However, a formal study based on the influence function of the constrained estimators
is not available at the moment. This issue is still under investigation.

In order to obtain information on consistency of the constrained median esti-
mators, we use different values for the length of time series. Figure 2 depicts the
behaviour of the QR estimator for T = 250 (left boxplot in each panel), T = 500
(middle boxplot) and T = 1000 (right boxplot). As in the previous figure, the rows
of the plot refer to the different constituents while the columns report the different
cases treated in our simulation with respect to the presence of outlying observations.
It is evident that in any case efficiency increases as sample size increases.

Figures 1 and 2 are built using a percentage of outlier contamination set to 1%.
Similar patterns have been noticed for the case of 5% contamination and so the
related plots are not reported here for the sake of brevity. Using a percentage of
outlier contamination set to 5%, as expected, an increase in the variability of the QR
estimator is observed, although there is only a very limited difference between the
two cases. For the sake of space we do not include any results for the comparison
between the different cases of outlier contamination considered. It is straightforward
to note, anyway, that increases in the variability of the QR estimator due to an increase
in the percentage of outlier contamination are counterbalanced moving the number
of observations from T = 250 to T = 500 and then to T = 1000.
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Fig. 1. Comparison of the least-squares (LS) estimators and of the median estimators through
quantile regression (QR) for T = 250. The different subpanels of the two plots refer to the
portfolio constituents (rows) and to the different cases of presence of outliers (columns). In
particular the first column depicts the situation with no outlying observation, the second and
third columns refer, respectively, to the presence of outliers in portfolio returns and outliers in
constituent returns, while the last column depicts the behaviour of LS and QR estimates when
outliers are considered both in portfolio returns and in constituent returns. In each panel the
left boxplot depicts the sampling distribution of the LS estimator while the right one refers to
the sampling distribution of the QR estimator

5 Conclusions and further issues

Style analysis is widely used in financial practice in order to decompose portfolio
performance with respect to a set of indexes representing the market in which the
portfolio invests. The classical Sharpe method is commonly used for estimating pur-
poses but requires corrections in case of the presence of outliers. In this paper we
compare this classical procedure with a robust procedure based on a constrained me-
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Fig. 2. Comparison of the median estimators through quantile regression (QR) for T = 250,
T = 500 and T = 1000. The different subpanels of the two plots refer to the portfolio
constituents (rows) and to the different cases of the presence of outliers (columns). In particular
the first column depicts the situation with no outlying observation, the second and third columns
refer, respectively, to the presence of outliers in portfolio returns and outliers in constituent
returns, while the last column depicts the case when outliers are considered both in portfolio
returns and in constituent returns. The boxplots depict the sampling distributions of the QR
estimators for T = 250 (left boxplot), T = 500 (middle boxplot) and T = 1000 (right boxplot)

dian regression, showing some empirical results for efficiency and consistency of
the robust estimators. The results of the simulation study encourage us to further
investigate this approach. A topic deserving further attention is a formal study of the
robustness of the constrained median regression estimator in the presence of outliers
in the X series based on the influence function of the constrained robust estimator.

It is worthwile to point out that further gain in estimator efficiency can be obtained
as the median regression has been estimated through quantile regression. Such a
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technique allows a simple extension toward L-estimators (defined as weighted linear
combinations of different quantiles) in order to gain an increase in efficiency [15,19].
Moreover, many other robust estimators have been proposed and studied for linear
regression models. However a comparison of their relative merits in the framework
considered here is beyond the scope of this paper.

A further extension of the proposed approach concerns the use of quantile regres-
sion to draw inferences on style coefficients. The presence of inequality constraints
in the style model, indeed, requires some caution in drawing inferences. Among the
different proposals appearing in the literature, the Lobosco–Di Bartolomeo approx-
imation [21] for computing corrected standard errors is widespread and it performs
well for regular cases, i.e., when parameters are not on the boundaries of the param-
eter space. This proposal, indeed, is a convenient method for estimating confidence
intervals for style coefficients based on a Taylor expansion. Nevertheless, as it is es-
sentially based on a least-squares estimation procedure, the Lobosco–Di Bartolomeo
solution also suffers from the presence of outliers. A possible solution could relate to
a joint use of quantile regression and subsampling theory [23]. Subsampling was first
introduced by Politis and Romano [22] and can be considered as the most general
theory for the construction of first-order asymptotically valid confidence intervals or
regions. The basic idea is to approximate the sampling distribution of the statistic
of interest through the values of the statistic (suitably normalised) computed over
smaller subsets of the data. Subsampling has been shown to be valid under very weak
assumptions and, when compared to other resampling schemes such as the bootstrap,
it does not require that the distribution of the statistic is somehow locally smooth
as a function of the unknown model. Indeed, the subsampling is applicable even in
situations that represent counterexamples to the bootstrap. These issues are still un-
der investigation and beyond the scope of this paper. Here it is worth highlighting
that preliminary results appear promising and encourage us to further investigate this
approach: confidence intervals based on the joint use of QR and subsampling show
better performance with respect to both coverage error and length of the intervals.
The next step should concern an empirical analysis with real financial series.
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Managing demographic risk in enhanced pensions

Susanna Levantesi and Massimiliano Menzietti

Abstract. This paper deals with demographic risk analysis in Enhanced Pensions, i.e., long-
term care (LTC) insurance cover for the retired. Both disability and longevity risks affect such
cover. Specifically, we concentrate on the risk of systematic deviations between projected and
realised mortality and disability, adopting a multiple scenario approach. To this purpose we
study the behaviourof the random risk reserve. Moreover, we analyse the effect of demographic
risk on risk-based capital requirements, explaining how they can be reduced through either
safety loading or capital allocation strategies. A profit analysis is also considered.

Key words: long term care covers, enhanced pension, demographic risks, risk reserve, sol-
vency requirements

1 Introduction

The “Enhanced Pension” (EP) is a long-term care (LTC) insurance cover for the
retired. It offers an immediate life annuity that is increased once the insured becomes
LTC disabled and requires a single premium. EP is affected by demographic risks
(longevity and disability risks) arising from the uncertainty in future mortality and
disability trends that cause the risk of systematic deviations from the expected values.
Some analyses of these arguments have been performed by Ferri and Olivieri [1]
and Olivieri and Pitacco [6]. To evaluate such a risk we carry out an analysis taking
into account a multiple scenario approach. To define a set of projected scenarios we
consider general population statistics of mortality and disability.

We firstly analyse the behaviour of the risk reserve, then we define the capital
requirements necessary to guarantee the solvency of the insurer. Finally we study the
portfolio profitability. Such an analysis cannot be carried out by analytical tools, but
requires a Monte Carlo simulation model.

The paper is organised as follows. In Section 2 we define the actuarial framework
for EPs. In Section 3 we develop nine demographic scenarios and describe through a
suitable model how they can change over time. In Section 4 we present a risk theory
model based on the portfolio risk reserve and the Risk Based Capital requirements
necessary to preserve the insurance company from failures with a fixed confidence
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level. Section 5 deals with the profit analysis of the portfolio according to the profit
profile. Simulation results are analysed in Section 6, while some concluding remarks
are presented in Section 7.

2 Actuarial model for Enhanced Pensions

The probabilistic framework of an EP is defined consistently with a continuous and
inhomogeneous multiple state model (see Haberman and Pitacco [2]). Let S(t) rep-
resent the random state occupied by the insured at time t , for any t ≥ 0, where t is
the policy duration and 0 the time of entry. The possible realisations of S(t) are: 1 =
“active” (or healthy), 2 = “LTC disabled” or 3 = “dead”. We disregard the possibility
of recovery from the LTC state due to the usually chronic character of disability and
we assume S(0) = 1. Let us define transition probabilities and intensities:

Pi j (t, u) = Pr {S(u) = j |S(t) = i } 0 ≤ t ≤ u, i, j ∈ {1, 2, 3} , (1)

μi j (t) = lim
u→t

Pi j (t, u)

u − t
t ≥ 0, i, j ∈ {1, 2, 3} , i �= j. (2)

EPs are single premium covers providing an annuity paid at an annual rate b1(t)when
the insured is healthy and an enhanced annuity paid at an annual rate b2(t) > b1(t)
when the insured is LTC disabled. Let us suppose all benefits to be constant with
time. Let ω be the maximum policy duration related to residual life expectancy at age
x and let v(s, t) = ∏t

h=s+1 v(h − 1, h) be the value at time s of a monetary unit at
time t ; the actuarial value at time 0 of these benefits,  (0, ω), is given by:

 (0, ω) = b1a11(0, ω)+ b2a12(0, ω), (3)

where: ai j (t, u) =
u−t−1∑

s=t
Pi j (t, s)v(s, t) for all i, j ∈ 1, 2. Assuming the equivalence

principle, the gross single premium paid in t = 0,  T is defined as:

 T =  (0, ω)

1− α − β − γ [a11(0, ω)+ a21(0, ω)]
, (4)

where α, β and γ represent the premium loadings for acquisition, premium earned
and general expenses, respectively.

3 Demographic scenarios

Long-term covers, such as the EPs, are affected by demographic trends (mortality and
disability). A risk source in actuarial evaluations is the uncertainty in future mortality
and disability; to represent such an uncertainty we adopt different projected scenarios.

We start from a basic scenario, HB , defined according to the most recent statistical
data about people reporting disability (see ISTAT [3]) and, consistent with this data,
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the Italian Life-Table SIM-1999. Actives’ mortality μ13(t) is approximated by the
Weibull law, while transition intensitiesμ12(t) are approximated by the Gompertz law
(for details about transition intensities’ estimation see Levantesi and Menzietti [5]).
Disabled mortality intensity μ23(t) is expressed in terms of μ13(t) according to the
time-dependent coefficient K (t), μ23(t) = K (t)μ13(t). Values of K (t), coming from
the experience data of an important reinsurance company, are well approximated by
the function exp(c0 + c1t + c2t2).

Mortality of projected scenarios has been modelled evaluating a different set of
Weibull parameters (α, β) for each ISTAT projection (low, main and high hypoth-
esis, see ISTAT [4]). Furthermore, the coefficient K (t) is supposed to be the same
for all scenarios. Regarding transition intensity, μ12(t), three different sets of Gom-
pertz parameters have been defined starting from a basic scenario to represent a 40%
decrease (Hp. a), a 10% decrease (Hp. b) and a 20% increase (Hp. c) in disability
trend, respectively. By combining mortality and disability projections we obtain nine
scenarios.

We assume that possible changes in demographic scenarios occur every k years,
e.g., in numerical implementation 5 years is considered a reasonable time to capture
demographic changes. Let H (t) be the scenario occurring at time t (t = 0, k, 2k, . . .).
It is modelled as a time-discrete stochastic process. Let P̄(t) be the vector of scenario
probabilitiesat time t and M(t) the matrix of scenario transition probabilitiesbetween
t and t + k. The following equation holds: P̄(t + k) = P̄(t) ·M(t).
We suppose that at initial time the occurring scenario is the central one. We assume that
the stochastic process H (t) is time homogeneous (M(t) = M, ∀t ) and the scenario
probability distribution, P̄(t), is stationary after the first period, so that P̄(t) = P̄ ,
∀t ≥ k. Note that P̄ is the left eigenvector of the transition matrix M corresponding
to the eigenvalue 1. Values of P̄ are assigned assuming the greatest probability of
occurrence for the central scenario and a correlation coefficient between mortality
and disability equal to 75%:

P̄ = (0.01 0.03 0.16 0.03 0.54 0.03 0.16 0.03 0.01 ).

Further, we assume that transitions between strongly different scenarios are not pos-
sible in a single period and consistently with supposed correlation between mortality
and disability, some transitions are more likely than others.

Resulting scenarios’ transition probabilities are reported in the matrix below.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1650 0.1775 0.0000 0.1775 0.4800 0.0000 0.0000 0.0000 0.0000
0.0492 0.1850 0.0933 0.0592 0.5100 0.1033 0.0000 0.0000 0.0000
0.0000 0.0100 0.4250 0.0000 0.5550 0.0100 0.0000 0.0000 0.0000
0.0492 0.0592 0.0000 0.1850 0.5100 0.0000 0.0933 0.1033 0.0000
0.0100 0.0300 0.1600 0.0300 0.5400 0.0300 0.1600 0.0300 0.0100
0.0000 0.1033 0.0933 0.0000 0.5100 0.1850 0.0000 0.0592 0.0492
0.0000 0.0000 0.0000 0.0100 0.5550 0.0000 0.4250 0.0100 0.0000
0.0000 0.0000 0.0000 0.1033 0.5100 0.0592 0.0933 0.1850 0.0492
0.0000 0.0000 0.0000 0.0000 0.4800 0.1775 0.0000 0.1775 0.1650

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4 A risk theory model

Demographic risk analysis is carried out on a portfolio of EPs with Ni (t) contracts
in state i at time t , closed to new entries. The random risk reserve is adopted as
risk measure. It represents the insurer’s ability to meet liabilities, therefore it can
be considered a valid tool to evaluate the insurance company solvency and, more
generally, in the risk management assessment. Let U (0) be the value of the risk
reserve at time 0; the risk reserve at the end of year t is defined as:

U (t) = U (t − 1)+ PT (t)+ J (t)− E(t)− B(t)−�V(t)− K (t), (5)

where:

• PT (t) is the gross single premiums income;
• J (t) are the investment returns on assets, A(t), where the assets are defined as

A(t) = A(t − 1)+ PT (t)− E(t)− B(t)+ J (t)− K (t);
• E(t) are the expenses: E(t) =∑

i=1,2 Ni (t − 1)εi (t);
• B(t) is the outcome for benefits: B(t) =∑

i=1,2 Ni (t − 1)bi ;
• �V(t) is the annual increment in technical provision, V(t) =∑

i=1,2 Ni(t)Vi (t),
and Vi(t) is the technical provision for an insured in state i;

• K (t) are the capital flows; if K (t) > 0 the insurance company distributes divi-
dends and if K (t) < 0 stockholders invest capital.

We assume that premiums, benefits, expenses and capital flows are paid at the begin-
ning of each year. To compare outputs of different scenarios and portfolios we use
the ratio between risk reserve and total single premium income

u(t) = U (t)

 (0, ω)N1(0)
.

The risk analysis is performed according to a multiple scenarios approach that con-
siders each scenario as a possible state of the stochastic process H (t), according to
the probability vector P̄, allowing evaluation of the risk of systematic deviations in
biometric functions (see Olivieri and Pitacco [6] and Levantesi and Menzietti [5]).

The demographic pricing basis is defined according to the central scenario with a
safety loading given by a reduction of death probabilities. We disregard financial risk,
adopting a deterministic and constant interest rate. We assume a financial pricing basis
equal to the real-world one. Technical provision is reviewed every 5 years consistently
with the scenario change period. Further, the insurance company perceives scenario
changes with a delay of one period.

4.1 Risk-based capital requirements

Risk-based capital (RBC) is a method for assessing the solvency of an insurance
company; it consists in computing capital requirements that reflect the size of overall
risk exposures of an insurer. Let us consider RBC requirements based on risk reserve
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distribution. We calculate RBC requirements with different time horizons and confi-
dence levels. Let us define the finite time ruin probability as the probability of being
in a ruin state in at least one of the time points 1, 2. . . , T , for a given U (0) = u:

!u(0, T ) = 1− Pr

{
T⋂

t=1

U (t) ≥ 0
∣∣∣U (0) = u

}
. (6)

RBC requirements for the time horizon (0, T ) with a (1 − ε) confidence level are
defined as follows:

RBC1−ε (0, T ) = in f
{

U (0) ≥ 0
∣∣∣!0(0, T ) < ε

}
. (7)

Note that the risk reserve must be not negative for all t ∈ (0, T ).
To make data comparable, results are expressed as a ratio between RBC require-

ments and total single premium income

rbc1−ε (0, T ) = RBC1−ε (0, T )

 (0, ω)N1(0)
.

An alternative method to calculate RBC requirements is based on the Value-at-Risk
(VaR) of the U -distribution in the time horizon (0, T )with a (1−ε) confidence level:
V a R1−ε(0, T ) = −Uε (T ), where Uε (t) is the ε-th quantile of the U -distribution at
time t . Hence RBC requirements are given by:

RBCV a R
1−ε (0, T ) = V a R1−ε (0, T ) v(0, T ). (8)

If an initial capital U (0) is given, the RBCV a R
1−ε (0, T ) requirements increase by the

amount U (0). Values are reported in relative terms as

rbcV a R
1−ε (0, T ) = RBCV a R

1−ε (0, T )

 (0, ω)N1(0)
.

5 Profit analysis

In this section we analyse the annual profit, Y (t), emerging from the management
of the portfolio. In order to capture the profit sources, Y (t) can be broken down into
insurance profit, Y I (t), and profit coming from investment income on shareholders’
funds (which we call “patrimonial profit”), Y P(t).

Y I (t) = (1 + i(t − 1, t))[V(t − 1)+ PT (t)− E(t)− B(t)]− V(t) (9)

Y P (t) = U (t − 1)i(t − 1, t) (10)

The following relation holds: Y (t) = Y I (t)+Y P(t). The sequence {Y (t)}t≥1 is called
profit profile. Let ρ be the rate of return on capital required by the shareholders; the
present value of future profits discounted at rate ρ (with ρ > i), Y (0, T ) is given by:

Y (0, T ) =
T∑

t=1

Y (t)vρ (0, t), (11)
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while Y I (0, T ) = ∑T
t=1 Y I (t)vρ(0, t) and Y P(0, T ) = ∑T

t=1 Y P(t)vρ(0, t) are the
present value of the future insurance and patrimonial profits, respectively.

6 Portfolio simulation results

Let us consider a cohort of 1000 policyholders, males, with the same age at policy
issue, x = 65, same year of entry (time 0), a maximum policy duration ω = 49,
expense loadings α = 5%, β = 2%, γ = 0.7% and a constant interest rate i(0, t) =
i = 3% ∀t . The annual benefit amounts are distributed as in Table 1.

Table 1. Annual benefit amounts distribution (euros)

b1 b2 f r(%)

6,000 12,000 40
9,000 18,000 30

12,000 24,000 15
15,000 27,000 10
18,000 30,000 5

Results of 100,000 simulations are reported in the following tables, assuming a
safety loading on demographic pricing bases given by a 10% reduction of healthy and
disabled death probabilities and an initial capital K (0) = RBC99.5%(0, 1). Simulated
values of u(t) are shown in Figure 1. The figure highlights the strong variability of the
risk reserve distribution, especially when t > 5, as a consequence of demographic
scenario changes. Even though the risk reserve has a positive trend due to safety
loading, lower percentiles are negative. Economic consequences of such an aspect are

Fig. 1. u(t) with safety loading = 10% reduction of death probabilities, initial capital K (0) =
RBC99.5%(0, 1)
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Table 2. Moments of u(t) and the finite time ruin probability with initial capital K (0) =
RBC99.5%(0, 1), safety loading = 10% reduction of death probabilities

u(T ) T = 1 T = 5 T = 10 T = 20 T = 30

Mean (%) 0.79 1.51 2.75 6.61 10.94
Std Dev (%) 0.37 1.26 4.58 5.27 6.36
Coeff Var 0.4673 0.8372 1.6614 0.7974 0.5817
Skew 0.4495 0.2867 0.0010 −0.0194 −0.0002
!u (0, T )(%) 0.50 15.06 28.98 40.67 40.84

relevant for the insurer solvency and will be quantified through solvency requirements.
In Table 2 we report the values of the u(t)moments and the coefficient of variation as
well as the finite time ruin probability. It can be noticed that expected values of u(t)
are always positive and increase with time as well as the standard deviation. Looking
at the coefficient of variation we observe an increase of relative variability up to
t = 10; thereafter it decreases. Such a behaviour demonstrates that demographic risk is
mainly caused by the scenario changes (perceived with a delay of 5 years) affecting the
evaluation of technical provisions. When technical provisions decrease, the coefficient
of variation of u(t) becomes steady. The risk tendency to become stable is confirmed
by the finite time ruin probability values that increase with time. As expected,!u(0, 1)
is consistent with the initial capital provision, K (0) = RBC99.5%(0, 1).

Table 3 shows the values of RBC requirements for three different confidence
levels: 98%, 99% and 99.5%. RBC values rise with time and become steady in T = 20
only if RBC is computed on a time horizon (0, T ), rather than at time T . On the other
hand, if we look at RBC computed according to VaR, we obtain lower values with
respect to the previous ones, especially for T > 10. Results show that the initial
capital should be increased by about 6% of the single premium income to guarantee
the insurance solvency on the portfolio time horizon.

Table 3. Risk-based capital with safety loading = 10% reduction of death probabilities, initial
capital K (0) = RBC99.5%(0, 1)

rbc1−ε(0, T ) T = 1 T = 5 T = 10 T = 20 T = 30

ε = 0.5% 0.67% 1.78% 6.52% 6.57% 6.57%
ε = 1.0% 0.62% 1.62% 6.20% 6.24% 6.24%
ε = 2.0% 0.55% 1.43% 5.91% 5.94% 5.94%

rbcVa R
1−ε (0, T ) T = 1 T = 5 T = 10 T = 20 T = 30

ε = 0.5% 0.67% 1.77% 6.03% 4.07% 2.63%
ε = 1.0% 0.62% 1.60% 5.75% 3.61% 2.12%
ε = 2.0% 0.55% 1.39% 5.30% 3.01% 1.48%
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Fig. 2. Expected value of annual insurance and patrimonial profit with safety loading = 10%
reduction of death probabilities, initial capital K (0) = RBC99.5%(0, 1)

Table 4. Moments of u(t) and the finite time ruin probability with initial capital K (0) = 0,
safety loading = 10% reduction of death probabilities

u(T ) T =1 T = 5 T = 10 T = 20 T = 30

Mean (%) 0.10 0.73 1.85 5.40 9.31
Std Dev (%) 0.37 1.26 4.58 5.27 6.36
Skew 0.4495 0.2867 0.0010 −0.0194 −0.0002
!u(0, T ) (%) 42.06 58.42 62.37 67.72 67.79

Figure 2 shows the expected values of annual profit components as stated in
Section 5. The insurance profit line shows greater variability, being affected by de-
mographic risks. Meanwhile, the patrimonial profit line is more regular due to the
absence of financial risk, and increases with time, depending on investments of risk
reserve (return produced by the investment of risk reserve).

In order to evaluate the effect of different initial capital provisions, we fix
K (0) = 0. Further, according to ISVAP (the Italian insurance supervisory author-
ity), which shares the minimum solvency margin in life insurance to face demo-
graphic and financial risk in 1% and 3% of technical provisions, respectively, we fix
K (0) = 1%V (0+). The moments of u(t) distribution and the ruin probability are
reported in Tables 4 and 5. They can be compared with the results of Table 2.

Note that K (0) values do not affect the standard deviation and skewness of u(t)
distribution, while they do influence the u(t) expected value, which increases when
K (0) rises. Now, let us consider the highest safety loading given by a 20% reduction
of death probabilities for both healthy and disabled people. Values of the moments
of u(t) and finite time ruin probabilities are reported in Table 6. If we compare these
values with the ones in Table 2 (where the safety loading is equal to a 10% reduction
of death probabilities), we find that safety loading strongly affects the expected values
of u(t), but does not significantly affect the standard deviation and skewness. In other
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Table 5. Moments of u(t) and the finite time ruin probability with initial capital K (0) =
1%V (0+), safety loading = 10% reduction of death probabilities

u(T ) T = 1 T = 5 T = 10 T = 20 T = 30

Mean (%) 1.13 1.89 3.20 7.21 11.74
Std Dev (%) 0.37 1.26 4.58 5.27 6.36
Skew 0.4495 0.2867 0.0010 −0.0194 −0.0002
!u(0, T ) (%) 0.00 7.02 24.18 36.69 36.82

Table 6. Moments of capital ratio and the finite time ruin probability with initial capital K (0) =
RBC99.5%(0, 1), safety loading = 20% reduction of death probabilities

u(T ) T = 1 T = 5 T = 10 T = 20 T = 30

Mean (%) 0.78 2.07 4.49 12.01 20.39
Std Dev (%) 0.37 1.26 4.50 5.25 6.20
Skew 0.4544 0.2892 0.0120 −0.0197 −0.0038
!u(0, T ) (%) 0.50 7.07 22.21 30.56 30.56

Table 7. Risk-based capital with safety loading = 20% reduction of death probabilities, initial
capital K (0) = RBC99.5%(0, 1)

rbc1−ε(0, T ) T = 1 T = 5 T = 10 T = 20 T = 30

ε = 0.5% 0.57% 1.23% 5.39% 5.39% 5.39%
ε = 1.0% 0.52% 1.09% 5.14% 5.14% 5.14%
ε = 2.0% 0.46% 0.92% 4.88% 4.88% 4.88%

rbcVa R
1−ε (0, T ) T = 1 T = 5 T = 10 T = 20 T = 30

ε = 0.5% 0.57% 1.18% 4.52% 0.97% −1.52%
ε = 1.0% 0.52% 1.02% 4.24% 0.49% −2.02%
ε = 2.0% 0.46% 0.81% 3.78% −0.12% −2.65%

words, safety loading reduces the probability of risk reserve to become negative (as
proved by the!u(0, T ) values), but does not lower its variability. Moreover, required
capital decreases with safety loading increase (see Table 7 compared with Table 3).
Note that in the long term the rbcV a R are negative, therefore an initial capital is not
necessary to guarantee the insurance solvency. Nonetheless, the requirement reduction
is financed by the policyholders through a premium increase – due to a higher safety
loading – making the insurance company less competitive on the market. Therefore,
it is important to combine a solvency target with commercial policies.

Now, let us consider the safety loading impact on Y (0, T ) discounted at a rate
ρ = 5% > i (see (11)). As expected, Y (0, T ) rises with an increase of safety loading:
the values – expressed as a ratio to total single premium income – move from 6.21%
to 11.85% when the safety loading rises. It is worth noting that looking at the profit
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Table 8. Present value of future profits as ratio to total single premium income,
Y (0, T )/( (0, ω)N1(0)) with initial capital K (0) = RBC99.5%(0, 1)

SL = 10% SL = 20% �%

Total 6.21% 11.85% 91%
Insurance 3.03% 6.17% 104%
Patrimonial 3.18% 5.69% 79%

sources separately, we have a higher increase in Y I (0, T ) than in Y P (0, T ): 104%
compared to 79%.

7 Conclusions

This paper focuses on disability and longevity risks arising from issues in the estimate
of residual life expectancy of healthy and disabled people. Our analysis highlights
that the EPs are affected by a significant demographic risk caused by systematic
deviations between expected and realised demographic scenarios. The results confirm
that such a risk is difficult to control, depending on uncertainty in the future evolution
of biometric functions. The risk reserve distribution shows a strong variability due to
the demographic scenario changes affecting the technical provision valuation. Since
such a risk is systematic, the u(t) variability does not lessen when either safety loading
or initial capital increase. Nonetheless, they are useful tools in managing demographic
risk because they significantly reduce the ruin probability of the insurance company
as far as the RBC requirements necessary to ensure the insurer solvency at a fixed
confidence level. In this paper we take into account an initial capital only, reducing the
probability of incurring losses. However, the risk of systematic deviations persists,
requiring an appropriate capital allocation strategy. This topic will be the subject of
future research together with a suitable reinsurance strategy.
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Clustering mutual funds by return and risk levels

Francesco Lisi and Edoardo Otranto

Abstract. Mutual funds classifications, often made by rating agencies, are very common
and sometimes criticised. In this work, a three-step statistical procedure for mutual funds
classification is proposed. In the first step fund time series are characterised in terms of returns.
In the secondstep, a clustering analysis is performed in order to obtain classesof homogeneous
funds with respect to the risk levels. In particular, the risk is defined starting from an Asymmetric
Threshold-GARCH model aimed to describe minimum, normal and turmoil risk. The third
step merges the previous two. An application to 75 European funds belonging to 5 different
categories is presented.

Key words: clustering, GARCH models, financial risk

1 Introduction

The number of mutual funds has grown dramatically over recent years. This has led to
a number of classification schemes that should give reliable information to investors
on features and performance of funds. Most of these classifications are produced by
national or international rating agencies. For example, Morningstar groups funds into
categories according to their actual investment style, portfolio composition, capitali-
sation, growth prospects, etc. This information is then used, together with that related
to returns, risks and costs, to set up a more concise classification commonly referred
to as Star Rating (see [11] for details). Actually, each rating agency has a specific
owner evaluation method and also national associations of mutual funds managers
keep and publish their own classifications.

Problems arise as, in general, classes of different classifications do not coincide.
Also, all classification procedures have some drawback; for example, they are often
based on subjective information and require long elaboration time (see, for example,
[15]).

In the statistical literature, classification of financial time series has received rel-
atively little attention. In addition, to the best of our knowledge, there are no compar-
isons between different proposed classifications and those of the rating agencies. Some
authors use only returns for grouping financial time series. For example, [15] propose
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a classification scheme that combines different statistical methodologies (principal
component analysis, clustering analysis, Sharpe’s constrained regression) applied on
past returns of the time series. Also, the clustering algorithm proposed by [9], re-
ferring to different kinds of functions, is based only on return levels. Other authors
based their classifications only on risk and grouped the assets according to the dis-
tance between volatility models for financial time series [2, 8, 12–14]. Risk-adjusted
returns, i.e., returns standardised through standard deviation, are used for clustering
time series by [4]. This approach is interesting, but using the unconditional variance
as a measure of risk and ignoring the dynamics of volatility seems too simplistic.

In this paper, a classification based only on the information contained in the net
asset value (NAV) time series is considered. It rests on the simple and largely agreed
idea that two very important points in evaluation of funds are return and risk levels.
In order to measure the return level, the mean annual net period return is considered.
As regards the riskiness, in the time series literature, it is commonly measured in
terms of conditional variance (volatility) of a time series. As is well known, volatility
is characterised by a time-varying behaviour and clustering effects, which imply
that quiet (low volatility) and turmoil (high volatility) periods alternate. In order to
account both for the time-varying nature of volatility and for its different behaviour in
quiet and turmoil periods, an asymmetric version of the standard Threshold GARCH
model [5,17], is considered in this work.

The whole classification scheme consists of three steps: the first groups funds
with respect to returns whereas the second groups them with respect to riskiness. In
particular, the whole risk is broken down into constant minimum risk, time-varying
standard risk and time-varying turmoil risk. Following [12,13] and [14], the clustering
related to volatility is based on a distance between GARCH models, which is an
extension of the AR metric introduced by [16]. Lastly, the third step merges the
results of the first two steps to obtain a concise classification.

The method is applied to 75 funds belonging to five categories: aggressive bal-
anced funds, prudential balanced funds, corporate bond investments, large capital-
isation stock funds and monetary funds. In order to make a comparison with the
classification implied by the Morningstar Star Rating, which ranges from 1 to 5 stars,
our clustering is based on 5 “stars” as well. As expected, our classification does not
coincide with the Morningstar Rating because it is only partially based on the same
criteria. Nevertheless, in more than 82% of the considered funds the two ratings do
not differ for more than one star.

The paper is organised as follows. Section 2 describes how the risk is defined.
Section 3 contains an application and the comparison of our clustering with the Morn-
ingstar Rating classification. Section 4 concludes.

2 Risk modelling

In this section the reference framework for fund riskiness modelling is described. Let
yt be the time series of the NAV of a fund and rt the corresponding log-return time
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series. We suppose that the return dynamics can be described by the following model:

rt = μt + εt = μt + h1/2
t ut , t = 1, . . . , T

εt | It−1 ∼ N(0, ht ),

(1)

where μt = Et−1(rt ) is the conditonal expectation and ut is an i.i.d. zero-mean
and unit variance innovation. The conditional variance ht follows an asymmetric
version of the Threshold GARCH(1,1) process [5,17], which stresses the possibility
of a different volatility behaviour in correspondence with high negative shocks. We
refer to it as the Asymmetric Threshold GARCH (AT-GARCH) model. Formally, the
conditional variance can be described as:

ht = γ + αε2
t−1 + βht−1 + δSt−1ε

2
t−1

St =
{

1 if εt < ε
∗
t

0 otherwise
,

(2)

where γ , α, β, δ are unknown parameters, whereas ε∗t is a threshold identifying the
turmoil state. The value of ε∗t could represent a parameter to be estimated, but in
this work we set it equal to the first decile of the empirical distribution of ε. On the
whole, this choice maximises the likelihood and the number of significant estimates
of δ. Also, the first decile seems suitable because it provides, through the parameter δ,
the change in the volatility dynamics when high – but not extreme – negative returns
occur.

The purpose of this work is to classify funds in terms of gain and risk. While the
net period return is the most common measure of gain, several possible risk measures
are used in the literature. However, most of them look at specific aspects of riskiness:
standard deviation gives a medium constant measure; Value-at-Risk tries to estimate
an extreme risk; the time-varying conditional variance in a standard GARCH model
focuses on the time-varying risk, and so on.

In this paper we make an effort to jointly look at risk from different points of view.
To do this, following [13], we consider the squared disturbances ε2

t as a proxy of the
instantaneous volatility of rt . It is well known that ε2

t is a conditionally unbiased,
but very noisy, estimator of the conditional variance and that realised volatility and
intra-daily range are, in general, better estimators [1, 3, 10]. However, the adoption
of ε2

t in our framework is justified by practical motivations because intra-daily data
are not available for mutual funds time series and, thus, realised volatility or range
are not feasible. Starting from (2), after simple algebra, it can be shown that, for an
AT-GARCH(1,1), ε2

t follows the ARMA(1, 1) model:

ε2
t = γ +

(
α + δSt− j + β

)
ε2

t−1 − β
(
ε2

t−1 − ht−1

)
+

(
ε2

t − ht

)
, (3)

where (ε2
t − ht) are uncorrelated, zero-mean errors.

The AR(∞) representation of (3) is:

ε2
t =

γ

1− β +
∞∑

j=1

(α + δSt− j)β
j−1ε2

t− j +
(
ε2

t − ht

)
, (4)
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from which it is easy to derive the expected value at time t given past information

Et−1(ε
2
t ) =

γ

1− β +
∞∑
j=1

(α + δSt−1)β
j−1ε2

t− j . (5)

This representation splits the expected volatility, Et−1(ε
2
t ), considered as a whole

measure of risk, into three positive parts: a constant part, γ /(1− β), representing the
minimum risk level which can be reached given the model; the time-varying standard
risk (

∑∞
j=1αβ

j−1ε2
t− j ) and the time-varying turmoil risk (

∑∞
j=1δ St− j β

j−1ε2
t− j ), the

last two being dependent on past information. Of course, the estimation of expression
(5) requires a finite truncation.

In order to classify funds with respect to all three risk components, we propose
considering the distance between an homoskedastic model and a GARCH(1,1) model.
Using the metric introduced by [12] and re-considered by [14], in the case of speci-
fication (2) this distance is given by:

α + δSt−1√
(1− β2)

. (6)

The previous analytical formulation allows us to provide a vectorial description of the
risk of each fund. In particular, we characterise the minimum constant risk through
the distance between the zero-risk case (γ = α = β = δ = 0) and the α = δ = 0
case

vm = γ

1− β . (7)

The time-varying standard risk is represented, instead, by the distance between a
GARCH(1,1) model (δ = 0) and the corresponding homoskedastic model (α = β =
δ = 0)

vs = α√
(1− β2)

. (8)

Lastly, the turmoil risk is described by the difference of the distance between an
AT-GARCH model, and the homoskedastic model and the distance measured by (8):

vt = δ√
(1− β2)

. (9)

The whole risk is then characterised by the vector [vm , vs, vt ]′. If an extra element,
accounting for the return level, r̄ , is considered, each fund may be featured by the
vector:

f = [r̄, vm , vs, vt ]′.

In order to obtain groups of funds with similar return and risk levels, some clustering
algorithm can be easily applied directly to f or to some function of the elements of f .
For example, in the next section risk will be defined as the average of vm , vs and vt .
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3 An application

As an application of the previously described procedure, the daily time series of NAV
of 75 funds of the Euro area and belonging to five different categories were consid-
ered. The five typologies are the aggressive balanced, prudential balanced, corporate
bond investments, large capitalisation stock and monetary funds. Data, provided by
Bloomberg, range from 1/1/2002 to 18/2/2008, for a total of 1601 observations for
each series.

Our experiment consists in providing a classification of these funds, characterising
each group in terms of return and riskiness (following the definitions of constant
minimum, time-varying standard and time-varying turmoil risk) and comparing our
classification with that produced by the Morningstar star rating.

For each fund the return time series was considered and for each calendar year
the net percentage return was computed; finally the average of the one-year returns,
r̄ , was used to represent the gain.

To describe riskiness, first model (1)–(2) was estimated for each fund. When
parameters were not significant at the 5% level, they were set equal to zero and
the corresponding constrained model was estimated. Of course, before accepting the
model the absence of residual ARCH effects in the standardised residuals was checked.
Parameter estimation allowed us to calculate the risks defined as in (7), (8) and (9)
and to characterise the funds by the elements r̄ , vm, vs , vt or by some functions of
them.

With these vectors a clustering analysis was performed. In the clustering, a clas-
sical hierarchical algorithm with the Euclidean distance was used, whereas distances
between clusters are calculated following the average-linkage criterion (see, for ex-
ample, [7]).1 In particular, the classification procedure followed three steps:

1. The series were classified into three groups, referring only to the degree of gain,
i.e., r̄ low, medium and high.

2. The series were classified into three groups only with respect to the degree of risk
(low, medium and high). To summarise the different kinds of risk, the average
of the three standardised risks was computed for each series. Standardisation is
important because of the different magnitudes of risks; for example, minimum risk
generally has an order of magnitude lower than that of the other two risks.

3. The previous two classifications were merged, combining the degree or gain and
risk so as to obtain a rating from 1 to 5 “stars”; in particular, denoting with h, m
and l the high, medium and low levels respectively and with the couple (a, b) the
levels of gain and risk (with a, b = h,m, l), stars were assigned in the following
way:
1 star for (l, h) (low gain and high risk);
2 stars for (l,m), (l, l) (low gain and medium risk, low gain and low risk);
3 stars for (m, h), (m,m), (h, h) (medium gain and high risk, medium gain and

medium risk, high gain and high risk);

1 The clustering was performed also using the Manhattan distance and the single-linkage and
complete-linkage criteria. Results are very similar.
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4 stars for (m, l), (h,m) (medium gain and low risk, high gain and medium risk);
5 stars for (h, l) (high gain and low risk).
Of course, this is a subjective definition of stars, nevertheless it seemed reasonable
to us.

As in [13], the quality of the clustering was measured using the C-index [6]. This
index assumes values in the interval [0, 1], assuming small values when the quality
of the clustering is good. In our experiments, we always obtained C ≤ 0.1.

Table 1 lists the step-by-step results of the classification procedure for the group
of monetary funds. The left part of the table shows the classification based on the risk
evaluation and the global rating provided by Morningstar. The central part lists the
elements characterising the funds (one-year average return, constant minimum, time-
varying standard and time-varying turmoil risks). Note that vm assumes very small
values (due to the small values of γ̂) and that only the last fund presents a turmoil risk.2

The right part of the table shows the results of the three-step classification procedure.
The Gain column contains the classification in high, medium and low gain obtained
by the clustering of step 1; the Risk column contains the classification in high, medium
and low risk obtained by the grouping of step 2; lastly, the Stars column shows the
five-group classification described in step 3.

The differences with respect to the Morningstar rating are not large: the classifi-
cation is the same in 8 cases over 15, in 6 cases it does not differ for more than one
star and only in one case (the 14th fund) the two classifications differ for 2 stars.

Table 1. Monetary funds: Morningstar classification and details of the clustering procedure

Morningstar Clustering

Risk Stars Return vm vs vt Gain Risk Stars

Low 3 2.25 4.77E-09 0 0 Medium Low 4
Below average 5 2.66 0 0.087 0 High Low 5
Below average 3 2.08 7.01E-08 0.171 0 Low Medium 2
Below average 3 2.26 5.71E-08 0 0 Medium Low 4
Below average 3 2.34 0 0.180 0 Medium Medium 3
Below average 3 2.26 0 0.231 0 Medium Medium 3

Average 2 1.70 1.93E-07 0 0 Low Low 2
Average 2 1.87 0 0.144 0 Low Medium 2
Average 4 2.41 0 0.208 0 Medium Medium 3

Above average 2 2.05 0 0.155 0 Low Medium 2
Above average 4 2.71 1.91E-07 0.385 0 High High 3
Above average 2 2.10 0 0.234 0 Low Medium 2
Above average 3 1.96 0 0.145 0 Low Medium 2

High 5 2.28 1.29E-06 0 0 Medium Medium 3
High 1 1.80 0 0.151 0.333 Low High 1

2 On the whole, instead, parameter δ was significant in 11 cases (about 14% of funds).
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Table 2. Comparison of Morningstar and Clustering Classification

Differences
in stars

Stars 1 2 3 4 5 0 1 2 3

Aggr. Bal. Clustering 2 4 7 1 1 7 6 2
Morningstar 0 3 8 4 0

Prud. Bal. Clustering 0 2 6 7 0 4 9 2
Morningstar 0 2 9 4 0

Corp. Bond Clustering 1 0 3 2 9 3 5 5 2
Morningstar 0 3 10 2 0

Stock Clustering 0 1 2 11 1 4 10 1
Morningstar 1 3 6 5 0

Monetary Clustering 1 6 5 2 1 8 6 1
Morningstar 1 4 6 2 2

Table 3. Empirical probability and cumulative distribution functions of differences in stars
(percentages)

Empirical probability function
0 1 2 3 4 5
34.7 48.0 14.7 2.6 0.0 0.0

Empirical cumulative distribution function
0 1 2 3 4 5
34.7 82.7 97.4 100 100 100

The same procedure was applied to the other four categories and results are sum-
marised and compared with the Morningstar classification in Table 2. Clearly, the
classifications are different because they are based on different criteria and defini-
tions of gain and risk. However, in 82.7% of cases the two classifications do not differ
for more than one star. This is evident looking at Table 3, in which the empirical
probability function of the differences in stars and the corresponding cumulative dis-
tribution function are shown. Moreover, excluding the Corporate Bond Investments,
which present the largest differences between the two classifications, the percentage
of differences equal to or less than 1 increases up to 90% while the remaining 10% dif-
fers by two stars. In particular, the classifications relative to the Aggressive Balanced
and the Monetary funds seem very similar between the two methodologies.

4 Some concluding remarks

In this paper a clustering procedure to classify mutual funds in terms of gain and
risk has been proposed. It refers to a purely statistical approach, based on few tools
to characterise return and risk. The method is model-based, in the sense that the
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definition of risk is linked to the estimation of a particular Threshold GARCH model,
which characterises quiet and turmoil states of financial markets.

The risk is evaluated simply considering an equally weighted average of three
different kinds of risk (constant minimum risk, time-varying standard risk and time-
varying turmoil risk). Different weights could also be considered but at the cost of
introducing a subjectivity element.

Surprisingly, in our application, this simple method provided a classification which
does not show large differences with respect to the Morningstar classification. Of
course, this exercise could be extended to compare our clustering method with other
alternative classifications and to consider different weighting systems. For example,
it would be interesting to link weights to some financial variable. As regards applica-
tions, instead, the main interest focuses on using this approach in asset allocation or
portfolio selection problems.
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Multivariate Variance Gamma and Gaussian
dependence: a study with copulas∗

Elisa Luciano and Patrizia Semeraro

Abstract. This paper explores the dynamic dependence properties of a Lévy process, the
Variance Gamma, which has non-Gaussian marginal features and non-Gaussian dependence.
By computing the distance between the Gaussian copula and the actual one, we show that even
a non-Gaussian process, such as the Variance Gamma, can “converge” to linear dependence
over time. Empirical versions of different dependence measures confirm the result over major
stock indices data.

Key words: multivariate variance Gamma, Lévy process, copulas, non-linear dependence

1 Introduction

Risk measures and the current evolution of financial markets have spurred the interest
of the financial community towards models of asset prices which present both non-
Gaussian marginal behaviour and non-Gaussian, or non-linear, dependence. When
choosing from the available menu of these processes, one looks for parsimoniousness
of parameters, good fit of market data and, possibly, ability to capture their dependence
and the evolution of the latter over time. It is difficult to encapsulate all of these
features – dynamic dependence, in particular – in a single model. The present paper
studies an extension of the popular Variance Gamma (VG) model, named α-VG,
which has non-Gaussian features both at the marginal and joint level, while succeeding
in being both parsimonious and accurate in data fitting. We show that dependence
“converges” towards linear dependence over time. This represents good news for
empirical applications, since over long horizons one can rely on standard dependence
measures, such as the linear correlation coefficient, as well as on a standard analytical
copula or dependence function, namely the Gaussian one, even starting from data
which do not present the standard Gaussian features of the Black Scholes or log-
normal model. Let us put the model in the appropriate context first and then outline
the difficulties in copula towards dynamic dependence description then.
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In the financial literature, different univariate Lévy processes – able to capture
non-normality – have been applied in order to model stock returns (as a reference
for Lévy processes, see for example Sato [10]). Their multivariate extensions are
still under investigation and represent an open field of research. One of the most
popular Lévy processes in Finance is the Variance Gamma introduced by Madan
and Seneta [8]. A multivariate extension has been introduced by Madan and Seneta
themselves. A generalisation of this multivariate process, named α-VG, has been
introduced by Semeraro [11]. The generalisation is able to capture independence and
to span a wide range of dependence. For fixed margins it also allows various levels
of dependence to be modelled. This was impossible under the previous VG model.
A thorough application to credit analysis is in Fiorani et al. [5]. The α-VG process
depends on three parameters for each margin (μ j , σ j , α j) and an additional common
parameter a. The linear correlation coefficient is known in closed formula and its
expression is independent of time. It can be proved [7] that the process also has
non-linear dependence.

How can we study dynamic dependence of the α-VG process? Powerful tools
to study non-linear dependence between random variables are copulas. In a seminal
paper, Embrechts et al. [4] invoked their use to represent both linear and non-linear
dependence. Copulas, which had been introduced in the late 1950s in statistics and
had been used mostly by actuaries, do answer static dependence representation needs.
However, they hardly cover all the dynamic representation issues in finance. For Lévy
processes or the distributions they are generated from, the reason is that, for given
infinitely divisible margins, the conditions that a copula has to satisfy in order to
provide an infinitely divisible joint distribution are not known [3].

In contrast, if one starts from a multivariate stochastic process as a primitive entity,
the corresponding copula seldom exists in closed form at every point in time. Indeed,
copula knowledge at a single point in time does not help in representing dependence
at later maturities. Apart from specific cases, such as the traditional Black Scholes
process, the copula of the process is time dependent. And reconstructing it from the
evolution equation of the underlying process is not an easy task. In order to describe
the evolution of dependence over time we need a family of copulas {Ct , t ≥ 0}. Most
of the time, as in the VG case, it is neither possible to derive Ct from the expression
of C1 nor to get C1 in closed form. However, via Sklar’s Theorem [12], a numerical
version of the copula at any time t can be obtained. The latter argument, together with
the fact that for the α-VG process the linear correlation is constant in time, leads us to
compare the α-VG empirical copula for different tenures t with the Gaussian closed
form one. We study the evolution over time of the distance between the empirical
and the Gaussian copula as a measure of the corresponding evolution of non-linear
dependence.

The paper is organised as follows: Section 2 reviews the VG model and its depen-
dence; it illustrates how we reconstruct the empirical copula. Section 3 compares the
approximating (analytical) and actual (numerical) copula, while Section 4 concludes.
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2 VG models

The VG univariate model for financial returns X (t) has been introduced by Madan
and Seneta [8]. It is a natural candidate for exploring multivariate extensions of Lévy
processes and copula identification problems outside the Black Scholes case for a
number of reasons:

• it can be written as a time-changed Wiener process: its distribution at time t can
be obtained by conditioning;

• it is one of the simplest Lévy processes that present non-Gaussian features at the
marginal level, such as asymmetry and kurtosis;

• there is a well developed tradition of risk measurement implementations for it.

Formally, let us recall that the VG is a three-parameter Lévy process (μ, σ, α)
with characteristic function

ψX V G (t)(u) = [ψX V G (1)(u)]
t =

(
1− iuμα + 1

2
σ 2αu2

)− t
α

. (1)

The VG process has been generalised to the multivariate setting by Madan and
Seneta themselves [8] and calibrated on data by Luciano and Schoutens [7]. This
multivariate generalisation has some drawbacks: it cannot generate independence
and it has a dependence structure determined by the marginal parameters, one of
which (α) must be common to each marginal process.

To overcome the problem, the multivariate VG process has been generalised to
the α-VG process [11]. The latter can be obtained by time changing a multivariate
Brownian motion with independent components by a multivariate subordinator with
gamma margins.

Let Yi , i = 1, . . . , n and Z be independent real gamma processes with parameters
respectively

(
1

αi
− a,

1

αi
), i = 1, . . . , n

and (a, 1), where α j > 0 j = 1, . . . , n are real parameters and a ≤ 1
αi

∀i. The
multivariate subordinator {G(t), t ≥ 0} is defined by the following

G(t) = (G1(t), . . . ,Gn(t))
T = (Y1(t)+ α1Z (t), . . . , Yn(t)+ αn Z (t))T . (2)

Let Wi be independent Brownian motions with drift μi and variance σi . The Rn

valued process X = {X(t), t > 0} defined as:

X(t) = (W1(G1(t)), . . . ,Wn(Gn(t)))
T (3)

where G is independent from W, is an α-VG process.
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It depends on three marginal parameters (μ j , σ j , α j) and an additional common
parameter a. Its characteristic function is the following

ψX(t)(u) =
n∏

j=1

(
1− α j

(
iμ j u j − 1

2
σ 2

j u2
j

))−t

(
1
α j
−a

)

⎛⎝1−
n∑

j=1

α j

(
iμ j u j − 1

2
σ 2

j u2
j

)⎞⎠−ta

. (4)

The usual multivariate VG obtains for α j = α, j = 1, . . . , n and a = 1
α .

For the sake of simplicity, from now on we consider the bivariate case.
Since the marginal processes are VG, the corresponding distributions at time t ,

F1
t and F2

t can be obtained in a standard way, i.e., conditioning with respect to the
marginal time change:

Fi
t (xi ) =

∫ +∞

0
�

(
xi − μi (wi + αi z)

σi
√
wi + αi z

)
f i
G(t) (z)dz, (5)

where� is a standard normal distributionfunction and f i
G(t) is the density of a gamma

distribution with parameters
(

t
αi
, t
αi

)
. The expression for the joint distributionat time

t , Ft = FX(t), is:

Ft (x1, x2) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
�

(
x1 − μ1(w1 + αz)

σ1
√
w1 + α1z

)
�

(
x2 − μ2(w2 + βz)

σ2
√
w2 + α2z

)
(6)

· fY1(t)(w1) fY2(t)(w2) fZ(t)(z)dw1dw2dz, (7)

where fY1 (t), fY2(t), fZ(t) are densities of gamma distributions with parameters re-

spectively:
(

t
(

1
α1
− a

)
, 1
α1

)
,
(

t
(

1
α2
− a

)
, 1
α2

)
and (ta, 1) [11].

2.1 Dependence structure

In this section, we investigate the dependence or association structure of the α-VG
process.

We know from Sklar’s Theorem that there exists a copula such that any joint
distribution can be written in terms of the marginal ones:

Ft (x1, x2) = Ct (F
1
t (x1), F2

t (x2)). (8)

The copula Ct satisfies:

Ct (u1, u2) = Ft ((F
1
t )
−1(u1), (F

2
t )
−1(u2)), (9)

where (Fi
t )
−1 is the generalised inverse of Fi

t , i = 1, 2.
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Since the marginal and joint distributions in (5) and (6) cannot be written in
closed form, the copula of the α-VG process and the ensuing non-linear dependence
measures, such as Spearman’s rho and Kendall’s tau, cannot be obtained analytically.

The only measure of dependence one can find in closed form is the linear corre-
lation coefficient:

ρX(t) = μ1μ2α1α2a√
(σ 2

1 + μ2
1α1)(σ

2
2 + μ2

2α j)
. (10)

This coefficient is independent of time, but depends on both the marginal and the
common parameter a. For given marginal parameters the correlation is increasing in
the parameter a if μ1μ2 > 0, as is the case in most financial applications. Since a

has to satisfy the following bounds: 0 ≤ a ≤ min
(

1
α1
, 1
α2

)
the maximal correlation

allowed by the model corresponds to a = min
(

1
α1
, 1
α2

)
.

However, it can be proved that linear dependence is not exhaustive, since even
when ρ = 0 the components of the process can be dependent [7]. In order to study
the whole dependence we should evaluate empirical versions of the copula obtained
from (9) using the integral expression of the marginal and joint distributions in (5)
and (6). A possibility which is open to the researcher, in order to find numerically the
copula of the process at time t , is then the following:

• fix a grid (ui , vi ), i = 1, . . . , N on the square [0, 1]2;
• for each i = 1, . . . , N compute (F1

t )
−1(ui ) and (F2

t )
−1(vi ) by numerical ap-

proximation of the integral expression: let (F̃1
t )
−1(ui ) and (F̃2

t )
−1(vi ) be the

numerical results;
• find a numerical approximation for the integral expression (6), let it be F̂t (xi , yi);
• find the approximated value of Ct (ui , vi ):

Ĉt (ui , vi) = F̂((F̃1
t )
−1(ui ), (F̃

1
t )
−1(ui )), i = 1, . . . , N .

We name the copula Ĉt numerical, empirical or actual copula of the α-VG dis-
tribution at time t .

In order to discuss the behaviour of non-linear dependence we compare the em-
pirical copula and the Gaussian one with the same linear correlation coefficient, for
different tenors t . We use the classical L1 distance:

dt(Ct ,C
′
t ) =

∫ 1

0
|Ct (u, v)− C′t (u, v)|dudv. (11)

It is easy to demonstrate that the distance d is consistent with concordance order,
i.e., Ct ≺ C′t ≺ C′′t implies d(Ct ,C′t ) ≤ d(Ct ,C′′t ) [9]. It follows that the nearer the
copulas are in terms of concordance, the nearer they are in terms of dt . Observe that
the maximal distance between two copulas is 1

6 , i.e., the distance between the upper
and lower Fréchet bounds.

Therefore for each t we:

• fix the marginal parameters and a linear correlation coefficient;
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• find the numerical copula Ĉt of the process over the prespecified grid;
• compute the distance between the numerical and Gaussian copula.1 Please note

that, since the linear correlation ρX(t) in (10) is independent of time, the Gaussian
copula remains the same too: (Ct = C′t in (11)).

3 Empirical investigation

3.1 Data

The procedure outlined above has been applied to a sample of seven major stock
indices: S&P 500, Nasdaq, CAC 40, FTSE 100, Nikkei 225, Dax and Hang Seng. For
each index we estimated the marginal VG parameters under the risk neutral measure,
using our knowledge of the (marginal) characteristic function, namely (4). From the
characteristic function, call option theoretical prices were obtained using the Frac-
tional Fast Fourier Transform (FRFT) in Chourdakis [2], which is more efficient than
the standard Fast Fourier Transform (FFT). The data for the corresponding observed
prices are Bloomberg quotes of the corresponding options with three months to ex-
piry. For each index, six strikes (the closest to the initial price) were selected, and the
corresponding option prices were monitored over a one-hundred-day window, from
7/14/06 to 11/30/06.

3.2 Selection of the α-VG parameters

We estimated the marginal parameters as follows: using the six quotes of the first
day only, we obtained the parameter values which minimised the mean square error
between theoretical and observed prices, the theoretical ones being obtained by FRFT.
We used the results as guess values for the second day, the second day results as guess
values for the third day, and so on. The marginal parameters used here are the average
of the estimates over the entire period. The previous procedure is intended to provide
marginal parameters which are actually not dependent on an initial arbitrary guess
and are representative of the corresponding stock index price, under the assumption
that the latter is stationary over the whole time window. The marginal values for the
VG processes are reported in Table 1.

We performed our analysis using the marginal parameters reported above and the
maximal correlation allowed by the model. The idea is indeed that positive and large
dependence must be well described. For each pair of assets, Table 2 gives the maximal
possible value of a, namely a = min{ 1

α1
, 1
α2
} (lower entry) and the corresponding

correlation coefficient ρ (upper entry), obtained using (10) in correspondence to the
maximal a.

1 Since we have the empirical copula only on a grid we use the discrete version of the previous
distance.
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Table 1. Calibrated parameters for the α-VG price processes for the stock indices in the sample

Asset i μi σi αi

S&P −0.65 0.22 0.10
Nasdaq −0.67 0.11 0.13
CAC 40 −0.46 0.10 0.11
FTSE −0.59 0.045 0.031
Nikkei −0.34 0.16 0.10
DAX −0.27 0.13 0.14
Hang Seng −1.68 0.8 0.03

Table 2. Maximal correlation and a-parameter (in parentheses)for the calibratedα-VG models,
all stock indices

S & P Nasdaq CAC 40 FTSE Nikkei Dax

Nasdaq 0.803

(7.590)

CAC 40 0.795 0.701

(9.020) (7.590)

FTSE 0.505 0.410 0.406

(9.791) (7.590) (9.020)

Nikkei 0.556 0.461 0.457 0.284

(9.593) (7.590) (9.020) (9.593)

Dax 0.512 0.536 0.447 0.261 0.294

(7.092) (7.092) (7.092) (7.092) (7.092)

Hang Seng 0.500 0.406 0.403 0.834 0.282 0.259

(9.791) (7.590) (9.020) (31.976) (9.593) (7.092)

3.3 Copula results

We computed the empirical copula Ĉt for the following tenors: t = 0.1, 1, 10, 100.
We report in Table 3 the distances dt corresponding to each pair of stocks and each
time t .

In order to give a qualitative idea of the distances obtained we also provide a
graphical representation of the copula level curves for the pair Nasdaq and S&P at
time t = 1.

We observe that the distance in Table 3 is very low and decreasing in time. The plot
(and similar, unreported ones, for other couples and tenors) reinforces the conclusion.
Therefore the Gaussian copula seems to be a good approximation of the true copula,
at least for long horizons.
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Table 3. Distances between the Gaussian and empirical copula for calibrated α-VG price
processes, over different stock indices and over time t (expressed in years)

t

Pair 0.1 1 10 100

S&P/Nasdaq 0.015 0.0098 0.0098 0.0097

S&P/CAC 40 0.022 0.0098 0.0097 0.0097

S&P/FTSE 0.0101 0.0085 0.0085 0.0085

S&P/Nikkei 0.037 0.0094 0.0091 0.0089

S&P/DAX 0.034 0.0092 0.0088 0.0087

S&P/Hang Seng 0.011 0.0083 0.0084 0.0084

Nasdaq/CAC 40 0.020 0.0095 0.0095 0.0094

Nasdaq/FTSE 0.010 0.0079 0.0079 0.0079

Nasdaq/Nikkei 0.0263 0.0088 0.0085 0.0083

Nasdaq/DAX 0.035 0.0092 0.0088 0.0087

Nasdaq/Hang Seng 0.010 0.0078 0.0079 0.0079

CAC 40/FTSE 0.010 0.0079 0.0079 0.0079

CAC 40/Nikkei 0.0261 0.0088 0.0085 0.0085

CAC 40/DAX 0.0273 0.0088 0.0085 0.0083

CAC 40/Hang Seng 0.010 0.0078 0.0079 0.0079

FTSE/Nikkei 0.0170 0.0078 0.0074 0.0072

FTSE/DAX 0.0165 0.0077 0.0072 0.0071

FTSE/Hang Seng 0.0097 0.0098 0.0098 0.0098

Nikkei/DAX 0.0201 0.0078 0.0074 0.0073

Nikkei/Hang Seng 0.012 0.0071 0.0071 0.0071

DAX/Hang Seng 0.0115 0.0069 0.0069 0.0069

3.4 Measures of dependence

In order to confirm our results we also compare two non-linear dependence measures
obtained simulating the copula with the corresponding ones of the Gaussian copula.

For t = 0.1, 1, 10, 100 we computed the simulated values of Spearman’s rho,
ρ̃S(t), and Kendall’s tau, τ̃ (t), obtained from the empirical copulas. The methodology
is described in Appendix A.

We found the analytical values of the Gaussian copula corresponding to each pair,
by means of the relationships:

ρS = 6

π
arcsin

ρ

2
; τ = 2

π
arcsin ρ. (12)

The results obtained are consistent with respect to the copula distances, as ex-
pected. They confirm the “tendency” towards Gaussian dependence as t increases.
We report below the results for the first index pair, namely S & P-Nasdaq. The others
behave in a similar way.



Multivariate Variance Gamma and Gaussian dependence: a study with copulas 201

Fig. 1. Level curves of the Gaussian (Gaus) and empirical (emp) copula of the α-VG calibrated
price processes, S & P - Nasdaq, after one year

Table 4. Simulated values of ρ̃s (t) and τ̃ (t) for the numerical (Ĉ) and Gaussian copula (Gauss)
over different horizons. S & P/Nasdaq pair

Pair Ĉ0.1 Ĉ1 Ĉ10 Ĉ100 Gauss

S&P/Nasdaq ρ̃s 0.74 0.78 0.79 0.79 0.79
τ̃ 0.54 0.59 0.58 0.59 0.59

4 Conclusions and further research

This paper measures the non-linear dependence of the α-VG process, calibrated to
a set of stock market data, by means of a distance between its empirical copula at
time t and the corresponding Gaussian one, which is characterised by the (constant)
correlation coefficient of the process.

Our empirical analysis suggests that non-linear dependence is “decreasing” in
time, since the approximation given by the Gaussian copula improves in time. As
expected, non-linear dependence coefficients confirm the result. The tentative con-
clusion is that, similarly to marginal non-Gaussianity, which is usually stronger on
short-horizon than on long-horizon returns, joint non-linear dependence and non-
Gaussianity fade over time.

This represents an important point of departure for practical, large-scale imple-
mentations of the α-VG model and of its subcase, the traditional VG model. Any
multivariate derivative price or portfolio risk measure indeed is based on the joint
distribution of returns. If we use a time-varying empirical copula in order to re-assess
prices and risk measures over time, and we want the results to be reliable, exten-
sive and time-consuming simulations are needed. If, on the contrary, we can safely
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approximate the actual copula with the Gaussian one, at least over long horizons,
life becomes much easier. Closed or semi-closed formulas exist for pricing and risk
measurement in the presence of the Gaussian copula (see for instance [1]). Standard
linear correlation can be used for the model joint calibration.

In a nutshell, one can adopt an accurate, non-Gaussian model and safely ignore
non-linear (and non-analytical) dependence, in favour of the linear dependence rep-
resented by the familiar Gaussian copula, provided the horizon is long enough. In
the stock market case analysed here, one year was quite sufficient for non-Gaussian
dependence to be ignored.

Appendix

Simulated measure of dependence

The simulated version of Spearman’s rho at time t , ρ̃S(t), can be obtained from a
sample of N realisations of the processes at time t (xi

1(t), xi
2(t)), i = 1, . . . , N :

ρ̃S(t) = 1− 6

∑N
i=1(Ri − Si)

2

N(N2 − 1)
, (13)

where Ri = Rank(xi
1(t)) and Si = Rank(xi

2(t)). Similarly for Kendall’s tau, τ̃C(t):

τ̃C (t) = c− d(
N
2

) , (14)

where c is the number of concordance pairs of the sample and d the number of discor-
dant ones. A pair (xi

1(t), xi
2(t)) is said to be discordant [concordant] if xi

1(t)x
i
2(t) ≤ 0

[xi
1(t)x

i
2(t) ≥ 0]. The N realisations of the process are obtained as follows:

• Simulate N realisations from the independent laws L(Y1), L(Y2), L(Z ); let them
be respectively yn

1 , yn
2 , zn for n = 1, . . . , N .

• Obtain N realisations (gn
1 , gn

2) of G through the relations G1 = Y1 + Z and
G2 = Y2 + Z .

• Generate N independent random draws from each of the independent random
variables M1 and M2 with laws N(0,G1) and N(0,G2). The draws for M1 in
turn are obtained from N normal distributions with zero mean and variance gn

1 ,
namely

M1(n) = N(0, gn
1 ).

The draws for M2 are from normal distributions with zero mean and variance gn
2 ,

namely
M2(n) = N(0, gn

2 ).
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• Obtain N realisations (xn
1 , xn

2 ) of X(1) by means of the relations

xn
1 = μ1gn

1 + σ1 M1(n)

xn
2 = μ2gn

2 + σ2 M2(n).
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A simple dimension reduction procedure for corporate
finance composite indicators∗

Marco Marozzi and Luigi Santamaria

Abstract. Financial ratios provide useful quantitative financial information to both investors
and analysts so that they can rate a company. Many financial indicators from accounting books
are taken into account. Instead of sequentially examining each ratio, one can analyse together
different combinations of ratios in order to simultaneously take into account different aspects.
This may be done by computing a composite indicator. The focus of the paper is on reducing the
dimension of a composite indicator. A quick and compact solution is proposed, and a practical
application to corporate finance is presented. In particular, the liquidity issue is addressed.The
results suggest that analysts should take our method into consideration as it is much simpler
than other dimension reduction methods such as principal component or factor analysis and is
therefore much easier to be used in practice by non-statisticians (as financial analysts generally
are). Moreover, the proposed method is always readily comprehended and requires milder
assumptions.

Key words: dimension reduction, composite indicator, financial ratios, liquidity

1 Introduction

Financial ratios provide useful quantitative financial information to both investors and
analysts so that they can rate a company. Many financial indicators from accounting
books are taken into account. In general, ratios measuring profitability, liquidity,
solvency and efficiency are considered.

Instead of sequentially examining each ratio, one can analyse different combina-
tions of ratios together in order to simultaneously take into account different aspects.
This can be done by computing a composite indicator.

Complex variables can be measured by means of composite indicators. The basic
idea is to break down a complex variable into components which are measurable
by means of simple (partial) indicators. The partial indicators are then combined to
obtain the composite indicator. To this end one should

∗ The paper has been written by and the proposed methods are due to M. Marozzi. L. Santa-
maria gave helpful comments to present the application results.
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• possibly transform the original data into comparable data through a proper func-
tion T (·) and obtain the partial indicators;

• combine the partial indicators to obtain the composite indicator through a proper
link (combining) function f (·).

If X1, . . . , X K are the measurable components of the complex variable, then the
composite indicator is defined as

M = f (T1(X1), . . . , TK (X K )). (1)

Fayers and Hand [3] report extensive literature on the practical application of com-
posite indicators (the authors call them multi-item measurement scales). In practice,
the simple weighted or unweighted summations are generally used as combining
functions. See Aiello and Attanasio [1] for a review on the most commonly used data
transformations to construct simple indicators.

The purpose of this paper is to reduce the dimensions of a composite indicator
for the easier practice of financial analysts. In the second section, we discuss how to
construct a composite indicator. A simple method to simplify a composite indicator
is presented in Section 3. A practical application to the listed company liquidity issue
is discussed in Section 4. Section 5 concludes with some remarks.

2 Composite indicator computation

Let Xik denote the kth financial ratio (partial component), k = 1, . . . , K , for the ith
company, i = 1, . . . , N . Let us suppose, without loss of generality, that the partial
components are positively correlated to the complex variable. To compute a composite
indicator, first of all one should transform the original data into comparable data in
order to obtain the partial indicators. Let us consider linear transformations. A linear
transformation LT changes the origin and scale of the data, but does not change the
shape

LT (Xik ) = a + bXik, a ∈] −∞,+∞[, b > 0. (2)

Linear transformationsallow us to maintain the same ratio between observations (they
are proportional transformations).

The four linear transformations most used in practice are briefly presented [4].
The first two linear transformations are defined as

LT1(Xik ) = Xik

maxi(Xik )
(3)

and

LT2(Xik ) = Xik −mini (Xik )

maxi (Xik )− mini (Xik )
, (4)

which correspond to LT where a = 0 and b = 1
maxi (Xik )

, and where a =
−mini (Xik )

maxi (Xik )−mini (Xik )
and b = 1

maxi (Xik )−mini (Xik )
respectively. LT1 and LT2 cancel
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the measurement units and force the results into a short and well defined range:
mini (Xik )
maxi (Xik )

≤ LT1(Xik ) ≤ 1 and 0 ≤ LT2(Xik) ≤ 1 respectively. LT1 and LT2 are
readily comprehended.

The third and fourth linear transformations are defined as

LT3(Xik ) = Xik − E(Xk)

S D(Xk)
(5)

and

LT4(Xik) = Xik − M E D(Xk)

M AD(Xk )
, (6)

which correspond to LT where a = −E (Xk)
S D(Xk)

and b = 1
S D(Xk)

, and where a =
−M E D(Xk)
M AD(Xk )

and b = 1
M AD(Xk )

, respectively. LT3(Xik) indicates how far Xik lies from
the mean E(Xk) in terms of the standard deviation S D(Xk). LT4 is similar to LT3 and
uses the median M E D(Xk) instead of the mean as location measure and the median
absolute deviation M AD(Xk ) instead of the standard deviation as scale measure.

By means of LTh (where the subscript h=1, 2, 3 or 4 denotes the various methods)
the original data are transformed into comparable data. The composite indicator is
then defined using the sum as the combining function, in accordance with general
practice (see [1])

Mh,i =
K∑

k=1

LTh(Xik ), h = 1, 2, 3, 4. (7)

Mh,is are used to rank the units. Note that the first and second method may be ap-
plied also to ordered categorical variables, or to mixed variables, partly quantitative
and partly ordered categorical, with the unique concern of how to score the ordered
categories.

In Section 4 we analyse a data set about listed companies, in particular we con-
sider four different liquidity ratios. For the ith company we denote these ratios by
Xi1, Xi2, Xi3, Xi4. Note that T (Xi1), T (Xi2), T (Xi3), T (Xi4) are partial financial
indicators since they correspond to a unique financial ratio: T (Xik ) > T (X jk) lets
the analyst conclude that company i is better than company j for what concerns fi-
nancial ratio Xk (since of course T (Xik ) > T (X jk) ⇔ Xik > X jk), whereas Mi

is a composite financial indicator since it simultaneously considers every financial
ratio. M1, . . . ,MN allow the analyst to rank the companies since Mi > M j means
that company i is better than company j regarding all the financial ratios together.
There is reason to believe that financial ratios are correlated. This central question
is addressed in the next section: a simple method for reducing the number of partial
indicators underlying a composite indicator is proposed.

It is important to emphasise that in this paper we do not consider composite
indicators based on non-linear transformations since Arboretti and Marozzi (2005)
showed that such composite indicators perform better than those based on linear
transformations only when distributions of X1, . . . , X K parent populations are very
heavy-tailed. Preliminary analyses on our data show that parent distributions are
not heavy-tailed. Composite indicators based on non-linear transformations may be
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based for example on the rank transformation of Xiks or on Lago and Pesarin’s [6]
Nonparametric Combination of Dependent Rankings. For details on this matter see
[7] and [8].

3 To reduce the dimension of composite indicators

Let R K (Xk, k ∈ {1, . . . , K }) = RK denote the vector of ranks obtained following
the composite financial indicator

M4,i =
K∑

k=1

Xik − M E D(Xk)

M AD(Xk )
, (8)

computed for i = 1, . . . , N , which combines all the partial financial indicators
X1, . . . , X K . We consider the fourth method because the median absolute devia-
tion is the most useful ancillary estimate of scale [5, p. 107]. Suppose now that Xh is
excluded from the analysis. Let h R K−1(Xk, k ∈ {1, . . . , K } − h) = h R K−1 denote
the corresponding rank vector. If RK and h R K−1 are very similar, it follows that the
exclusion of Xh does not affect the ranking of the companies much. On the contrary,
if the two rank vectors are very different, by leaving out Xh the ranking process
is greatly influenced. To estimate the importance of Xh we compute the Spearman
correlation coefficient between RK and h R K−1

s(R K ,h R K−1) = 1− 6
∑N

i=1(R K [i] −h R K−1[i])2

N(N2 − 1)
, (9)

where RK [i] and h RK−1[i] are the ith element of the corresponding vector. The
closer s is to 1, the less important Xh is. The idea is to leave out the partial indicator
Xh that brings the greatest s(RK ,h R K−1). The procedure may be repeated for the
K −2 rankings obtained by leaving out one more partial indicator. Let Xl be the next
indicator that is excluded from the ranking process. We compute l,h R K−2(Xk, k ∈
{1, . . . , K } − {l, h}) =l,h R K−2 and s(h R K−1,l,h R K−2) for l = 1, . . . , K , l �= h.
The partial indicator that brings the greatest s should be excluded, and so on.

Even if the whole procedure naturally lasts until only one partial indicator is left to
be used by financial analysts, a natural question arises: when should the partial indi-
cator exclusion procedure be stopped? That is, how many partial financial indicators
should be excluded? Within this framework, it is assumed that the best ranking is the
one based on all the partial indicators. Of course, there is a trade-off between infor-
mation and variable number reduction. A natural stopping rule is: stop the procedure
as soon as the correlation coefficient is less than a fixed value.

4 A practical application

We present an application of the procedure for reducing the dimension of corporate
finance composite indicators. More precisely, the liquidity issue is considered. The
aim is to rate a set of companies on the basis of the following liquidity ratios.
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The current ratio

X1 = total current assets

total current liabilities
, (10)

indicates the company’s ability to meet short-term debt obligations; the higher the
ratio, the more liquid the company is. If the current assets of a company are more
than twice the current liabilities, then that company is generally considered to have
good short-term financial strength. If current liabilities exceed current assets, then the
company may have problems meeting its short-term obligations.

The quick ratio

X2 = total current assets – inventory

total current liabilities
, (11)

is a measure of a company’s liquidity and ability to meet its obligations. It expresses
the true working capital relationship of its cash, accounts receivables, prepaids and
notes receivables available to meet the company’s current obligations. The higher the
ratio, the more financially strong the company is: a quick ratio of 2 means that for
every euro of current liabilities there are two euros of easily convertible assets.

The interest coverage ratio

X3 = earnings before interest and taxes

interest expenses
. (12)

The lower the interest coverage ratio, the larger the debt burden is on the company. It
is a measure of a company ability to meet its interest payments on outstanding debt.
A company that sustains earnings well above its interest requirements is in a good
position to weather possible financial storms.

The cash flow to interest expense ratio

X4 = cash flow

interest expenses
. (13)

The meaning is clear: a cash flow to interest expense ratio of 2 means that the company
had enough cash flow to cover its interest expenses two times over in a year.

These ratios are important in measuring the ability of a company to meet both
its short-term and long-term obligations. To address company liquidity, one may
sequentially examine each ratio that addresses the problem from a particular (partial)
point of view. For example, the current ratio as well as the quick ratio are regarded as
a test of liquidity for a company, but while the first one expresses the working capital
relationship of current assets available to meet the company’s current obligations, the
second one expresses the true working capital relationship of current assets available
to meet current obligations since it eliminates inventory from current assets. This
is particularly important when a company is carrying heavy inventory as part of
its current assets, which might be obsolete. However, it should be noted that in the
literature the order of their importance is not clear. For more details see for example [9].

A dataset about 338 companies listed on the main European equity markets has
been analysed. We consider listed companies because they have to periodically send
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out financial information following standard rules. First

Mi =
4∑

k=1

Xik − M E D(Xk)

M AD(Xk )
, i = 1, . . . , 338 (14)

is computed. This is a composite indicator of liquidity for company i which takes
into account simultaneously the partial liquidity indicators X1, X2, X3, X4. Then,
the corresponding rank vector R4(X1, X2, X3, X4) = R4 is computed. This vector
has been compared to the vectors corresponding to the consideration of three partial
indicators: 4 R3(X1, X2, X3) = 4 R3, 3 R3(X1, X2, X4) = 3 R3, 2 R3(X1, X3, X4) =
2 R3 and 1 R3(X2, X3, X4) = 1 R3, through the Spearman correlation coefficient. In
the first step of the procedure the quick ratio X2 left the analysis since we have

s(R4,4 R3) = 0.9664, s(R4,3 R3) = 0.9107,

s(R4,2 R3) = 0.9667, s(R4,1 R3) = 0.9600.

In the second step, we compare 2 R3(X1, X3, X4) = 2 R3 with 4,2 R2(X1, X3) =
4,2 R2, 3,2 R2(X1, X4) = 3,2 R2 and 1,2 R2(X3, X4) = 1,2 R2. The cash flow to interest
expense ratio X4 left the analysis since we have

s(2 R3,4,2 R2) = 0.956, s(2 R3,3,2 R2) = 0.909, s(2 R3,1,2 R2) = 0.905.

In the last step, the current ratio X1 left the analysis since it is s(4,2 R2,3,4,2 R1) =
0.672 and s(4,2 R2,1,4,2 R1) = 0.822.

We conclude that the ranking obtained by considering together X1, X2, X3, X4
is similar to that based on the interest coverage ratio X3, and then the analyst is sug-
gested to focus on X3 in addressing the liquidity issue of the companies. Our method
reduces the information included in the original data by dropping the relatively unim-
portant financial data. These dropped financial data, however, might have important
information in comparing a certain set of companies. For example, the quick ratio X2

has been excluded in the first step of the procedure, and then the inventory has not
become an aspect for the analyst to decide whether to invest in a company or not. But
depending on Rees [9, p. 195], the market reaction to earnings disclosure of small
firms is great. If the inventory becomes large, the smaller firms might go bankrupt
because they cannot stand its cost, whereas the larger firms endure it. Moreover there
may be a lot of seasonality effect on sales because monthly sales may differ greatly.
This affects small firms deeply; in fact many studies have suggested that the bulk of
the small firm effect is concentrated in certain months of the year [9, p. 180]. There-
fore it might not be possible to apply the results of this paper to smaller firms without
taking into account the inventory issue. Moreover, the importance of the financial data
available differs among industries. For example, the importance of inventory might
be different between the manufacturing industry and the financial industry. In general,
the importance of financial data may vary between the comparison among the whole
set of companies and the selected set of certain companies. For financial analysts the
comparison should be done to selected sets of companies. The analysis of variance
can help in evaluating the bias generated from this method.
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To evaluate if our result depends on the company capitalisation, we divide the
companies into two groups: the 194 companies with a capitalisation less than EUR
five billion and the remaining 146 with a capitalisation greater than EUR five billion.
We adopted the same criterion used by the anonymous financial firm that gave us the
data. For the “small cap” companies we obtained the following results

s′(R4,4 R3) = 0.954, s′(R4,3 R3) = 0.903, s′(R4,2 R3) = 0.969, s′(R4,1 R3) = 0.953;
s′(2 R3,4,2 R2) = 0.944, s′(2 R3,3,2 R2) = 0.909, s′(2 R3,1,2 R2) = 0.907;

s′(2,4 R2,3,2,4 R1) = 0.689, s′(2,4 R2,1,2,4 R1) = 0.817;

therefore the first liquidity ratio that is excluded is the quick ratio X2, the second
is the cash flow to interest expense ratio X4 and finally the current ratio X1. The
procedure suggests focusing on the interest coverage ratio X3 when ranking the small
cap companies.

For the “large cap” companies we obtained the following results

s′′(R4,4 R3) = 0.977, s′′(R4,3 R3) = 0.931, s′′(R4,2 R3) = 0.974, s′′(R4,1 R3) = 0.967;
s′′(4 R3,3,4 R2) = 0.781, s′′(4 R3,2,4 R2) = 0.967, s′′(4 R3,1,4 R2) = 0.959;

s′′(2,4 R2,3,2,4 R1) = 0.698, s′′(2,4 R2,1,2,4 R1) = 0.808.

These results are again similar to those obtained before, both for all the companies
and for the small cap ones. The conclusion is that the dimension reduction procedure
is not much affected by the fact that a company is a large cap one or a small cap
one. It should be cautioned that this result (as well as the other ones) applies only
to the data set that has been considered in the paper, but the analysis may be easily
applied to other data sets or to other financial ratios (efficiency, profitability, . . . ).
Moreover, attention should be paid to the industry sector the companies belong to.
For example, as we have already noted, the role of the inventory might be different
between the manufacturing industry and the financial industry. Therefore we suggest
financial analysts to group the companies on the basis of the industry sector before
applying the reduction procedure. This question is not addressed here and requires
further research.

The data have been reanalysed through principal component analysis, which is the
most used dimension reduction method. Principal component analysis suggests that
there are two principal components, the first explains 62.9% and the second 30.2%
of the variance. The first component is a weighted mean of the liquidity ratios with
similar weights so that it may be seen as a sort of generic indicator for company
liquidity. The loadings on component one are 0.476 for X1, 0.488 for X2, 0.480 for
X3 and 0.552 for X4. The loadings on component two are respectively 0.519, 0.502,
−0.565 and−0.399. Note that the loadings are positive for X1 and X2, which compare
assets with liabilities, while they are negative for X3 and X4, which are measures of
company ability to meet its interest payments on outstanding debt. The correlation
between the ranking based on X3 and that based on the first principal component
is 0.936. Therefore the rankings are very similar, but the method proposed in this
paper is simpler to understand and be employed by financial analysts, who do not
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do not usually have a strong background in statistics. From the practical point of
view, our method is more natural since it imitates what many analysts implicitly do in
practice by focusing on the most important aspects, discarding the remaining ones. It
is always readily comprehended, while principal components are often quite difficult
to be actually interpreted. From the theoretical point of view, a unique and very mild
assumption should be fulfilled for using our method: that financial ratios follow the
larger the better rule. We do not have to assume other hypotheses, that on the contrary
should be generally assumed by other dimension reduction methods such as principal
component (think for example about the hypothesis of linearity) or factor analysis.
Moreover, it is important to emphasise that, if one considers the first or second linear
transformation method, the composite indicator simplifying procedure may be applied
also to ordered categorical variables, or to mixed ones, partly quantitative and partly
ordered categorical, with the unique concern of how to score the ordered categories.

5 Conclusions

When a financial analyst rates a company, many financial ratios from its accounting
books are considered. By computing a composite indicator the analyst can analyse
different combinations of ratios together instead of sequentially considering each ratio
independently from the other ones. This is very important since ratios are generally
correlated. A quick and compact procedure for reducing the number of ratios at the
basis of a composite financial indicator has been proposed. A practical application to
the liquidity issue has been discussed. We ranked a set of listed companies by means
of composite indicators that considered the following liquidity ratios: the current
ratio, the quick ratio, the interest coverage ratio and the cash flow to interest expense
ratio. The results suggest that analysts should focus on the interest coverage ratio in
addressing the liquidityissue of the companies. By applying also principal component
analysis to the data at hand we showed that our dimension reduction method should be
preferred because it is always readily comprehended and much simpler. Moreover it
requires a unique and very mild assumption: that financial ratios follow the larger the
better rule. However, financial analysts should pay attention to the industry sector the
companies belong to. We suggest that financial analysts should group the companies
on the basis of the industry sector before applying our reduction procedure.
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Sessioni Plenarie e Specializzate, CLEUP, Padova, pp. 327–338 (2004)

2. Arboretti Giancristofaro, R., Marozzi, M.: A comparison of different methods for the
construction ofcomposite indicators. In:Atti del IV Convegno ModelliComplessi e Metodi
Computazionali Intensivi per la Stima e la Previsione, CLEUP, Padova, pp. 109–114 (2005)

3. Fayers, P.M., Hand, D.J.: Casual variables, indicator variables and measurement scales:
an example from quality of life. J. R. Stat. Soc. A 165, 233–261 (2002)



A simple dimension reduction procedure for corporate finance composite indicators 213

4. Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding Robust and Exploratory Data
Analysis. Wiley, New York (1983)

5. Huber, P.J.: Robust Statistics. Wiley, New York (1981)
6. Lago, A., Pesarin, F.: Non parametric combination of dependent rankings with application

to the quality assessment of industrial products. Metron, LVIII 39–52 (2000)
7. Marozzi, M., Bolzan, M.: A non-parametric index of accessibility of services for house-

holds. In: Towards Quality of Life Improvement. The Publishing House of the Wroclaw
University of Economics, Wroclaw, pp. 152–167 (2006)

8. Marozzi, M., Santamaria, L.: Composite indicators for finance. Ital. J. Appl. Stat. 19,
271–278 (2007)

9. Rees, B.: Financial Analysis. Prentice Hall, Harlow (1995)





The relation between implied and realised volatility in
the DAX index options market

Silvia Muzzioli

Abstract. The aim of this paper is to investigate the relation between implied volatility, histor-
ical volatility and realised volatility in the DAX index options market. Since implied volatility
varies across option type (call versus put) we run a horse race of different implied volatility
estimates: implied call and implied put. Two hypotheses are tested in the DAX index options
market: unbiasedness and efficiency of the different volatility forecasts. Our results suggest
that both implied volatility forecasts are unbiased (after a constant adjustment) and efficient
forecasts of future realised volatility in that they subsume all the information contained in
historical volatility.

Key words: volatility forecasting, Black-Scholes Implied volatility, put-call parity

1 Introduction

Volatility is a key variable in option pricing models and risk management techniques
and has drawn the attention of many theoretical and empirical studies aimed at assess-
ing the best way to forecast it. Among the various models proposed in the literature in
order to forecast volatility, we distinguish between option-based volatility forecasts
and time series volatility models. The former models use prices of traded options
in order to unlock volatility expectations while the latter models use historical in-
formation in order to predict future volatility (following [17], in this set we group
predictions based on past standard deviation, ARCH conditional volatility models
and stochastic volatility models). Many empirical studies have tested the forecasting
power of implied volatility versus a time series volatility model.

Some early contributions find evidence that implied volatility (IV) is a biased
and inefficient forecast of future realised volatility (see e.g., [2,6,14]). Although the
results of some of these studies (e.g., [6,14]) are affected by overlapping samples, as
recalled by [4], or mismatching maturities between the option and the volatility fore-
cast horizon, they constitute early evidence against the unbiasedness and information
efficiency of IV. More recently, several papers analyse the empirical performance of
IV in various option markets, ranging from indexes, futures or individual stocks and
find that IV is unbiased and an efficient forecast of future realised volatility. In the
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index options market, Christensen and Prabhala [5] examine the relation between IV
and realised volatility using S&P100 options, over the time period 1983–1995. They
find that IV is a good predictor of future realised volatility. Christensen et al. [4] use
options on the S&P100 and non-overlapping samples and find evidence for the effi-
ciency of IV as a predictor of future realised volatility. In the futures options market
Ederington and Guan [8] analyse the S&P500 futures options market and find that
IV is an efficient forecast of future realised volatility. Szakmary et al. [19] consider
options on 35 different futures contracts on a variety of asset classes. They find that
IV, while not a completely unbiased estimate of future realised volatility, has more
informative power than past realised volatility. In the stock options market, Godbey
and Mahar [10] analyse the information content of call and put IV extracted from
options on 460 stocks that compose the S&P500 index. They find that IV contains
some information on future realised volatility that is superior both to past realised
volatility and to a GARCH(1,1) estimate.

Option IV differs depending on strike price of the option (the so called smile
effect), time to maturity of the option (term structure of volatility) and option type
(call versus put). As a consequence, in the literature there is an open debate about
which option class is most representative of market volatility expectations. As for the
moneyness dimension, most of the studies use at the money options (or close to the
money options) since they are the most heavily traded and thus the most liquid. As
for the time to maturity dimension, the majority of the studies use options with time
to maturity of one month in order to make it equal to the sampling frequency and the
estimation horizon of realised volatility. As for the option type, call options are more
used than put options. As far as we know, there is little evidence about the different
information content of call or put prices. Even if, theoretically, call and put are linked
through the put-call parity relation, empirically, given that option prices are observed
with measurement errors (stemming from finite quote precision, bid-ask spreads, non-
synchronous observations and other measurement errors), small errors in any of the
input may produce large errors in the output (see e.g., [12]) and thus call IV and put IV
may be different. Moreover, given that put options are frequently bought for portfolio
insurance, there is a substantial demand for puts that is not available for the same
call options. Also, in [15] we have proved that the use of both call and put options
improves the pricing performance of option implied trees, suggesting that call and
put may provide different information. Fleming [9] investigates the implied-realised
volatility relation in the S&P100 options market and finds that call IV has slightly
more predictive power than put IV. In the same market, Christensen and Hansen [3]
find that both call and put IV are informative of future realized volatility, even if call
IV performs slightly better than put IV. Both studies use American options and need
the estimation of the dividend yield. These two aspects influence call and put options
in a different manner and may alter the comparison if not properly addressed.

The aim of the paper is to explore the relation between call IV, put IV, historical
volatilityand realised volatility in the DAX index option market. The market is chosen
for two main reasons: (i) the options are European, therefore the estimation of the
early exercise premium is not needed and cannot influence the results; (ii) the DAX
index is a capital weighted performance index composed of 30 major German stocks
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and is adjusted for dividends, stocks splits and changes in capital. Since dividends
are assumed to be reinvested into the shares, they do not affect the index value. The
plan of the paper is the following. In Section 2 we illustrate the data set used, the
sampling procedure and the definition of the variables. In Section 3 we describe
the methodology used in order to address the unbiasedeness and efficiency of the
different volatility forecasts. In Section 4 we report the results of the univariate and
encompassing regressions and we test our methodology for robustness. Section 5
concludes.

2 The data set, the sampling procedure and the definition of the
variables

Our data set consists of daily closing prices of at the money call and put options on
the DAX index, with one-month maturity recorded from 19 July 1999 to 6 December
2006. The data source is DATASTREAM. Each record reports the strike price, expi-
ration month, transaction price and total trading volume of the day separately for call
and put prices. We have a total of 1928 observations. As for the underlying we use
the DAX index closing prices recorded in the same time period. As a proxy for the
risk-free rate we use the one-month Euribor rate. DAX options are European options
on the DAX index, which is a capital weighted performance index composed of 30
major German stocks and is adjusted for dividends, stock splits and changes in capital.
Since dividends are assumed to be reinvested into the shares, they do not affect the
index value, therefore we do not have to estimate the dividend payments. Moreover,
as we deal with European options, we do not need the estimation of the early exercise
premium. This latter feature is very important since our data set is by construction
less prone to estimation errors if compared to the majority of previous studies that
use American-style options. The difference between European and American options
lies in the early exercise feature. The Black-Scholes formula, which is usually used
in order to compute IV, prices only European-style options. For American options
adjustments have to be made: for example, Barone-Adesi and Whaley [1] suggest a
valuation formula based on the decomposition of the American option into the sum of
a European option and a quasi-analytically estimated early exercise premium. How-
ever, given the difficulty in implementing the Barone-Adesi and Whaley model, many
papers (see e.g., [5]) use the Black and Scholes formula also for American options.
Given that American option prices are generally higher than European ones, the use
of the Black-Scholes formula will generate an IV that overstates the true IV.

In order to avoid measurement errors, the data set has been filtered according to
the following filtering constraints. First, in order not to use stale quotes, we elimi-
nate dates with trading volume less than ten contracts. Second, we eliminate dates
with option prices violating the standard no arbitrage bounds. After the application
of the filters, we are left with 1860 observations out of 1928. As for the sampling
procedure, in order to avoid the telescoping problem described in [4], we use monthly
non-overlapping samples. In particular, we collect the prices recorded on the Wednes-
day that immediately follows the expiry of the option (third Saturday of the expiry
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month) since the week immediately following the expiration date is one of the most
active. These options have a fixed maturity of almost one month (from 17 to 22 days
to expiration). If the Wednesday is not a trading day we move to the trading day im-
mediately following. The IV, provided by DATASTREAM, is obtained by inverting
the Black and Scholes formula as a weighted average of the two options closest to
being at the money and is computed for call options (σc) and for put options (σp). IV
is an ex-ante forecast of future realised volatility in the time period until the option
expiration. Therefore we compute the realised volatility (σr ) in month t as the sample
standard deviation of the daily index returns over the option’s remaining life:

σr =
√√√√ 1

n − 1

n∑
i=1

(Ri − R)2,

where Ri is the return of the DAX index on day i and R is the mean return of the DAX
index in month t . We annualise the standard deviation by multiplying it by

√
252.

In order to examine the predictive power of IV versus a time series volatility
model, following prior research (see e.g., [5, 13]), we choose to use the lagged (one
month before) realised volatility as a proxy for historical volatility (σh ). Descriptive
statistics for volatility and log volatility series are reported in Table 1. We can see
that on average realised volatility is lower than both IV estimates, with call IV being
slightly higher than put IV. As for the standard deviation, realised volatility is slightly
higher than both IV estimates. The volatility series are highly skewed (long right
tail) and leptokurtic. In line with the literature (see e.g., [13]) we decided to use the
natural logarithm of the volatility series instead of the volatility itself in the empirical
analysis for the following reasons: (i) log-volatility series conform more closely to
normality than pure volatility series: this is documented in various papers and it is the
case in our sample (see Table 1); (ii) natural logarithms are less likely to be affected
by outliers in the regression analysis.

Table 1. Descriptive statistics

Statistic σc σp σr ln σc ln σp ln σr

Mean 0.2404 0.2395 0.2279 −1.51 −1.52 −1.6
Std dev 0.11 0.11 0.12 0.41 0.41 0.49
Skewness 1.43 1.31 1.36 0.49 0.4 0.41
Kurtosis 4.77 4.21 4.37 2.73 2.71 2.46
Jarque Bera 41.11 30.28 33.68 3.69 2.68 3.54
p-value 0.00 0.00 0.00 0.16 0.26 0.17
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3 The methodology

The information content of IV is examined both in univariate and in encompassing
regressions. In univariate regressions, realised volatility is regressed against one of
the three volatility forecasts (call IV (σc), put IV (σp), historical volatility (σh)) in
order to examine the predictive power of each volatility estimator. The univariate
regressions are the following:

ln(σr ) = α + β ln(σi ), (1)

whereσr is realised volatility andσi is volatility forecast, i = h, c, p. In encompassing
regressions, realised volatility is regressed against two or more volatility forecasts in
order to distinguish which one has the highest explanatory power. We choose to
compare pairwise one IV forecast (call, put) with historical volatility in order to see if
IV subsumes all the information contained in historical volatility. The encompassing
regressions used are the following:

ln(σr ) = α + β ln(σi )+ γ ln(σh ), (2)

where σr is realised volatility, σi is implied volatility, i = c, p and σh is historical
volatility. Moreover, we compare call IV and put IV in order to understand if the
information carried by call (put) prices is more valuable than the information carried
by put (call) prices:

ln(σr ) = α + β ln(σp)+ γ ln(σc), (3)

where σr is realised volatility, σc is call IV and σp is put IV.
Following [4], we tested three hypotheses in the univariate regressions (2). The

first hypothesis concerns the amount of information about future realised volatility
contained in the volatility forecast. If the volatility forecast contains some information,
then the slope coefficient should be different from zero. Therefore we test if β = 0 and
we see whether it can be rejected. The second hypothesis is about the unbiasedness
of the volatility forecast. If the volatility forecast is an unbiased estimator of future
realised volatility, then the intercept should be zero and the slope coefficient should
be one (H0: α = 0 and β = 1). In case this latter hypothesis is rejected, we see if at
least the slope coefficient is equal to one (H0: β = 1) and, if not rejected, we interpret
the volatility forecast as unbiased after a constant adjustment. Finally if IV is efficient
then the error term should be white noise and uncorrelated with the information
set. In encompassing regressions there are three hypotheses to be tested. The first is
about the efficiency of the volatility forecast: we test whether the volatility forecast
(call IV, put IV) subsumes all the information contained in historical volatility. In
affirmative case the slope coefficient of historical volatility should be equal to zero,
(H0: γ = 0). Moreover, as a joint test of information content and efficiency we test
if the slope coefficients of historical volatility and IV (call, put) are equal to zero and
one respectively (H0: β = 1 and γ = 0). Following [13], we ignore the intercept in
the latter null hypothesis, and if our null hypothesis is not rejected, we interpret the
volatility forecast as unbiased after a constant adjustment. Finally we investigate the
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different information content of call IV and put IV. To this end we test, in augmented
regression (4), if γ = 0 and β = 1, in order to see if put IV subsumes all the
information contained in call IV.

In contrast to other papers (see e.g., [3,5]) that use American options on dividend
paying indexes, our data set of European-style options on a non-dividend paying
index is free of measurement errors that may arise in the estimation of the dividend
yield and the early exercise premium. Nonetheless, as we are using closing prices for
the index and the option that are non-synchronous (15 minutes’ difference) and we
are ignoring bid ask spreads, some measurement errors may still affect our estimates.
Therefore we adopt an instrumental variable procedure, we regress call (put) IV on an
instrument (in univariate regressions) and on an instrument and any other exogenous
variable (in encompassing and augmented regressions) and replace fitted values in the
original univariate and encompassing regressions. As the instrument for call (put) IV
we use both historical volatility and past call (put) IV as they are possibly correlated
to the true call (put) IV, but unrelated to the measurement error associated with call
(put) IV one month later. As an indicator of the presence of errors in variables we
use the Hausman [11] specification test statistic. The Hausman specification test is
defined as: βT SL S−βOLS

V AR(βT SL S )−V AR(βOLS)
where: βT S L S is the beta obtained through the

Two Stages Least Squares procedure, βO L S is the beta obtained through the Ordinary
Least Squares (OLS) procedure and V ar(x) is the variance of the coefficient x . The
Hausman specification test is distributed as a χ2(1).

4 The results

The results of the OLS univariate (equation (2)), encompassing (equation (3)), and
augmented (equation (4)) regressions are reported in Table 2. In all the regressions
the residuals are normal, homoscedastic and not autocorrelated (the Durbin Watson
statistic is not significantly different from two and the Breusch-Godfrey LM test
confirms no autocorrelation up to lag 12). First of all, in the three univariate regressions
all the beta coefficients are significantly different from zero: this means that all three
volatility forecasts (call IV, put IV and historical) contain some information about
future realised volatility. However, the null hypothesis that any of the three volatility
forecasts is unbiased is strongly rejected in all cases. In particular, in our sample,
realised volatility is on average a little lower than the two IV forecasts, suggesting that
IV overpredicts realised volatility. The adjusted R2 is the highest for put IV, closely
followed by call IV. Historical volatility has the lowest adjusted R2. Therefore put
IV is ranked first in explaining future realised volatility, closely followed by call IV,
while historical volatility is the last. The null hypothesis that β is not significantly
different from one cannot be rejected at the 10% critical level for the two IV estimates,
while it is strongly rejected for historical volatility. Therefore we can consider both
IV estimates as unbiased after a constant adjustment given by the intercept of the
regression.

In encompassing regressions (3) we compare pairwise call/put IV forecast with
historical volatility in order to understand if IV subsumes all the information contained



The relation between implied and realised volatility 221

in historical volatility.The results are striking and provide strong evidence for both the
unbiasedness and efficiency of both IV forecasts. First of all, from the comparison of
univariate and encompassing regressions, the inclusion of historical volatility does not
improve the goodness of fit according to the adjusted R2. In fact, the slope coefficient
of historical volatility is not significantly different from zero at the 10% level in
the encompassing regressions (3), indicating that both call and put IV subsume all
the information contained in historical volatility. The slope coefficients of both call
and put IV are not significantly different from one at the 10% level and the joint
test of information content and efficiency (γ = 0 and β = 1) does not reject the
null hypothesis, indicating that both IV estimates are efficient and unbiased after a
constant adjustment.

In order to see if put IV has more predictive power than call IV, we test in aug-
mented regression (3) if γ = 0 and β = 1. The joint test γ = 0 and β = 1 does not
reject the null hypothesis. We see that the slope coefficient of put IV is significantly
different from zero only at the 5% level, while the slope coefficient of call IV is not
significantly different from zero. As an additional test we regress ln(σc) on ln(σp)
(ln(σp) on ln(σc)) and retrieve the residuals. Then we run univariate regression (2)
for ln(σc) (ln(σp)) using as an additional explanatory variable the residuals retrieved
from the regression of ln(σc) on ln(σp) (ln(σp) on ln(σc)). The residuals are signifi-
cant only in the regression of ln(σr ) on ln(σc), pointing to the fact that put IV contains
slightly more information on future realised volatility than call IV.

A possible concern is the problem of data snooping, which occurs when the
properties of a data set influence the choice of the estimator or test statistic (see
e.g., [7]) and may arise in a multiple regression model, when a large number of
explanatory variables are compared and the selection of the candidate variables is
not based on a financial theory (e.g., in [20] 3654 models are compared to a given
benchmark, in [18] 291 explanatory variables are used in a multiple regression). This
is not the case in our regressions, since (i) we do not have any parameter to estimate,
(ii) we use only three explanatory variables: historical volatility, call IV and put IV,
that are compared pairwise in the regressions and (iii) the choice has been made on the
theory that IV, being derived from option prices, is a forward-looking measure of ex
post realised volatility and is deemed as the market’s expectation of future volatility.
Finally, in order to test the robustness of our results and see if IV has been measured
with errors, we adopt an instrumental variable procedure and run a two-stage least
squares. The Hausman [11] specification test, reported in the last column of Table 2,
indicates that the errors in variables problem is not significant in univariate regressions
(2), in encompassing regressions (3) or in augmented regression (4).1 Therefore we
can trust the OLS regression results.

In our sample both IV forecasts obtain almost the same performance, with put IV
marginally better than call IV. These results are very different from the ones obtained
both in [3] and in [9]. The difference can possibly be attributed to the option exercise
feature, which in our case is European and not American, and to the underlying index

1 In augmented regression (4) the instrumental variables procedure is used for the variable
ln(σp).
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Table 2. OLS regressions

Intercept ln(σc) ln(σp) ln(σh ) Ad j R2 DW χ2a χ2b Hausman Test

−0.01 1.05*** 0.77 1.73 13.139 0.10021
(0.915) (0.000) (0.00)
−0.018 1.047*** 0.76 1.77 13.139 0.25128
(0.853) (0.000) (0.00)
−0.29 0.82 0.65 2.12 7.517
(0.008) (0.000) (0.02)
−0.02 0.938*** 0.10+++ 0.76 1.87 1.288 0.47115
(0.850) (0.000) (0.400) (0.53)
−0.01 0.9631*** 0.082+++ 0.77 1.80 1.158 0.95521
(0.915) (0.000) (0.489) (0.56)
0.0006 0.372 0.6861*** 0.77 1.74 2.04 0.14977
(0.994) (0.244) (0.033) (0.35)

a Note: The numbers in brackets are the p-values. The χ2a column reports the statistic of a
χ2 test for the joint null hypothesis α = 0 and β = 1 in the following univariate regressions
ln(σr ) = α+β ln(σi )whereσr = realized volatility and σi= volatility forecast, i = h, c, p. The
χ2b column reports the statistic of a χ2 test for the joint null hypothesisγ = 0 and β = 1 in the
following regressions: ln(σr ) = α + β ln(σi ) + γ ln(σh ), ln(σr ) = α + β ln(σp)+ γ ln(σc),
where σr = realized volatility, σi= volatility forecast, i = c, p and σh = historical volatility.
The superscripts ***, **, * indicate that the slope coefficient is not significantly different from
one at the 10%, 5% and 1% critical level respectively. The superscripts +++, ++, + indicate
that the slope coefficient is not significantly different from zero at the 10%, 5% and 1% critical
level respectively. The last column reports the Hausman [11] specification test statistic (one
degree of freedom), where the 5% critical level is equal to 3.841.

features, which in our case do not require the dividend payment estimation. Another
possible explanation stems from the characteristics of the data set used. In particular
in our case put IV was on average lower than call IV, while in [3] the opposite is true.
As IV usually overpredicts realised volatility, if a choice has to be made between call
and put IV, a rule of thumb can be to choose the lowest of the two.

5 Conclusions

In this paper we have investigated the relation between IV, historical volatility and
realised volatility in the DAX index options market. Since IV varies across option type
(call versus put), we have run a horse race of different IV estimates: call IV, put IV. Two
hypotheses have been tested: unbiasedness and efficiency of the different volatility
forecasts. Our results suggest that both IV forecasts contain more information about
future realised volatility than historical volatility. In particular, they are unbiased
(after a constant adjustment) and efficient forecasts of realised volatility in that they
subsume all the information contained in historical volatility. In our sample both IV
forecasts obtain almost the same performance, with put IV marginally better than call
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IV. This is an interesting result and is a warning against the a priori choice of using
call IV. The recent turmoil in financial markets caused by the current financial crisis
has determined high levels of volatility. High on the research agenda is to test the
unbiasedness and efficiency hypotheses using the most recent volatility data.
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Binomial algorithms for the evaluation of options on
stocks with fixed per share dividends

Martina Nardon and Paolo Pianca

Abstract. We consider options written on assets which pay cash dividends. Dividend payments
have an effect on the value of options: high dividends imply lower call premia and higher
put premia. Recently, Haug et al. [13] derived an integral representation formula that can be
considered the exact solution to problems of evaluating both European and American call
options and European put options. For American-style put options, early exercise may be
optimal at any time prior to expiration, even in the absence of dividends. In this case, numerical
techniques,such as lattice approaches,are required. Discrete dividends produce discrete shift in
the tree; as a result, the tree is no longer reconnectingbeyond any dividend date. While methods
based on non-recombining trees give consistent results, they are computationally expensive.
In this contribution, we analyse binomial algorithms for the evaluation of options written on
stocks which pay discrete dividends and perform some empirical experiments, comparing the
results in terms of accuracy and speed.

Key words: options on stocks, discrete dividends, binomial lattices

1 Introduction

We consider options written on assets which pay dividends. Dividends are announced
as a pure cash amount D to be paid at a specified ex-dividend date tD. Empirically,
one observes that at the ex-dividend date the stock price drops. Hence dividends imply
lower call premia and higher put premia. In order to exclude arbitrage opportunities,
the jump in the stock price should be equal to the size of the net dividend. Since we
cannot use the proportionality argument, the price dynamics depend on the timing of
the dividend payment.

Usually, derivative pricing theory assumes that stocks pay known dividends, both
in size and timing. Moreover, new dividends are often supposed to be equal to the
former ones. Even if these assumptions might be too strong, in what follows we
assume that we know both the amount of dividends and times in which they are paid.

Valuation of options on stocks which pay discrete dividends is a rather hard
problem which has received a lot of attention in the financial literature, but there is
much confusion concerning the evaluation approaches. Different methods have been

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010



226 M. Nardon and P. Pianca

proposed for the pricing of both European and American options on dividend paying
stocks, which suggest various model adjustments (such as, for example, subtracting
the present value of the dividend from the asset spot price). Nevertheless, all such
approximations have some drawbacks and are not so efficient (see e.g., Haug [11] for
a review).

Haug and Haug [12] and Beneder and Vorst [2] propose a volatility adjustment
which takes into account the timing of the dividend. The idea behind the approximation
is to leave volatility unchanged before the dividend payment and to apply the adjusted
volatility after the dividend payment. This method performs particularly poorly in the
presence of multiple dividends. A more sophisticated volatility adjustment to be used
in combination with the escrowed dividend model is proposed by Bos et al. [4]. The
method is quite accurate for most cases. Nevertheless, for very large dividends, or in
the case of multiple dividends, the method can yield significant mispricing. A slightly
different implementation (see Bos and Vandermark [5]) adjusts both the stock price
and the strike. The dividends are divided into two parts, called “near” and “far”,
which are used for the adjustments to the spot and the strike price respectively. This
approach seems to work better than the approximation mentioned above. Haug et
al. [13] derive an integral representation formula that can be considered the exact
solution to problems of evaluating both European and American call options and
European put options. Recently, de Matos et al. [7] derived arbitrarily accurate lower
and upper bounds for the value of European options on a stock paying a discrete
dividend.

For American-style put options, it can be optimal to exercise at any time prior to
expiration, even in the absence of dividends. Unfortunately, no analytical solutions
for both the option price and the exercise strategy are available, hence one is generally
forced to numerical solutions, such as binomial approaches. As is well known (see
Merton [14]), in the absence of dividends, it is never optimal to exercise an American
call before maturity. If a cash dividend payment is expected during the lifetime of
the option, it might be optimal to exercise an American call option right before the
ex-dividend date, while for an American put it may be optimal to exercise at any point
in time until maturity.

Lattice methods are commonly used for the pricing of both European and Ameri-
can options. In the binomial model (see Cox et al. [6]), the pricing problem is solved
by backward induction along the tree. In particular, for American options, at each
node of the lattice one has to compare the early exercise value with the continuation
value.

In this contribution, we analyse binomial algorithms for the evaluation of op-
tions written on stocks which pay discrete dividends of both European and American
types. In particular, we consider non-recombining binomial trees, hybrid binomial
algorithms for both European and American call options, based on the Black-Scholes
formula for the evaluation of the option after the ex-dividend date and up to maturity; a
binomial method which implements the efficient continuous approximation proposed
in [5]; and we propose a binomial method based on an interpolation idea given by
Vellekoop and Nieuwenhuis [17], in which the recombining feature is maintained.
The model based on the interpolation procedure is also extended to the case of multi-
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ple dividends; this feature is very important for the pricing of long-term options and
index options. We performed some empirical experiments and compare the results in
terms of accuracy and speed.

2 European-style options

Dividends affect option prices through their effect on the underlying stock price. In
a continuous time setting, the underlying price dynamics depends on the timing of
the dividend payment and is assumed to satisfy the following stochastic differential
equation

d St = rSt dt + σ StdWt t �= tD

S+tD
= S−tD

− DtD ,
(1)

where S−tD
and S+tD

denote the stock price levels right before and after the jump at time
tD , respectively. Due to this discontinuity, the solution to equation (1) is no longer
log-normal but in the form1

St = S0e(r−σ 2/2)t+σWt − DtD e(r−σ 2/2)(t−tD)+σWt−tD I{t≥tD} . (2)

Recently, Haug et al. [13] (henceforth HHL) derived an integral representation
formula for the fair price of a European call option on a dividend paying stock.
The basic idea is that after the dividend payment, option pricing reduces to a simple
Black-Scholes formula for a non-dividend paying stock. Before tD one considers the
discounted expected value of the BS formula adjusted for the dividend payment. In
the geometric Brownian motion setup, the HHL formula is

CH H L(S0, D, tD) = e−rtD

∫ ∞

d
cE (Sx − D, tD)

e−x2/2
√

2π
dx , (3)

where d = log(D/S0)−(r−σ 2/2)tD
σ
√

tD
, Sx = S0e(r−σ 2/2)tD+σ√tD x and cE (Sx − D, tD) is

simply the BS formula with time to maturity T − tD. The integral representation
(3) can be considered as the exact solution to the problem of valuing a European
call option written on stock with a discrete and known dividend. Let us observe that
the well known put-call parity relationship allows the immediate calculation of the
theoretical price of a European put option with a discrete dividend.

3 American-style options

Most traded options are of American style. The effect of a discrete dividend payment
on American option prices is different than for European options. While for European-
style options the pricing problem basically arises from mis-specifying the variance

1 IA denotes the indicator function of A.
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of the underlying process, for American options the impact on the optimal exercise
strategy is more important. As is well known, it is never optimal to exercise an
American call option on non-dividend paying stocks before maturity. As a result, the
American call has the same value as its European counterpart. In the presence of
dividends, it may be optimal to exercise the American call and put before maturity.
In general, early exercise is optimal when it leads to an alternative income stream,
i.e., dividends from the stock for a call and interest rates on cash for a put option. In
the case of discrete cash dividends, the call option may be optimally exercised early
instantaneously prior to the ex-dividend date,2 t−D ; while for a put it may be optimal
to exercise at any point in time till maturity. Simple adjustments like subtracting the
present value of the dividend from the asset spot price make little sense for American
options.

The first approximation to the value of an American call on a dividend paying
stock was suggested by Black in 1975 [3]. This is basically the escrowed dividend
method, where the stock price in the BS formula is replaced by the stock price minus
the present value of the dividend. In order to account for early exercise, one also
computes an option value just before the dividend payment, without subtracting the
dividend. The value of the option is considered to be the maximum of these values.

A model which is often used and implemented in much commercial software was
proposed, simplified and adjusted by Roll [15], Geske [8,10] and Whaley [18] (RGW
model). These authors construct a portfolio of three European call options which
represents an American call and accounts for the possibility of early exercise right
before the ex-dividend date. The portfolio consists of two long positions with exercise
prices X and S∗+D and maturities T and t−D , respectively. The third option is a short
call on the first of the two long calls with exercise price S∗+D−X and maturity t−D . The
stock price S∗makes the holder of the option indifferent between early exercise at time
tD and continuing with the option. Formally, we have C(S∗, T−tD , X ) = S∗+D−X .
This equation can be solved if the ex-dividend date is known. The two long positions
follow from the BS formula, while for the compound option Geske [9] provides an
analytical solution.

The RGW model was considered for more than twenty years as a brilliant solution
in closed form to the problem of evaluating American call options on equities that
pay a discrete dividend. Although some authoritative authors still consider the RGW
formula as the exact solution, the model does not yield good results in many cases
of practical interest. Moreover, it is possible to find situations in which the use of the
formula RGW allows for arbitrage. Whaley, in a recent monograph [19], presents an
example that shows the limits of the RGW model.

Haug et al. [13] derived an integral representation formula for the American call
option fair price in the presence of a single dividend D paid at time tD . Since early
exercise is only optimal instantaneously prior to the ex-dividend date, in order to
obtain the exact solution for an American call option with a discrete dividend one can

2 Note that after the dividend date tD , the option is a standard European call which can be
priced using the BS formula; this idea can be implemented in a hybrid BS-binomial model.
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merely replace relation (3) with

CH H L(S0, D, tD) = e−rtD

∫ ∞

d
max {Sx − X, cE(Sx − D, tD)} e−x2/2

√
2π

dx . (4)

4 Binomial models

The evaluation of options using binomial methods is particularly easy to implement
and efficient at standard conditions, but it becomes difficult to manage in the case in
which the underlying asset pays one or more discrete dividends, due to the fact that
the number of nodes grows considerably and entails huge calculations. In the absence
of dividends or when dividends are assumed to be proportional to the stock price,
the binomial tree reconnects in the sense that the price after a up-down movement
coincides with the price after a down-up movement. As a result, the number of nodes
at each step grows linearly.

If during the life of the option a dividend of amount D is paid, at each node after the
ex-dividend date a new binomial tree has to be considered (see Fig. 1), with the result
that the total number of nodes increases to the point that it is practically impossible
to consider trees with an adequate number of stages. To avoid such a complication,
often it is assumed that the underlying dynamics are characterised by a dividend yield
which is discrete and proportional to the stock price. Formally,{

S0u j di− j j = 0, 1, . . . i
S0(1− q)u j di− j j = 0, 1, . . . i,

(5)

where the first law applies if the period preceding the ex-dividend date and the second
applies after the dividend date, and where S0 indicates the initial price, q is the dividend
yield, and u and d are respectively the upward and downward coefficients, defined
by u = eσ

√
T/n and d = 1/u. The hypothesis of a proportional dividend yield can

be accepted as an approximation of dividends paid in the long term, but it is not
acceptable in a short period of time during which the stock pays a dividend in cash
and its amount is often known in advance or estimated with appropriate accuracy.

If the underlying asset is assumed to pay a discrete dividend D at time tD < T
(which in a discrete time setting corresponds to the step nD), the dividend amount
is subtracted at all nodes at time point tD . Due to this discrete shift in the tree, as
already noticed, the lattice is no longer recombining beyond the time tD and the
binomial method becomes computationally expensive, since at each node at time
tD a separate binomial tree has to be evaluated until maturity (see Fig. 1). Also, in
the presence of multiple dividends this approach remains theoretically sound, but
becomes unattractive due to the computational intensity.

Schroder [16] describes how to implement discrete dividends in a recombining
tree. The approach is based on the escrowed dividend process idea, but the method
leads to significant pricing errors.

The problem of the enormous growth in the number of nodes that occurs in such
a case can be simplified if it is assumed that the price has a stochastic component S̃
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Fig. 1. Non-recombining binomial tree after the dividend payment

given by

S̃ =
{

S − De−r(tD−i) i ≤ tD

S i > tD ,
(6)

and a deterministic component represented by the discounted value of the dividend or
of dividends that will be distributed in the future. Note that the stochastic component
gives rise to a reconnecting tree. Moreover, you can build a new tree (which is still
reconnecting) by adding the present value of future dividends to the price of the
stochastic component in correspondence of each node. Hence the tree reconnects and
the number of nodes in each period i is equal to i + 1.

The recombining technique described above can be improved through a procedure
that preserves the structure of the tree until the ex-dividend time and that will force the
recombination after the dividend payment. For example, you can force the binomial
tree to recombine by taking, immediately after the payment of a dividend, as extreme
nodes

SnD+1,0 = (SnD ,0 − D) d SnD,nD = (SnD ,nD − D) u , (7)

and by calculating the arithmetic average of the values that are not recombining. This
technique has the characteristic of being simple from the computational point of view.

Alternatively, you can use a technique, called “stretch”, that calculates the extreme
nodes as in the previous case; in such a way, one forces the reconnection at the
intermediate nodes by choosing the upward coefficients as follows

u(i, j ) = eλσ
√

T/n , (8)

where λ is chosen in order to make equal the prices after an up and down movement.
This technique requires a greater amount of computations as at each stage both the
coefficients and the corresponding probabilities change.
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In this paper, we analyse a method which performs very efficiently and can be
applied to both European and American call and put options. It is a binomial method
which maintains the recombining feature and is based on an interpolation idea pro-
posed by Vellekoop and Nieuwenhuis [17].

For an American option, the method can be described as follows: a standard
binomial tree is constructed without considering the payment of the dividend (with
Si j = S0u j di− j , u = eσ

√
T/n , and d = 1/u), then it is evaluated by backward

induction from maturity until the dividend payment; at the node corresponding to an
ex-dividend date (at step nD), we approximate the continuation value VnD using the
following linear interpolation

V (SnD , j ) =
V (SnD ,k+1)− V (SnD ,k)

SnD ,k+1 − SnD ,k
(SnD , j − SnD ,k)+ V (SnD ,k) , (9)

for j = 0, 1, . . . , nD and SnD,k ≤ SnD, j ≤ SnD,k+1; then we continue backward
along the tree. The method can be easily implemented also in the case of multiple
dividends (which are not necessarily of the same amount).

We have implemented a very efficient method which combines this interpolation
procedure and the binomial algorithm for the evaluation of American options proposed
by Basso et al. [1].3

We performed some empirical experiments and compare the results in terms of
accuracy and speed.

5 Numerical experiments

In this section, we briefly report the results of some empirical experiments related
to European calls and American calls and puts. In Table 1, we compare the prices
provided by the HHL exact formula for the European call, with those obtained with
the 2000-step non-combining binomial method and the binomial method based on
interpolation (9). We also report the results obtained with the approximation proposed
by Bos and Vandermark [5] (BV). For a European call, the non-recombining binomial
method requires a couple of seconds, while the calculations with a 2000-step binomial
interpolated method are immediate.

Table 2 shows the results for the American call and put options. We have compared
the results obtained with non-recombining binomial methods and the 10,000-step
binomial method based on the interpolationprocedure (9). In the case of the American
put, the BV approximation leads to considerable pricing errors.

We also extended the model based on the interpolation procedure to the case of
multiple dividends. Table 3 shows the results for the European call with multiple

3 The algorithm exploits two devices: (1) the symmetry of the tree, which implies that all the
asset prices defined in the lattice at any stage belong to the set {S0u j : j = −n,−n +
1, . . . , 0, . . . , n − 1, n}, and (2) the fact that in the nodes of the early exercise region, the
option value, equal to the intrinsic value, does not need to be recomputed when exploring
the tree backwards.
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Table 1. European calls with dividend D = 5 (S0 = 100, T = 1, r = 0.05, σ = 0.2)

tD X H H L Non-rec. bin. Interp. bin. BV
(n = 2000) (n = 2000)

70 28.7323 28.7323 28.7324 28.7387
0.25 100 7.6444 7.6446 7.6446 7.6456

130 0.9997 0.9994 1.000 0.9956

70 28.8120 28.8120 28.8121 28.8192
0.5 100 7.7740 7.7742 7.7742 7.7743

130 1.0501 1.0497 1.0506 1.0455

70 28.8927 28.8927 28.8928 28.8992
0.75 100 7.8997 7.8999 7.8999 7.9010

130 1.0972 1.0969 1.0977 1.0934

Table 2. American call and put options with dividend D = 5 (S0 = 100, T = 1, r = 0.05,
σ = 0.2)

American Call American put
tD X non-rec. hyb. bin. interp. bin. Non-rec. bin. interp. bin. BV

(n = 5000) (n = 10,000) (n = 2000) (n = 10,000)

70 30.8740 30.8744 0.2680 0.2680 0.2630
0.25 100 7.6587 7.6587 8.5162 8.5161 8.5244

130 0.9997 0.9998 33.4538 33.4540 350112

70 31.7553 31.7557 0.2875 0.2876 0.2901
0.5 100 8.1438 8.1439 8.4414 8.4412 8.5976

130 1.0520 1.0522 32.1195 32.1198 35.0112

70 32.6407 32.6411 0.3070 0.3071 0.2901
0.75 100 9.1027 9.1030 8.2441 8.2439 8.6689

130 1.1764 1.1767 30.8512 30.8515 35.0012

dividends. We have compared the non-reconnecting binomial method with n = 2000
steps (only for the case with one and two dividends) and the interpolated binomial
method with n = 10,000 steps (our results are in line with those obtained by Haug
et al. [13]).

Table 4 shows the results for the American call and put options for different
maturities in the interpolated binomial method with multiple dividends.

6 Conclusions

The evaluation of the options on stocks that pay discrete dividends was the subject of
numerous studies that concerned both closed-form formula and numerical approxi-
mate methods. Recently, Haug et al. [13] proposed an integral expression that allows
the calculation of European call and put options and American call options in precise
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Table 3. European call option with multiple dividends D = 5 paid at times tD ∈
{0.5, 1.5, 2.5, 3.5, 4.5, 5.5}, for different maturities T = 1, . . . , 6 (S0 = 100, X = 100,
r = 0.05, σ = 0.2)

T Non-rec. bin. Interp. bin.
(n = 2000) (n = 10,000)

1 7.7742 7.7741
2 10.7119 10.7122
3 12.7885
4 14.4005
5 15.7076
6 16.7943

Table 4. American options with multiple dividends in the interpolated 10,000-step binomial
method (with parameters S0 = 100, X = 100, r = 0.05, σ = 0.2); a cash dividend D = 5 is
paid at the dates tD ∈ {0.5, 1.5, 2.5, 3.5, 4.5, 5.5}, for different maturities T = 1, . . . , 6

T American call American put

1 8.1439 8.4412
2 11.2792 11.5904
3 13.3994 13.7399
4 15.0169 15.3834
5 16.3136 16.7035
6 17.3824 17.7938

terms. The formula proposed by Haug et al. requires the calculation of an integral.
Such an integral representation is particularly interesting because it can be extended
to the case of non-Brownian dynamics and to the case of multiple dividends.

The pricing of American put options written on stocks which pay discrete dividend
can be obtained with a standard binomial scheme that produces very accurate results,
but it leads to non-recombining trees and therefore the number of nodes does not grow
linearly with the number of steps.

In this contribution, we implemented alternative methods to the classical bino-
mial approach for American options: a hybrid binomial-Black-Scholes algorithm, a
binomial method which translates the continuous approximation proposed in [5] and
a binomial method based on an interpolation procedure, in which the recombining
feature is maintained. We performed some empirical experiments and compared the
results in terms of accuracy and efficiency. In particular, the efficient implementation
of the method based on interpolation yields very accurate and fast results.
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Nonparametric prediction in time series analysis: some
empirical results

Marcella Niglio and Cira Perna

Abstract. In this paper a new approach to select the lag p for time series generated from
Markov processes is proposed. It is faced in the nonparametric domain and it is based on
the minimisation of the estimated risk of prediction of one-step-ahead kernel predictors. The
proposed procedure has been evaluated through a Monte Carlo study and in empirical context
to forecast the weakly 90-day US T-bill secondary market rates.

Key words: kernel predictor, estimated risk of prediction, subsampling

1 Introduction

One of the aims in time series analysis is forecasting future values taking advantage
of current and past knowledge of the data-generating processes. These structures
are often summarised with parametric models that, based on specific assumptions,
define the relationships among variables. In this parametric context a large number
of models have been proposed (among others, [3], [20], [4], and, more recently, [11],
which discusses parametric and nonparametric methods) and for most of them the
forecast performance has been evaluated.

To overcome the problem of prior knowledge about the functional form of the
model, a number of nonparametric methods have been proposed and widely used
in statistical applications. In this context, our attention is focused on nonparametric
analysis based on kernel methods which have received increasing attention due to
their flexibility in modelling complex structures.

In particular, given a Markov process of order p, in this paper a new approach to
select the lag p is proposed. It is based on the minimisation of the risk of prediction,
proposed in [13], estimated for kernel predictors by using the subsampling.

After presenting some results on the kernel predictors, we discuss, in Section 2,
how they can be introduced in the proposed procedure.

In Section 3 we further describe the algorithm whose performance has been dis-
cussed in a Monte Carlo study. To evaluate the forecast accuracy of the nonparametric
predictor in the context of real data, in Section 4 we present some results on the weekly
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90-day US T-bill secondary market rates. Some concluding remarks are given at the
end.

2 Nonparametric kernel predictors

Let XT = {X1, X2, . . . , X T } be a real-valued time series. We assume that:
A1: XT is a realisation of a strictly stationary stochastic process that belongs to

the class:
Xt = f (Xt−1, Xt−2, . . . , Xt−p)+ εt , 1 ≤ t ≤ T, (1)

where the innovations {εt } are i.i.d. random variables, independent from the past of
Xt , with E(εt ) = 0, E(ε2

t ) = σ 2 < +∞, and p is a nonnegative integer.
In class (1), f (Xt−1, Xt−2, . . . , Xt−p) is the conditional expectation of Xt , given

Xt−1, . . . , Xt−p, that can be differently estimated. When the Nadaraya-Watson (N-
W)-type estimator (among others see [2]) is used:

f̂ (x1, x2, . . . , x p) =

T∑
t=p+1

p∏
i=1

K
(

xi−Xt−i
hi

)
Xt

T∑
t=p+1

p∏
i=1

K
(

xi−Xt−i
hi

) , (2)

where K (·) is a kernel function and hi is the bandwidth, for i = 1, 2, . . . , p.
Under mixing conditions, the asymptotic properties of the estimator (2) have been

widely investigated in [18], and the main properties, when it is used in predictive
context, have been discussed in [9] and [2].

When the estimator (2) is used, the selection of the “optimal” bandwidth, the
choice of the kernel function and the determination of the autoregressive order p are
needed. To solve the latter problem, many authors refer to automatic methods, such
as AIC and BIC, or to their nonparametric analogue suggested by [19].
Here we propose a procedure based on one-step-ahead kernel predictors.

The estimator for the conditional mean (2) has a large application in prediction
contexts. In fact, when a quadratic loss function is selected to find a predictor for
XT+�, with lead time � > 0, it is well known that the best predictor is given by
X̂T+� = E[X T+�|XT ], obtained from the minimisation of

arg min
X̂ T+�∈R

E[(X̂T+� − XT+�)2|XT ], with � > 0.

It implies that when N-W estimators are used to forecast XT+�, the least-squares
predictor X̂ T+� becomes:

X̂ T+� =

T−�∑
t=p+1

p∏
i=1

K
(

xi−Xt−i
hi

)
Xt+�

T−�∑
t=p+1

p∏
i=1

K
(

xi−Xt−i
hi

) . (3)
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The properties of (3) in the presence of strictly stationary and Markovian processes
of order p are discussed in [9] and [2].

Under well defined assumptions on the generating process, [9] shows that when
� = 1 the predictor (3) is a strong consistent estimator for E[XT+1|XT ] and this
result has been subsequently generalised in [2] to the case with � ≥ 1.

In presence of real data, [5], [16], [10] and recently [23] evaluate the forecast
accuracy of (3) and give empirical criteria to define confidence intervals for X̂T+�.

In the following, taking advantage of (3), we propose the use of the estimated risk
of prediction (ERP), discussed in [13], to select the order p of the the autoregres-
sion (1).

In particular we further assume that:
A2: XT is a realisation of a strong mixing (or α-mixing) process. Under conditions

A1 and A2, the ERP can be estimated through resampling techniques and in particular
using the subsampling approach as proposed by [13].

The subsampling has a number of interesting advantages with respect to other
resampling techniques: in particular it is robust against misspecified models and gives
consistent results under weak assumptions.

This last remark makes the use of subsampling particularly useful in a nonpara-
metric framework and can be properly applied in the context of model selection.

Let X̂ T+1 be the N-W predictor (3); its mean square error is defined as

�T = E[(X T+1 − X̂ T+1)
2].

The algorithm we propose to select p is established on the estimation of �T that,
as described in Procedure 1, is based on the overlapping subsampling. Note that in
this procedure Step 2 implies the choice of the subsample length b. A large number
of criteria have been proposed in the statistical literature to select b (inter alia [17]).
Here we refer to the proposal in [14], which describes an empirical rule for estimating
the optimal window size in the presence of dependent data of smaller length (m) than
the original (T ). The details are given in Procedure 2.

Procedure 1: Selection of the autoregressive order p

1. Choose a grid for p ∈ (1, . . . , P).
2. Select the subsample length b (Procedure 2).
3. For each p, compute the estimated risk of prediction (ERP):

�̂T,b = (T − b + 1)−1
T−b∑
i=0

(
X̂ (i)i+b − Xi+b

)2
,

where X̂ (i)i+b is the one-step-ahead predictor (3) of Xi+b, based on the subsample
(Xi+1, Xi+2, . . . , Xi+b−1) of length b.

4. Select p̂ which minimises �̂T,b .
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Procedure 2: Subsample length selection

1. Fix m < T and compute X̂ T,m , the subsampling estimate from the entire data
set XT .

2. For all bm < m, compute X̂ (i)m,bm
, the subsampling estimate of the forecast

computed from (Xi , Xi+1, . . . , Xi+m−1).
3. Select the value b̂m that minimizes the estimated mean square error (EMSE):

E M S E(m, bm) = (T − m + 1)−1
T−m+1∑

i=1

(
X̂ (i)m,bm

− X̂ T,m

)2
.

4. Choose b̂ = (T/m)δ ∗ b̂m , where δ ∈ (0, 1) is a fixed real number.

3 Simulation results

To illustrate the performance of the proposed procedure we have used simulated data
sets generated by models with known structure. The aim is to evaluate the ability
of our procedure to select a proper value for the autoregressive parameter p in the
presence of given data-generating processes.

The simulated time series have been generated by two structures: a linear autore-
gressive model (AR) and a self-exciting threshold autoregressive model (SETAR)
that, as is well known, both belong to the class of Markov processes (1).

More precisely the simulated models are:
Model 1 - AR(1): Xt = −0.8Xt−1 + εt , with εt ∼ N(0, 1);
Model 2 - SETAR(2;1,1):

Xt =
{

1.5− 0.9Xt−1 + εt Xt−1 ≤ 0

−0.4 − 0.6Xt−1 + εt Xt−1 > 0,
with εt ∼ N(0, 1),

where Model 2 has been used in [21] to evaluate the forecast ability of SETAR models.
The simulation study has been implemented defining a grid value for p= 1, 2, 3, 4

and using series of length T = 70 and T = 100.
In order to take into account the two different lengths, we have chosen two grids

for m. When T = 70, the grid is m = {20, 25, 30, 35} whereas for T = 100 it is
m = {25, 35, 40, 50}. The two values for T have been chosen to evaluate the proposed
procedure in the presence of series of moderate length whereas the grid for m has
been defined following [14].

Starting from these values, Procedure 1 has been run in a Monte Carlo study with
100 replications. Following [13] we have fixed the parameter δ = 0.4 whereas the
kernel function is Gaussian and the bandwidths hi (i = 1, 2, . . . , p) in (3) are selected
using a cross-validation criterion.

The results are summarised in Tables 1 and 2 where the distribution of the 100
simulated series is presented for the AR(1) and SETAR(2; 1,1) models respectively,
comparing the classes in which b̂ lies and the candidate values for p.
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Table 1. Distribution of the 100 series of length T = 70 and T = 100 respectively, simulated
from Model 1

b̂ (T = 70)

p [9, 21] [22, 34] [35, 43] Tot.

1 14 23 51 88
2 1 4 2 7
3 4 0 0 4
4 0 1 0 1

b̂ (T = 100)

p [9,29] [30,44] [45,64] Tot.

1 19 21 50 90
2 1 3 1 5
3 2 2 1 5
4 0 0 0 0

Table 2. Distribution of the 100 series of length T = 70 and T = 100 respectively, simulated
from Model 2

b̂ (T = 70)

p [17, 26] [27, 35] [36, 44] Tot.

1 15 11 59 85
2 1 0 4 5
3 3 6 1 10
4 0 0 0 0

b̂ (T = 100)

p [15, 31] [32, 47] [48, 64] Tot.

1 21 14 54 89
2 2 2 3 7
3 1 0 3 4
4 0 0 0 0

In both cases, the proposed procedure gives satisfactory results on the selection
of the autoregressive order in the presence of a Markov process of order 1 that, as
expected, improves as T grows.

Note that the good performance is a guarantee for time series of moderate length
T , that rises the interest on the procedure.

As expected, most “well selected” models belong to the last class of b̂. It should
not be surprising because the results used in the proposed procedure are mainly given
in asymptotic context.

4 Empirical results on 90-day US T-bill rate

Starting from the theoretical results described in Section 2, the model selection pro-
cedure has been applied to generate forecasts from the weekly 90-day US T-bill
secondary market rates covering the period 4 January 1957–17 December 1993. The
time series, Xt , of length T = 1929, has been extracted from the H.15 release of the
Federal Reserve System (http://www.federalreserve.gov/releases/h15/data.htm).

The 90-day US T-bill has been widely investigated in nonlinear and nonpara-
metric literature (among others [1] and [15]) and, in particular, the data set under
study, plotted in Figure 1, has been analysed in [10] to compare three kernel-based
multi-step predictors. The authors, after computing proper unit-root tests, show the
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nonstationarity of the series Xt , which can be empirically appreciated by observing
the correlogram in Figure 2, which presents a very slow decay.

Fig. 1. Weekly 90-day US T-bill secondary market rates: 4 January 1957–17 December 1993

Fig. 2. ACF plot of the weakly 90-day US T-bill

In Table 4 the nonlinearity of rt is further investigated through the likelihood ratio
(LR) test proposed in [6] and [7], where the linearity of the process is tested against
threshold nonlinearity. In particular, the test statistic with the corresponding p-value
is presented when the null autoregressive model of order p and the threshold delay
d (of the alternative hypothesis) allow refusal of the linearity of the data-generating
process.
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The first differences of Xt (denoted by rt in the following) are then plotted in
Figure 3 where it is evident that the behaviour of the series changes considerably in
the time interval taken into account.

Following [10], which further assesses the nonlinearity of the data-generating
process of rt , we examine the conditional mean of rt , neglecting the conditional
heteroschedasticity that gives rise to the volatility clustering that can be clearly seen
in Figure 3.

Starting from these results, we firstly evaluate some features of the series using
the descriptive indexes presented in Table 4. In particular, the mean, the median, the
standard deviation, the skewness and kurtosis (given as third and fourth moment of
the standardised data respectively) of rt , are computed. As expected, the distribution
of rt has null median and shows negative skewness and heavy tails.

It is widely known that when the prediction of the mean level of asymmetric time
series needs to be generated, a parametric structure that can be properly applied is
the SETAR(2; p1, p2) model that treats positive and negative values of rt differently.
This is the reason why the SETAR models have been widely applied to analyse and
forecast data related to financial markets (among others: [20] for a wide presentation
of the model and [12] for its application to financial data).

Table 3. Descriptive indexes of rt

Mean Median S.D. Skewness Kurtosis

rt −6.224e-05 0 0.2342 −0.5801 16.6101

Fig. 3. First differences of the weakly 90-day US T-bill rate (rt )
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Table 4. LR linearity test of rt

p d Stat (p-value)

rt 4 1 30.5996 (1.9343e-05)

The results of the LR test show that a linear structure does not seem to be capabel
of catching the structure of the generating process (this explains the poor performance
of the autoregressive forecasts in [10]). The threshold autoregressive model fitted to
the data is clearly based on a strict parametric structure from which the forecasts are
generated.

Here, we alternatively propose the nonparametric predictor (3), which is more
flexible than that generated from SETAR models, and whose Markov order is selected
following Procedure 1.

For both approaches, we have generated one-step-ahead, out-of-sample forecasts
following an expanding window algorithm over the forecast horizon L = 26, which
corresponds to the last six months of the time interval under analysis.

Further, a null threshold value has been fixed for the SETAR model (with threshold
delay given in Table 4) and at each iteration the model has been estimated following
[22].

SETAR and nonparametric least-squares forecasts have been evaluated using the
mean square error and the mean absolute error, M S E(L) = L−1 ∑L

i=1(X̂ T+i −
X T+i)

2 and M AE(L) = L−1 ∑L
i=1 |X̂ T+i − X T+i |, whose values are compared in

Table 5 where the MSE (and the MAE) of (3) over the MSE (and MAE) of the SETAR
predictions are shown.

Table 5. MSE (and MAE) of the nonparametric forecasts over the MSE (and MAE) of the
SETAR forecasts

M S E(L)np [M S E(L)thr ]−1 M AE(L)np [M AE(L)thr ]−1

rt 0.839081 0.944058

The better forecast accuracy, in terms of MSE and MAE, of predictor (3) can be
appreciated. It further confirms the good performance of the proposed procedure in the
presence of one-step-ahead forecasts. Moreover, the forecast accuracy seems not to
be affected when different values, of moderate size, are assigned to m in Procedure 2.

5 Conclusions

We have proposed a procedure to select the order p in the presence of strictly stationary
Markov processes (1). It is based on the use of one-step-ahead predictors generated
from nonparametric Nadaraya-Watson kernel smoothers.
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The selection of p is obtained from the minimisation of a quadratic loss function
that makes use of the subsampling estimate of the one-step-ahead forecasts as shown
in Procedure 1.

The simulated and empirical results show the good performance of the proposed
procedure that can be considered, in the context of model selection, an alternative to
more consolidated approaches given in the literature.

Much remains to be done: to investigate the properties of p̂; to generalise the
procedure to the case with lead time � > 1; to consider more complex data-generating
processes that belong to the Markov class. Further, the procedure could be extended
to parametric and/or semiparametric predictors that can be properly considered to
minimize �̂T,b .

All these tasks need proper evaluation of the computational effort that is requested
when computer-intensive methods are selected.

Acknowledgement. The authors would like to thank two anonymous referees for their useful
comments.
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On efficient optimisation of the CVaR and
related LP computable risk measures
for portfolio selection

Włodzimierz Ogryczak and Tomasz Śliwiński

Abstract. The portfolio optimisation problem is modelled as a mean-risk bicriteria optimi-
sation problem where the expected return is maximised and some (scalar) risk measure is
minimised. In the original Markowitz model the risk is measured by the variance while several
polyhedral risk measures have been introduced leading to Linear Programming (LP) com-
putable portfolio optimisation models in the case of discrete random variables represented by
their realisations under specified scenarios. Recently, the second order quantile risk measures
have been introduced and become popular in finance and banking. The simplest such measure,
now commonly called the Conditional Value at Risk (CVaR) or Tail VaR, represents the mean
shortfall at a specified confidence level. The corresponding portfolio optimisation models can
be solved with general purpose LP solvers. However, in the case of more advanced simulation
models employed for scenario generation one may get several thousands of scenarios. This
may lead to the LP model with a huge number of variables and constraints, thus decreasing
the computational efficiency of the model. We show that the computational efficiency can be
then dramatically improved with an alternative model taking advantages of the LP duality.
Moreover, similar reformulation can be applied to more complex quantile risk measures like
Gini’s mean difference as well as to the mean absolute deviation.

Key words: risk measures, portfolio optimisation, computability, linear programming

1 Introduction

In the original Markowitz model [12] the risk is measured by the variance, but sev-
eral polyhedral risk measures have been introduced leading to Linear Programming
(LP) computable portfolio optimisation models in the case of discrete random vari-
ables represented by their realisations under specified scenarios. The simplest LP
computable risk measures are dispersion measures similar to the variance. Konno
and Yamazaki [6] presented the portfolio selection model with the mean absolute
deviation (MAD). Yitzhaki [25] introduced the mean-risk model using Gini’s mean
(absolute) difference as the risk measure. Gini’s mean difference turn out to be a
special aggregation technique of the multiple criteria LP model [17] based on the
pointwise comparison of the absolute Lorenz curves. The latter leads to the quantile

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
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shortfall risk measures that are more commonly used and accepted. Recently, the
second-order quantile risk measures have been introduced in different ways by many
authors [2, 5, 15, 16, 22]. The measure, usually called the Conditional Value at Risk
(CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level.
Maximisation of the CVaR measures is consistent with the second-degree stochastic
dominance [19]. Several empirical analyses confirm its applicability to various finan-
cial optimisation problems [1,10]. This paper is focused on computational efficiency
of the CVaR and related LP computable portfolio optimisation models.

For returns represented by their realisations under T scenarios, the basic LP model
for CVaR portfolio optimisation contains T auxiliary variables as well as T corre-
sponding linear inequalities. Actually, the number of structural constraints in the LP
model (matrix rows) is proportional to the number of scenarios T , while the number
of variables (matrix columns) is proportional to the total of the number of scenarios
and the number of instruments T +n. Hence, its dimensionality is proportional to the
number of scenarios T . It does not cause any computational difficulties for a few hun-
dred scenarios as in computational analysis based on historical data. However, in the
case of more advanced simulation models employed for scenario generation one may
get several thousands of scenarios [21]. This may lead to the LP model with a huge
number of auxiliary variables and constraints, thus decreasing the computational effi-
ciency of the model. Actually, in the case of fifty thousand scenarios and one hundred
instruments the model may require more than half an hour of computation time [8]
with the state-of-art LP solver (CPLEX code). We show that the computational ef-
ficiency can be then dramatically improved with an alternative model formulation
taking advantage of the LP duality. In the introduced model the number of structural
constraints is proportional to the number of instruments n, while only the number of
variables is proportional to the number of scenarios T , thus not affecting the sim-
plex method efficiency so seriously. Indeed, the computation time is then below 30
seconds. Moreover, similar reformulation can be applied to the classical LP portfo-
lio optimisation model based on the MAD as well as to more complex quantile risk
measures including Gini’s mean difference [25].

2 Computational LP models

The portfolio optimisation problem considered in this paper follows the original
Markowitz’ formulation and is based on a single period model of investment. At
the beginning of a period, an investor allocates the capital among various securi-
ties, thus assigning a nonnegative weight (share of the capital) to each security. Let
J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variable Rj with a given
mean μ j = E{Rj }. Further, let x = (x j ) j=1,2,...,n denote a vector of decision vari-
ables x j expressing the weights defining a portfolio. The weights must satisfy a set
of constraints to represent a portfolio. The simplest way of defining a feasible set P
is by a requirement that the weights must sum to one and they are nonnegative (short
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sales are not allowed), i.e.,

P = {x :
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n}. (1)

Hereafter, we perform detailed analysis for the set P given with constraints (1).
Nevertheless, the presented results can easily be adapted to a general LP feasible set
given as a system of linear equations and inequalities, thus allowing one to include
short sales, upper bounds on single shares or portfolio structure restrictions which
may be faced by a real-life investor.

Each portfolio x defines a corresponding random variable Rx =∑n
j=1 R j x j that

represents the portfolio rate of return while the expected value can be computed as
μ(x) = ∑n

j=1μ j x j . We consider T scenarios with probabilities pt (where t =
1, . . . , T ). We assume that for each random variable R j its realisation r j t under the
scenario t is known. Typically, the realisations are derived from historical data treating
T historical periods as equally probable scenarios (pt = 1/T ). The realisations of
the portfolio return Rx are given as yt =∑n

j=1 r j t x j .
Let us consider a portfolio optimisation problem based on the CVaR measure op-

timisation. With security returns given by discrete random variables with realisations
r j t , following [1,9,10], the CVaR portfolio optimisation model can be formulated as
the following LP problem:

maximise η − 1

β

T∑
t=1

pt dt

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dt − η+
n∑

j=1

r j t x j ≥ 0, dt ≥ 0 for t = 1, . . . , T,

(2)

where η is an unbounded variable. Except for the core portfolio constraints (1), model
(2) contains T nonnegative variables dt plus a single η variable and T corresponding
linear inequalities. Hence, its dimensionality is proportional to the number of scenar-
ios T . Exactly, the LP model contains T + n + 1 variables and T + 1 constraints.
For a few hundred scenarios, as in typical computational analysis based on historical
data [11], such LP models are easily solvable. However, the use of more advanced
simulation models for scenario generation may result in several thousands of sce-
narios. The corresponding LP model (2) contains then a huge number of variables
and constraints, thus decreasing its computational efficiency dramatically. If the core
portfolio constraints contain only linear relations, like (1), then the computational
efficiency can easily be achieved by taking advantage of the LP dual model (2). The
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LP dual model takes the following form:

minimise q

s.t. q −
T∑

t=1

r j t ut ≥ 0 for j = 1, . . . , n

T∑
t=1

ut = 1, 0 ≤ ut ≤ pt

β
for t = 1, . . . , T .

(3)

The dual LP model contains T variables ut , but the T constraints corresponding to
variables dt from (2) take the form of simple upper bounds (SUB) on ut thus not
affecting the problem complexity (c.f., [13]). Actually, the number of constraints in
(3) is proportional to the total of portfolio size n, thus it is independent from the
number of scenarios. Exactly, there are T + 1 variables and n + 1 constraints. This
guarantees a high computational efficiency of the dual model even for a very large
number of scenarios. Note that introducing a lower bound on the required expected
return in the primal portfolio optimisation model (2) results only in a single additional
variable in the dual model (3). Similarly, other portfolio structure requirements are
modelled with a rather small number of constraints, thus generating a small number
of additional variables in the dual model.

We have run computational tests on 10 randomly generated test instances devel-
oped by Lim et al. [8]. They were originally generated from a multivariate normal
distribution for 50 or 100 securities with the number of scenarios of 50,000 just pro-
viding an adequate approximation to the underlying unknown continuous price dis-
tribution. Scenarios were generated using the Triangular Factorization Method [24]
as recommended in [3]. All computations were performed on a PC with a Pentium 4
2.6 GHz processor and 1 GB RAM employing the simplex code of the CPLEX 9.1
package. An attempt to solve the primal model (2) with 50 securities resulted in 2600
seconds of computation (much more than reported in [8]). On the other hand, the
dual models (3) were solved in 14.3–27.7 CPU seconds on average, depending on the
tolerance level (see Table 1). For 100 securities the optimisation times were longer
but still about 1 minute.

Table 1. Computational times (in seconds) for the dual CVaR model (averages of 10 instances
with 50,000 scenarios)

Number of securities β = 0.05 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

n = 50 14.3 18.7 23.6 26.4 27.4 27.7
n = 100 38.1 52.1 67.9 74.8 76.7 76.0
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The SSD consistent [14] and coherent [2] MAD model with complementary risk
measure (μδ(x) = E{min{μ(x), Rx }}) leads to the following LP problem [18]:

maximise
n∑

j=1

μ j x j −
T∑

t=1

ptdt

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dt −
n∑

j=1

(μ j − r j t )x j ≥ 0, dt ≥ 0 for t = 1, . . . , T .

(4)

The above LP formulation uses T + n variables and T + 1 constraints while the LP
dual model then takes the following form:

minimise q

s.t. q +
T∑

t=1

(μ j − r j t )ut ≥ μ j for j = 1, . . . , n

0 ≤ ut ≤ pt for t = 1, . . . , T,

(5)

with dimensionality n × (T + 1). Hence, there is guaranteed high computational
efficiency even for very large numbers of scenarios. Indeed, in the test problems with
50,000 scenarios we were able to solve the dual model (5) in 25.3 seconds on average
for 50 securities and in 77.4 seconds for 100 instruments.

For a discrete random variable represented by its realisations yt , Gini’s mean
difference measure�(x) =∑T

t ′=1
∑

t ′′ �=t ′−1 max{yt ′−yt ′′ , 0}pt ′ pt ′′ is LP computable
(when minimised). This leads us to the following GMD portfolio optimisation model
[25]:

max −
T∑

t=1

∑
t ′ �=t

pt pt ′dtt ′

s.t.
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

dtt ′ ≥
n∑

j=1

r j t x j −
n∑

j=1

r j t ′ x j , dtt ′ ≥ 0 for t, t ′ = 1, . . . , T ; t �= t ′,

(6)

which contains T (T − 1) nonnegative variables dtt ′ and T (T − 1) inequalities to
define them. This generates a huge LP problem even for the historical data case
where the number of scenarios is 100 or 200. Actually, as shown with the earlier
experiments [7], the CPU time of 7 seconds on average for T = 52 has increased to
above 30 s with T = 104 and even more than 180 s for T = 156. However, similar to
the CVaR models, variables dtt ′ are associated with the singleton coefficient columns.
Hence, while solving the dual instead of the original primal, the corresponding dual
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constraints take the form of simple upper bounds (SUB) which are handled implicitly
outside the LP matrix. For the simplest form of the feasible set (1) the dual GMD
model takes the following form:

min v

s.t. v −
T∑

t=1

∑
t ′ �=t

(r j t − r j t ′ )utt ′ ≥ 0 for j = 1, . . . , n

0 ≤ utt ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t �= t ′,

(7)

where original portfolio variables x j are dual prices to the inequalities. The dual
model contains T (T − 1) variables utt ′ but the number of constraints (excluding the
SUB structure) n + 1 is proportional to the number of securities. The above dual
formulation can be further simplified by introducing variables:

ūt t ′ = utt ′ − ut ′t for t, t ′ = 1, . . . , T ; t < t ′, (8)

which allows us to reduce the number of variables to T (T − 1)/2 by replacing (7)
with the following:

min v

s.t. v −
T∑

t=1

∑
t ′>t

(r j t − r j t ′ )ūt t ′ ≥ 0 for j = 1, . . . , n

−pt pt ′ ≤ ūt t ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t < t ′.

(9)

Such a dual approach may dramatically improve the LP model efficiency in the case
of a larger number of scenarios. Actually, as shown with the earlier experiments
[7], the above dual formulations let us to reduce the optimisation time to below 10
seconds for T = 104 and T = 156. Nevertheless, the case of really large numbers
of scenarios still may cause computational difficulties, due to the huge number of
variables (T (T − 1)/2). This may require some column generation techniques [4] or
nondifferentiable optimisation algorithms [8].

3 Conclusions

The classical Markowitz model uses the variance as the risk measure, thus resulting in
a quadratic optimisation problem. Several alternative risk measures were introduced,
which are computationally attractive as (for discrete random variables) they result
in solving linear programming (LP) problems. The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have
to meet numerous side constraints and take into account transaction costs [10]. The
corresponding portfolio optimisation models can be solved with general purpose LP
solvers, like ILOG CPLEX providing a set of C++ and Java class libraries allowing
the programmer to embed CPLEX optimisers in C++ or Java applications.
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Unfortunately, in the case of more advanced simulation models employed for sce-
nario generation one may get several thousands of scenarios. This may lead to the LP
model with a huge number of variables and constraints, thus decreasing the computa-
tional efficiency of the model. We have shown that the computational efficiency can
then be dramatically improved with an alternative model taking advantage of the LP
duality. In the introduced model the number of structural constraints (matrix rows)
is proportional to the number of instruments thus not seriously affecting the simplex
method efficiency by the number of scenarios. For the case of 50,000 scenarios, it has
resulted in computation times below 30 seconds for 50 securities or below a minute
for 100 instruments. Similar computational times have also been achieved for the dual
reformulation of the MAD model. Dual reformulation applied to the GMD portfolio
optimisation model results in a dramatic problem size reduction with the number of
constraints equal to the number of instruments instead of the square of the number of
scenarios. Although, the remaining high number of variables (square of the number of
scenarios) still generates a need for further research on column-generation techniques
or nondifferentiable optimisation algorithms for the GMD model.

Acknowledgement. The authors are indebted to Professor Churlzu Lim from the University of
North Carolina at Charlotte for providing the test data.
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19. Ogryczak, W., Ruszczyński,A.: Dual stochastic dominance and related mean-risk models.
SIAM J. Optim. 13, 60–78 (2002)

20. Pflug, G.Ch.: Some remarks on the value-at-risk and the conditional value-at-risk. In:
S. Uryasev (ed.) Probabilistic Constrained Optimization: Methodology and Applications.
pp. 272–281, Kluwer, Dordrecht (2000)

21. Pflug, G.Ch.: Scenario tree generation for multiperiod financial optimization by optimal
discretization. Math. Program. 89, 251–271 (2001)

22. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41
(2000)

23. Rothschild, M., Stiglitz, J.E.: Increasing risk: I. A definition. J. Econ. Theory 2, 225–243
(1969)

24. Scheuer, E.M., Stoller, D.S.: On the generation of normal random vectors. Technometrics
4, 278–281 (1962)

25. Yitzhaki, S.: Stochastic dominance, mean variance, and Gini’s mean difference. Am. Econ.
Rev. 72, 178–185 (1982)



A pattern recognition algorithm for optimal profits in
currency trading

Danilo Pelusi

Abstract. A key issue in technical analysis is to obtain good and possibly stable profits.
Various trading rules for financial markets do exist for this task. This paper describes a pattern
recognition algorithm to optimally match training and trading periods for technical analysis
rules. Among the filter techniques, we use the Dual Moving Average Crossover (DMAC) rule.
This technique is applied to hourly observations of Euro-Dollar exchange rates. The matching
method is accomplished using ten chart patterns very popular in technical analysis. Moreover,
in order for the results to have a statistical sense, we use the bootstrap technique. The results
show that the algorithm proposed is a good starting point to obtain positive and stable profits.

Key words: training sets, trading sets, technical analysis, recognition algorithm

1 Introduction

The choice of the best trading rules for optimal profits is one of the main problems in
the use of technical analysis to buy financial instruments. Park and Irwin [31]described
various types of filter rules, for instance the Dual Moving Average Crossover family,
the Momentum group of rules and the Oscillators. For each of these filter rules we
need to find the rule that assures the highest profit. Some good technical protocols,
to get optimal profits in the foreign exchange market, have been found by Pelusi et
al. [32].

The traders attribute to some chart patterns the property of assessing market con-
ditions (in any financial market) and anticipating turning points. This kind of analy-
sis started with the famous [23], which produced an important stream of literature.
However, the popularity of this kind of analysis has been frequently challenged by
mainstream financial economists [7,9,22,28–30,35].

Generally, the success of a rule in actual trading is independent of the type of
filter used. It depends on the choice of a so-called “training set", where the maximum
profit parameters of a rule are found, and of an independent “trading set" where you
apply the optimised filter found in the training phase. In other words, a rule which
gives good profits in one period could cause some losses in a different period. This
is due to substantial differences in the shapes of the asset price in the two. So, the
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main issue for the successful application of technical trading rules is to find the best
association of a “training sets" (TN-S) and of “trading sets" (TD-S), for the highest
and possibly most stable profit streams.

In this paper, we propose a synthesis of the two traditional approaches in technical
analysis, outlined above, and use the chart pattern recognition technique for the best
association of training and trading phases. Some works [7,9,22,23,29] contain studies
on the information content of chart patterns.

Our target is to investigate the existence of non-linear configurations in the hourly
observations of the Euro-Dollar (EUR-USD), Dollar-Yen (USD-JPY) and Pound-
Dollar (GBP-USD) exchange rates. Our pattern recognition algorithm takes into ac-
count ten chart patterns which are traditionally analysed in the literature [7,23,28].

In Section 2 we describe the algorithm. The algorithm results are shown in Section
3, whereas Section 4 contains the conclusions.

2 Pattern recognition algorithm

As outlined above, we consider hourly exchange rates. The first task in the construction
of our algorithm is the recognition that some exchange rate movements are significant
and others are not. The most significant movements of exchange rates generate a
specific pattern. Typically, in order to identify regularities and patterns in the time
series of asset prices, it is necessary to extract non-linear patterns from noisy data.
This signal extraction can be performed by the human eye, however in our algorithm
we use a suitable smoothing estimator. Therefore, to spot the technical patterns in the
best way we use the kernel regression. Hardle [16] describes this smoothing method
which permits easier analysis of the curve that describes the exchange rate.

Generally, the various chart patterns are quite difficult to quantify analytically
(see the technical analysis manuals [2,22,28]). However, to identify a formal way of
detecting the appearance of a technical pattern, we have chosen the definitions shown
in the paper of Lo et al. [23]. In these definitions, the technical patterns depend on
extrema, which must respect certain properties. The use of kernel regression permits
easy detection of these extrema because the curve that describes the exchange rate is
smoothed. To identify these extrema we use a suitable method described by Omrane
and Van Oppens [28].

To detect the presence of technical patterns in the best way, we use a cutoff value
as in the work of Osler and Chang [30]. In this manner, the number of maxima
and minima identified in the data is inversely related to the value of the cutoff. In
other words, an increase or decrease of it generates a different series of maxima and
minima, which will result in a different set of chart patterns. For each cutoff value, the
algorithm searches the chart patterns HS, IHS, BTOP, BBOT, TTOP, RTOP, RBOT,
DTOP, DBOT on the basis of their definitions [23]. Considering a single pattern at a
time, the algorithm counts the patterns number of that type, for each cutoff value.

To establish a similarity parameter, we define, for each j th technical pattern
( j = 1, 2, dots, 10), the coefficient that represents the similarity degree between
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two different periods. Therefore, our algorithm takes the pattern number for each ith
cutoff value and it computes

di, j =
∣∣∣n j

1,i − n j
2,i

∣∣∣ , i = 1, 2, . . . , 18, (1)

where di, j is the absolute value of the difference between the number of j -type chart
patterns of the period 1 and that of period 2, for each cutoff value. So, we are able to
define the similarity coefficient S j as

S j =

⎧⎪⎨⎪⎩
∑nc j

i=1
1

2di, j

nc j

, nc j ≥ 1

0, nc j = 0.

(2)

The similarity coefficient assumes values that lie between 0 and 1 and nc j is the
number of possible comparisons. At this step, our algorithm gives ten similarity coef-
ficients connected to the ten technical patterns named above. The next step consists of
computing a single value that gives informational content on the similarity between
the periods. We refer to this value as Global Similarity (GS) and we define it as a
weighted average

GS =
10∑

j=1

w j S j . (3)

The weights w j are defined as the ratio between the comparisons number of the j th
pattern and the sum of comparisons number nt of all patterns (see formula 4).

w j =
nc j

nt
, nt = nc1 + nc2 + . . . + nc10 (4)

10∑
j=1

w j = 1. (5)

Moreover, the sum of weights w j , with j from 0 to 10, is equal to 1 (see formula 5).
Computing the global similarity GS through the (3), we assign more weight to the
similarity coefficients with greater comparisons number.

The next step is related to the choice of time period amplitude for training and
trading phases. For the trading set, we consider the time series of a certain year.
Therefore, we consider the exchange rates that start from the end of the time series
until the six preceding months. In this manner, we obtain a semester in the year
considered. Subsequently, we create the second semester, starting from the end of the
year minus a month, until the six preceding months. Thus, we obtain a certain number
of semesters. Therefore, we compare these trading semesters with various semesters
of the previous years. Subsequently, a selection of training and trading semesters pairs
is accomplished, splitting the pairs with positive slopes and those with negative slopes.
So, we compute the profits1 of the trading semesters by considering the optimised

1 To compute the profits, we use the DMAC filter rule [32].
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parameters (see [32]) of the corresponding training semesters. For each semesters pair,
we compute the GS coefficient through formula 3 and define the following quantity:

fGS = nGS

n p
, (6)

where n p is the number of semester pairs with positive profit and nGS is the number
of profitable semesters with similarity index GS that lies between two extrema. In
particular, we consider the GS ranges: 0.0–0.1, 0.1–0.2, ..., until 0.9–1.0. So, the
quantity fGS represents a measure of the frequency of global similarity values based
on their memberships at the ranges named above.

In order for the algorithm results to have a statistical sense, we need to apply our
technique to many samples that have a trend similar to the exchange rates of the year
considered. To solve this problem, we use a technique described by Efron [12], called
the bootstrap method [17, 34]. The key idea is to resample from the original data,
either directly or via a fitted model,2 to create various replicate data sets, from which
the variability of the quantities of interest can be assessed without long-winded and
error-prone analytical calculations. In this way, we create some artificial exchange
rate series, each of which is of the same length as the original series.

3 Experimental results

We apply our algorithm to hourly Euro-Dollar exchange rates and consider 2006 as
the year for trading. To create samples with trends similar to the Euro-Dollar exchange
rate 2006, we use parametric bootstrap methods [3].

In the parametric bootstrap setting, we consider an unknown distribution F to
be a member of some prescribed parametric family and obtain a discrete empirical
distribution F∗n by estimating the family parameters from the data. By generating
an iid random sequence from the distribution F∗n , we can arrive at new estimates of
various parameters of the original distribution F .

The parametric methods used are based on assuming a specific model for the data.
After estimating the model by a consistent method, the residuals are bootstrapped. In
this way, we obtain sample sets with the same length of exchange rates as 2006.

Table 1 shows the results with 10, 100, 200, 300, 400 and 500 samples. On the
rows, we have the samples number and on the columns we have the global similarity
frequency defined in formula (6). We can note that there are no results for the ranges
0.5–0.6, 0.6–0.7, until 0.9–1.0 because they give null contribution, that is there are
no global similarity values belonging to the above-named ranges. Moreover, we can
observe that for 10 samples, the range with highest frequency is 0.0–0.1, that is, it
is more likely that with a similarity coefficient between 0 and 0.1 we have a positive
profit than for the other ranges.

The statistics results for 100 samples show that the range with the greatest fre-
quency is 0.1–0.2. For 200, 300, 400 and 500 samples we obtain about the same value.

2 We use a GARCH model (see [4]).
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Table 1. Pattern recognition algorithm results

Samples fGS1 fGS2 fGS3 fGS4 fGS5

10 0.4500 0.4440 0.0920 0.0150 0
100 0.3295 0.4859 0.1633 0.0206 0.0006
200 0.3386 0.4722 0.1671 0.0214 0.0007
300 0.3242 0.4770 0.1778 0.0206 0.0005
400 0.3206 0.4833 0.1774 0.0183 0.0003
500 0.3228 0.4813 0.1768 0.0188 0.0003

Therefore, we can infer that from 100 to 500 samples results remain stable.3 It is most
likely that with a number of samples greater than 500, the distribution will be wider.

We also report the results related to the algorithm’s application to the real word. To
do this, we consider the Euro-Dollar exchange rates of the year 2007. In particular, we
choose three semester pairs that could be defined as “similar" by the human eye. We
consider the second semester of 2003 the training semester and the second semester
of 2007 the trading semester for Euro-Dollar exchange rates. These semesters are
shown in Figure 1.

All the figures contain two graphs: the first one shows the half-yearly trend of
Euro-Dollar exchange rate, whereas the second one has a double-scale graph. The
use of double scale is necessary to study the relationship between exchange rate and
profit by the application of technical filter. The trading rule described in this practical
example is a long-short strategy. Moreover, the technical filter used is the DMAC
rule, which is based on the moving average definition and on Take Profit (TP) and
Stop Loss (SL) parameters.

The double-scale graphs have time on the x-axis, the shape of the Euro-Dollar
exchange rate on the left y-axis and profit on the right y-axis. We underline that the
y-axis values are pure numbers, that is without units of measurement.

The results of Table 2 show that there is a loss of about 13 % with a GS coefficient
of 0.61844. From Figure 1 we can note that there are substantial shape differences at
the beginning and at the end of semesters and that the profit has a decreasing trend
for more than half a semester.

Figure 2 shows the second semester of 2004 (training semester) and the second
semester of 2007 (trading semester). As can be seen in Table 2, we obtain a profit
of about 26 % with a global similarity index of 0.66299. Observing Figure 2, we can
see that the profit is essentially growing, except at the beginning and at the end of the
trading semester.

We choose as the third pair the first semester of 2006 and the second semester of
2007 (Fig. 3). In this case, we have a loss of 14 % and a GS of 0.61634. We deduce that
the loss is probably due to the substantial shape differences in the various semester
sub-periods (see Fig. 3), as happened in the case of Figure 1. From Figure 3 we

3 To perform calculations our algorithm needs about three hours of computer time for each
sample. However, in the future we will consider sample numbers greater than 500.
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Fig. 1. Trading phrase using the second semester of 2003 as the training period

note that there are considerable losses at the beginning and at the end of the trading
semester.

Table 2 summarises the algorithm application results to the semester pairs chosen.
From the observation of these results, we infer that there is a global similarity threshold
which lies between 0.61844 and 0.66299. For global similarity values greater than
this threshold we should obtain profits.

4 Conclusions and future work

In the technical analysis literature, some authors attribute to chart patterns the property
of assessing market conditions and anticipating turning points. Some works develop
and analyse the information content of chart patterns. Other papers have shown the
importance of choosing the best trading rules for maximum and stable profits. There-

Table 2. Profitability and similarity results of the semester pairs

Training semester Trading semester Profit GS

2nd 2003 2nd 2007 −0.1301 0.61844
2nd 2004 2nd 2007 0.2592 0.66299
1st 2006 2nd 2007 −0.1367 0.61634



A pattern recognition algorithm 259

01−Jul−2004 01−Oct−2004 01−Jan−2005
1.15

1.2

1.25

1.3

1.35

1.4

Time 

E
ur

o−
D

ol
la

r 
ex

ch
an

ge
 r

at
e

01−Jul−2007 01−Oct−2007 01−Jan−2008
1.3

1.35

1.4

1.45

1.5

E
ur

o−
D

ol
la

r 
ex

ch
an

ge
 r

at
e

01−Jul−2007 01−Oct−2007 01−Jan−2008

0

0.2

0.4

Time 

P
ro

fit

Fig. 2. Trading phase using as training period the second semester of 2004
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Fig. 3. Trading phase using as training period the first semester of 2006
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fore, there are some technical filters that assure the highest profit. In this way, an
important issue is the choice of the training and trading sets.

In this paper, we describe a pattern recognition algorithm to optimally match
a training period and a trading period in the DMAC filter rule. The trading rule
described is a long-short strategy investing in foreign exchange rates. We illustrate
a practical example choosing the semester as the testing period and obtaining stable
results. This stability is verified also for different periods, such as monthly, yearly
and two-yearly periods. Moreover, for these temporal ranges, we realise a statistic on
the short and long operations separately. In particular, we compute the mean and the
standard error of the operations number, obtaining some interesting information. It
might be convenient to also report standard indicators such as performance, volatility
and Sharpe ratio, typical of the finance industry.

The aim of this work is to obtain positive profits in accordance with similarity
degrees between training and trading periods. Our method gives a similarity index
that can be useful to establish how a training set has valuable information for a future
trading set. The results show that the similarity index is a good starting point for this
kind of study. Therefore, we will need to analyse how differences in shape have an
impact on profits for global similarity indexes of comparable magnitude.
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Nonlinear cointegration in financial time series

Claudio Pizzi

Abstract. In this paper, the concept of linear cointegration as introduced by Engle and
Granger [5] is merged into the local paradigm. Adopting a local approach enables the achieve-
ment of a local error correction model characterisedby dynamic parameters. Another important
result obtained using the local paradigm is that the mechanism that leads the dynamic system
back to a steady state is no longer a constant: it is a function not defined a priori but estimated
point by point.

Key words: nonlinearity, cointegration, local polynomial model

1 Introduction

One of the aims of the statistical analysis of a time series is to enable the researcher
to build a simplified representation of the data-generating process (DGP) and/or the
relationship amongst the different phenomena under study. The methods for identi-
fying and estimating these models are based on the assumption of the stationarity of
the DGP. Nevertheless, this assumption is often violated when considering financial
phenomena, for example stock price, interest rates, exchange rates and so on. The
financial time series usually present a non-stationarity of the first order if not higher.

In the case of the construction of a regressive model, the presence of unit roots in
the time series means attention should be paid to the possible cointegration amongst
the variables.

The cointegration idea, which characterises the long–run relationship between
two (or several) time series, can be represented by estimating a vector of parameters
and can be used to build a dynamic model that enables both long-run relationships
and also some transitional short-run information to be highlighted. This enables the
representation of an error correction model that can be considered as a dynamic system
characterised by the fact that any departure from the steady state generates a short-run
dynamic.

The linear cointegration concept introduced by Engle and Granger [5] has been
broadly debated in the literature and much has been published on this topic. The
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researchers’ interest has mainly been tuned to the problem of estimating the cointe-
gration relationship (it is worth mentioning, amongst others, Johansen [8], Saikko-
nen [18], Stock and Watson [21] Johansen [9] and Strachan and Inder [22]) and
building statistical tests to verify the presence of such a relationship.

The first test suggested by Engle and Granger [5] was followed by the tests pro-
posed by Stock and Watson [20] to identify common trends in the time series assessed.
After them, Phillips and Ouliaris [15] developed a test based on the principal com-
ponents method, followed by a test on regression model residuals [14]. Johansen [8]
instead proposed a test based on the likelihood ratio.

The idea of linear cointegration then has been extended to consider some kind of
nonlinearity. Several research strains can be identified against this background. One
suggests that the response mechanism to the departure from the steady state follows a
threshold autoregressive process (see for example the work by Balke and Fomby [1]).
With regard to the statistical tests to assess the presence of threshold cointegration,
see for example Hansen and Byeongseon [7].

The second strain considers the fractional cointegration: amongst the numerous
contributions, we would like to recall Cheung and Lai [3], Robinson and Marin-
ucci [16], Robinson and Hualde [17] and Caporale and Gil-Alana [2].

Finally, Granger and Yoon [6] introduced the concept of hidden cointegration that
envisages an asymmetrical system answer, i.e., the mechanism that guides the system
to the steady state is only active in the presence of either positive or negative shocks,
but not of both. Schorderet’s [19] work follows up this idea and suggests a procedure
to verify the presence of hidden cointegration.

From a more general standpoint, Park and Phillips [12] considered non-linear
regression with integrated processes, while Lee et al. [11] highlighted the existence of
a spurious nonlinear relationship. In the meantime further developments contemplated
the equilibrium adjustment mechanism guided by a non-observable weak force, on
which further reading is available, by Pellizzari et al. [13].

This work is part of the latter research strain and suggests the recourse to local
linear models (LLM) to build a test for nonlinear cointegration. Indeed, the use of
local models has the advantage of not requiring the a priori definition of the func-
tional form of the cointegration relationship, enabling the construction of a dynamic
adjustment mechanism. In other words, a different model can be considered for each
instant (in the simplest of cases, it is linear) to guide the system towards a new equi-
librium. The residuals of the local model can thus be employed to define a nonlinear
cointegration test. The use of local linear models also enables the construction of a
Local Error Correction Model (LECM) that considers a correction mechanism that
changes in time. The paper is organised as follows. The next section introduces the
idea of nonlinear cointegration, presenting the LECM and the unrestricted Local Er-
ror Correction Model (uLECM). Section 3 presents an application to real data, to
test the nonlinear cointegration assumption. The time series pairs for which the null
hypothesis of no cointegration is rejected will be used to estimate both the uLECM
and the speed of convergence to equilibrium. The paper will end with some closing
remarks.
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2 Nonlinear cointegration

Let Xt , Yt : t = 1, . . . , T be the realisation of two integrated processes of the order
d and consider the following relationship:

Yt = β0 + β1 Xt + ut . (1)

If the vector βββ = (β0, β1) is not null and zt is an integrated process of the order
b < d , then the variables Xt and Yt are linearly cointegrated andβββ is the cointegration
vector; as follows, without losing generality, it will be considered that d = 1 and
consequently b = 0. Consider now a general dynamic relationship between Y and X :

Yt = α + βXt + γ Xt−1+ δYt−1 + ut . (2)

The parameters restriction β + γ = 1− δ and some algebra lead to the formulation
of the following error correction model (ECM):

�Yt = α + β�Xt − φ ẑt−1 + vt , (3)

where �Yt = Yt − Yt−1, �Xt = Xt − Xt−1 and ẑt−1 are residuals of the model
estimated by equation (1) and vt is an error term that satisfies the standard properties.

As an alternative, the unrestricted approach can be considered. The unrestricted
error correction model can be specified as:

�Yt = α∗ + β∗�Xt + π1Yt−1 + π2 Xt−1 + vt . (4)

In a steady state there are no variations, thus �Yt = �Xt = 0 so that denoting
Y ∗ and X∗ the variables of the long-run relationship, the long-run solution can be
indicated as:

0 = α∗ + π1Y ∗ + π2 X∗ (5)

and

Y ∗ = −α
∗

π1
− π2

π1
X∗. (6)

The long-run relationship is estimated by π2/π1, whereas π1 is an estimate of
the speed of adjustment. The cointegration relationship is interpreted as a mechanism
that arises whenever there is a departure from the steady state, engendering a new
equilibrium. Both (3) and (6) highlight that the relationship between the variables is
linear in nature and that all the parameters are constant with respect to time. If on
the one hand this is a convenient simplification to better understand how the system
works, on the other its limit consists in it restricting the correction mechanism to a
linear and constant answer. To make the mechanism that leads back to a steady-state
dynamic, we suggest considering the relationship between the variables of the model
described by equation (1) in local terms. In a traditional approach to cointegration, the
parameters of (1) are estimated just once by using all available observations and, in
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the case of homoscedasticity, a constant weight is assigned to each piece of available
sample data. On the contrary, the local approach replaces the model represented by
(1) with the following equation:

�Yt = β0,t + β1,t Xt + zt . (7)

The estimation of parameters in the local model is achieved through the following
weighted regression:

β̂t = arg min
β∈ 2

T∑
i=1

[
Yi − β0,t − β1,t Xi

]2
w2

t ,i , (8)

where wt ,i indicates the weight associated to the ith sample point in the estimate of
the function at point t . They measure the similarity between the sample points Xt and
Xi and are defined as follows:

wt ,i = �k
[(

Xt− j − Xi− j
)
/h

]
, (9)

where � is an aggregation operator that sums the similarities between ordered pairs
of observations. Function k is continuous, positive and achieves its maximum in zero;
it is also known as a kernel function. Amongst the different and most broadly used
kernel functions aqnd the Epanechnikov kernel, with minimum variance, and the
gaussian kernel, which will be used for the application described in the next section.
The kernel function in (9) is dependent on parameter h, called bandwidth, which
works as a smoother: as it increases, the weight wt ,i will be higher and very similar
to each other. Parameter h has another interpretation, i.e., to measure the model’s
“local” nature: the smaller h is, the more the estimates will be based on few sampling
data points, very similar to the current one. On the other hand, a higher h value means
that many sampling data points are used by the model to achieve an estimate of the
parameters. This paper has considered local linear models, but it is also possible to
consider other alternative local models models such as, for example, those based on the
Nearest Neighbours that resort to constant weights and a subset of fixed size of sample
observations. Once the local model has been estimated, a nonlinear cointegration test
can be established considering the model’s residuals and following the two-stage
procedure described by Engle and Granger. Furthermore, with an adaptation from a
global to a local paradigm, similar to the one applied to (1), equation (6) becomes:

�Yt = α∗t + β∗t �Xt + π1,t Yt−1 + π2,t Xt−1 + vt . (10)

The long-run relationship and the speed of adjustment will also be dependent on
time and no longer constant as they depend on the parameters π1,t and π2,t that are
estimated locally.

In the next section both LECM (equation 7) and uLECM (equation 10) will be
estimated. The former to test the nonlinear cointegration hypothesis and the latter to
estimate the speed of adjustment.
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3 An application to a financial time series

To verify whether there is cointegration amongst financial variables the time series
of the adjusted closing price of the quotations of 15 US stocks were taken from
the S&P 500 basket. For each stock the considered period went from 03.01.2007 to
31.12.2007. Table 1 summarises the 15 stocks considered, the branch of industry they
refer to and the results of the Phillips-Perron test performed on the price series to
assess the presence of unit roots.

Table 1. p-value for the Phillips–Perron test

p-value
Code Name Industry Stationarity Explosive

AIG American Internat.Group Insurance 0.565 0.435
CR Crane Company Machinery 0.623 0.377
CSCO Cisco Systems Communications equipment 0.716 0.284
F Ford Motor Automobiles 0.546 0.454
GM General Motors Automobiles 0.708 0.292
GS Goldman Sachs Group Capital markets 0.536 0.464
JPM JPMorgan Chase & Co. Diversified financial services 0.124 0.876
MER Merrill Lynch Capital markets 0.585 0.415
MOT Motorola Inc. Communications equip. 0.109 0.891
MS Morgan & Stanley Investment brokerage 0.543 0.457
NVDA NVIDIA Corp. Semiconductor & semiconductor equip. 0.413 0.587
PKI PerkinElmer Health care equipment & supplies 0.655 0.345
TER Teradyne Inc. Semiconductor & semiconductor equip. 0.877 0.123
TWX Time Warner Inc. Media 0.451 0.549
TXN Texas Instruments Semiconductor & semiconductor equip. 0.740 0.260

The test was performed both to assess the presence of unit roots vs stationarity
(fourth column) and also the presence of unit roots vs explosiveness (last column).
The null hypothesis of unit roots was accepted in all the time series considered. A
further test, the KPSS test [10], was carried out to assess the null hypothesis that the
time series is level or trend stationary. The results have confirmed that all the series are
nonstationary. Considering the results from the nonstationarity tests, we proceeded
to verify the assumption of cointegration in the time series. The acceptation of the
latter assumption is especially interesting: this result can be interpreted in terms of the
mechanisms that affect the quotation of the stocks considered. More specifically, the
shocks that perturb the quotationsof a stock imply departure from the system’s steady
state, thus inducing variations that depend on the extent of the shock and the estimable
speed of convergence towards the new equilibrium. From another standpoint, the
presence/absence of cointegration between two stocks may become important when
contemplating the implementation of a trading strategy. Recording the variations in a
variable (quotation of a stock) enables prediction of the “balancing” response provided
by some variables or the purely casual responses of others. Considering the definition
of cointegration introduced in the previous section and taking into account the 15
shares contemplated in this application, there are numerous applicable cointegration
tests, as each possible m-upla of variables can be considered with m = 2, . . . , 15.
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In this paper the test of hypothesis of cointegration has been restricted to analysing
the relationships between all the different pairs of time series. The Phillips Ouliaris
test [15] was performed on each pair, the results of which are summarised in Table 2.
The table highlights in bold the p-values lower than 0.05 that show the pairs of stocks
for which the hypothesis of no cointegration was rejected. The test was performed
resorting to R software. Note that the software outputs 0.15 for any real p-value
greater than 0.15. Hence the values 0.15 in the Table 2 mean that the null hypothesis
of no cointegration is accepted with a p-value ≥ 0.15.

Table 2. p-value of the Phillips Ouliaris test for the null hypothesis that the time series are not
cointegrated

AIG CR CSCO F GM GS JPM MER MOT MS NVDA PKI TER TWX

CR 0.15
CSCO 0.15 0.15
F 0.15 0.15 0.15
GM 0.15 0.15 0.15 0.15
GS 0.15 0.15 0.15 0.15 0.15
JPM 0.15 0.15 0.15 0.15 0.15 0.15
MER 0.15 0.15 0.15 0.15 0.15 0.15 0.15
MOT 0.06 0.15 0.15 0.15 0.15 0.15 0.15 0.07
MS 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
NVDA 0.01 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.05
PKI 0.15 0.15 0.15 0.15 0.15 0.15 0.01 0.06 0.15 0.15 0.15
TER 0.15 0.04 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
TWX 0.05 0.15 0.04 0.08 0.15 0.15 0.15 0.15 0.15 0.14 0.07 0.15 0.15
TXN 0.11 0.15 0.15 0.15 0.15 0.15 0.15 0.04 0.01 0.11 0.10 0.10 0.15 0.15

Table 3. p-value for the nonlinear cointegration test for the null hypothesis that the time series
are not cointegrated

AIG CR CSCO F GM GS JPM MER MOT MS NVDA PKI TER TWX

CR 0.19
CSCO 0.65 0.00
F 0.93 0.97 0.99
GM 0.95 0.97 0.81 0.59
GS 0.03 0.31 0.06 0.00 0.20
JPM 0.27 0.13 0.98 0.00 0.99 0.00
MER 0.23 0.14 1.00 0.99 0.99 0.98 0.28
MOT 0.08 0.53 0.14 0.00 0.99 0.01 0.02 0.01
MS 0.00 0.00 0.16 0.94 1.00 0.94 0.59 0.86 0.46
NVDA 0.13 0.51 1.00 0.00 1.00 0.14 0.09 0.77 0.89 0.00
PKI 0.02 0.01 0.00 0.00 1.00 0.00 0.00 0.00 0.13 0.89 0.01
TER 0.45 0.01 0.00 0.99 0.99 0.99 0.00 0.05 0.00 0.99 0.00 0.00
TWX 0.42 0.06 1.00 1.00 1.00 0.99 0.00 0.42 0.01 1.00 1.00 0.02 0.00
TXN 0.41 0.00 0.99 1.00 1.00 0.99 0.00 0.79 0.02 1.00 0.01 0.00 0.00 0.01

The figures in bold show that only 7 pairs, out of the total 105 combinations, of
time series are linearly cointegrated, highlighting for the majority of cases the lack of a
long-run relationship and adjustment mechanism. To assess the presence of nonlinear
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cointegration, as presented in the previous section, we adapted the two-stage procedure
suggested by Engle and Granger to the nonlinear framework. In the first stage, the
local linear model was initially estimated amongst the series under investigation; then
the stationarity was tested using the residuals of the estimated linear local model. If
the null hypothesis of nonstationarity was discarded, the second stage of the procedure
was conducted: it consisted in verifying the cointegration hypothesis by performing
a second regression as in (3). The results of the two-stage procedure are shown in 3.
They highlight that the use of local linear models has enabled the identification of
nonlinear cointegration relationships among 40 binary time series combinations. This
confirms the initial assumption, i.e., that the time series lacking linear cointegration
in fact present a nonlinear relationship.

For the time series that presented nonlinear cointegration, an unrestricted local
error correction model was also estimated to obtain both the long-run dynamic re-
lationship and the function of the speed of adjustment. Below, for brevity, only one
case is presented. The considered period went from 01/07/2000 to 31/12/2002. has to
be interpreted as acceptation of the null hypothesis of the absence of co-integration
with a p-value≥ 0.15.

Fig. 1. Time series of stocks price

Fig. 2. Speed of adjustment function
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Figure 1 shows the time series of the price of the stocks considered, i.e., Ford
Motor (F) and Motorola Inc. (MOT). The speed of adjustment is depicted in Figure
2 (points); its behaviour is very rough and to smooth it we estimate the function of
speed using the local polynomial regression (LOESS procedure) [4] (line).

It is worth mentioning that the velocity increases when strong market shocks
perturb one of the time series disturbing the system from its steady state. As the
adjustment mechanism drives the system towards the new equilibrium, the speed of
adjustment tends to diminish.

4 Conclusion

The analysis of the time series of the 15 shares has enabled us to highlight that the
relationships that bind two stocks in the long run do not always follow a linear error
correction structure. To overcome this limit, we have suggested a local error correction
model that enables the investigation of the presence of nonlinear cointegration. By
applying this local model, it has been shown that, out of all those analysed, several
pairs of stocks are bound by a nonlinear cointegration relationship. Furthermore, the
LECM, reformulated in terms of an unrestricted local error correction model, has
also enabled the determination of the correction speed and the long-run relationship
between variables as a function of time, enabling the consideration of a dynamic
cointegration relationship.
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Optimal dynamic asset allocation in a non–Gaussian
world

Gianni Pola

Abstract. Asset Allocation deals with how to combine securities in order to maximize the
investor’s gain. We consider the Optimal Asset Allocation problem in a multi-period investment
setting: the optimal portfolio allocation is synthesised to maximise the joint probability of the
portfolio fulfilling some target returns requirements. The model does not assume any particular
distribution on asset returns, thus providing an appropriate framework for a non–Gaussian
environment. A numerical study clearly illustrates that an optimal total-return fund manager is
contrarian to the market.

Key words: asset allocation, portfolio management,multi-period investment, optimal control,
dynamic programming

1 Introduction

In the finance industry, portfolio allocations are usually achieved by an optimiza-
tion process. Standard approaches for Optimal Asset Allocation are based on the
Markowitz model [15]. According to this approach, return stochastic dynamics are
mainly driven by the first two moments, and asymmetry and fat-tails effects are as-
sumed to be negligible. The model does not behave very well when dealing with
non–Gaussian-shaped asset classes, like Hedge Funds, Emerging markets and Com-
modities. Indeed it has been shown that sometimes minimizing the second order
moment leads to an increase in kurtosis and a decrease in skewness, thus increasing
the probability of extreme negative events [3, 10, 22]. Many works have appeared
recently in the literature that attempt to overcome these problems: these approaches
were based on an optimization process with respect to a cost function that is sensitive
to higher-order moments [2, 11, 12], or on a generalisation of the Sharpe [21] and
Lintner [14] CAPM model [13,16].

The second aspect of the Markowitz model is that it is static in nature. It permits the
investor to make a one-shot allocation to a given time horizon: portfolio re–balancing
during the investment lifetime is not faced. Dynamic Asset Allocation models address
the portfolio optimisation problem in multi-period settings [4,7,17,20,23].
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In this paper we consider the Optimal Dynamic Asset Allocation (ODAA) problem
from a Control System Theory perspective. We will show that the ODAA problem
can be reformulated as a suitable optimal control problem. Given a sequence of
target sets, which represent the portfolio specifications, an optimal portfolio allocation
strategy is synthesized by maximizing the probability of fulfilling the target sets
requirements. The proposed optimal control problem has been solved by using a
Dynamic Programming [6] approach; in particular, by using recent results on the
Stochastic Invariance Problem, established in [1, 18]. The proposed approach does
not assume any particular distributionon the stochastic random variables involved and
therefore provides an appropriate framework for non–Gaussian settings. Moreover the
model does not assume stationarity in the stochastic returns dynamics. The optimal
solution is given in a closed algorithmic form.

We applied the formalism to a case study: a 2-year trade investing in the US
market. The objective of the strategy is to beat a fixed target return at the end of
the investment horizon. This study shows markedly that an (optimal) total return
fund manager should adopt a contrarian strategy: the optimal solution requires an
increase in risky exposure in the presence of market drawdowns and a reduction in the
bull market. Indeed the strategy is a concave dynamic strategy, thus working pretty
well in oscillating markets. We contrast the ODAA model to a convex strategy: the
Constant-Proportional-Portfolio-Insurance (CPPI) model.

Preliminary results on the ODAA problem can be found in [19].
The paper is organised as follows. In Section 2 we give the formal statement of

the model and show the optimal solution. Section 3 reports a case study. Section 4
contains some final remarks.

2 The model: formal statement and optimal solution

Consider an investment universe made of m asset-classes. Given k ∈ N , define the
vector:

wk =
[
wk(1) wk(2) · · · wk(m)

]T ∈ Rm ,

where the entries are the returns at time k. Let

uk = [ uk(1) uk(2) . . . uk(m) ]T ∈ Rm

be the portfolio allocation at time k ∈ N . Usually some constraints are imposed on
uk in the investment process: we assume that the portfolio uk is constrained to be
in a given set Uk ⊂ Rm . The portfolio time evolution is governed by the following
stochastic dynamical control system:

xk+1 = xk(1+ uT
k wk+1), k ∈ N , (1)

where:

• xk ∈ X = R is the state, representing the portfolio value at time k;
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• uk ∈ Uk ⊆ Rm is the control input, representing the portfolio allocation at time k;
and

• wk ∈ Rm is a random vector describing the asset classes’ returns at time k ∈ N .

Equation (1) describes the time evolution of the portfolio value: uT
kwk+1 quantifies the

percentage return of the portfolio allocation uk at time k in the time interval [k, k+1)
due to market performances wk+1.

Let (�,F , P) be the probability space associated with the stochastic system in
(1). Portfolio value xk at time k = 0 is assumed to be known and set to x0 = 1. The
mathematical model in (1) is characterised by no specific distribution on the asset
classes’ returns. We model asset classes’ returns by means of Mixtures of Multivari-
ate Gaussian Models (MMGMs), which provide accurate modelling of non–Gaussian
distributions while being computationally simple to be implemented for practical is-
sues1. We recall that a random vector Y is said to be distributedaccording to a MMGM
if its probability density function pY can be expressed as the convex combination of
probability density functions pYi of some multivariate Gaussian random variables Yi ,
i.e.,

pY (y) =
N∑

i=1

λi pYi (y), λi ∈ [0, 1],
N∑

i=1

λi = 1.

Some further constraints are usually imposed on coefficients λi so that the resulting
random variable Y is well behaved, by requiring, for example, semi-definiteness of the
covariance matrix and unimodality in the marginal distribution. The interested reader
can refer to [8] for a comprehensive exposition of the main properties of MMGMs.

The class of control inputs that we consider in this work is the one of Markov
policies [6]. Given a finite time horizon N ∈ N , a Markov policy is defined by the
sequence

π = {u0, u1, . . . , uN−1}
of measurable maps uk : X → Uk . Denote by Uk the set of measurable maps uk :
X → Uk and by  N the collection of Markov policies. For further purposes let
πk = {uk, uk+1, ..., uN−1}.

Let us consider a finite time horizon N which represents the lifetime of the consid-
ered investment. Our approach in the portfolio construction deals with how to select
a Markov policy π in order to fulfill some specifications on the portfolio value xk at
times k = 1, . . . , N . The specifications are defined by means of a sequence of target
sets {�1, �2, ..., �N } with�i ⊆ X . The investor wishes to have a portfolio value xk

at time k that is in �k. Typical target sets �k are of the form �k = [xk ,+∞[ and
aim to achieve a performance that is downside bounded by xk ∈ R. This formulation
of specifications allows the investor to have a portfolio evolution control during its
lifetime, since target sets �k depend on time k.

The portfolio construction problem is then formalized as follows:

1 We stress that MMGM modelling is only one of the possible choices: formal results below
hold without any assumptions on the return stochastic dynamics.
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Problem 1. (Optimal Dynamic Asset Allocation (ODAA)) Given a finite time horizon
N ∈ N and a sequence of target sets

{�1, �2, ..., �N }, (2)

where �k are Borel subsets of X , find the optimal Markov policy π that maximizes
the joint probability quantity

P({ω ∈ � : x0 ∈ �0, x1 ∈ �1, . . . , xN ∈ �N }). (3)

The ODAA problem can be solved by using a dynamic programming approach [6] and
in particular by resorting to recent results on stochastic reachability (see e.g., [18]).

Since the solution of Problem 1 can be obtained by a direct application of the
results in the work of [1, 18], in the following we only report the basic facts which
lead to the synthesis of the optimal portfolio allocation. Given x ∈ X and u ∈ Rm ,
denote by p f (x,u,wk ) the probability density function of random variable:

f (x, u, wk+1) = x(1+ uTwk+1), (4)

associated with the dynamics of the system in (1). Given the sequence of target sets
in (2) and a Markov policy π , we introduce the following cost function V , which
associates a real number V (k, x, πk ) ∈ [0, 1] to a triple (k, x, πk ) by:

V (k, x, πk ) =

⎧⎪⎨⎪⎩
I�k (x), if k = N ,∫
�k+1

V (k + 1, z, πk+1)p f (z)dz, if k = N − 1, N − 2, . . . , 0,

(5)
where I�N (x) is the indicator function of the Borel set�N (i.e. I�N (x) = 1 if x ∈ �N

and I�N (x) = 0, otherwise) and p f stands for p f (x,uk ,wk+1 ). Results in [18] show
that cost function V is related to the probability quantity in (3) as follows:

P({ω ∈ � : x0 ∈ �0, x1 ∈ �1, . . . , xN ∈ �N }) = V (0, x0, π).

Hence the ODAA problem can be reformulated, as follows:

Problem 2. (Optimal Dynamic Asset Allocation) Given a finite time horizon N ∈ N
and the sequence of target sets in (2), compute:

π∗ = arg sup
π∈ N

V (0, x0, π).

The above formulation of the ODAA problem is an intermediate step towards the
solution of the optimal control problem under study which can now be reported
hereafter.
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Theorem 1. The optimal value of the ODAA Problem is equal to [18]

p∗ = J0(x0),

where J0(x) is given by the last step of the following algorithm,

JN (x) = I�N (x),

Jk(x) = sup
uk∈Uk

∫
�k+1

Jk+1(z)p f (x,uk ,wk+1)(z)dz, k = N − 1, N − 2, . . . , 1, 0.
(6)

The algorithm proceeds as follows. Suppose that the time horizon of our investment
is N . First, the optimisation algorithm (6) is solved for k = N − 1. This optimisation
problem can be automatically solved by using a wealth of optimisation packages
in many computer programs, for example, MATLAB, Mathematica and Maple. The
solution to (6) provides the optimal strategy ûk(x) to be applied to the investment
when the value of the portfolio is x at time k. Once the optimization problem (6) is
solved for k = N − 1, function JN−1(x) is also known. Hence, on the basis of the
knowledge of function JN−1(x), one can proceed one step backwards and solve the
optimisation problem (6) at step j = N−2. This algorithmic optimisation terminates
when j = 0. The outcome of this algorithm is precisely the optimal control strategy
that solves (3), as formally stated in Theorem 1.

3 Case study: a total return portfolio in the US market

In this section we apply the proposed methodology to the synthesis of a total return
product. The investment’s universe consists of 3 asset classes: the money market, the
US bond market and the US equity market. Details on the indices used in the analysis
are reported below:

Label Asset Index

C Money market US Generic T-bills 3 months
B US bond JP Morgan US Government Bond All Maturity

E US equity S&P500

Time series are in local currency and weekly based from January 1st 1988 to December
28th 2007. The total return product consists of a 2-year trade. The investor objective is
to beat a target return of 7% (annualised value) at maturity; his budget risk corresponds
to 7% (ex ante) monthly Value at Risk at 99% (VaR99m) confidence level.2

The portfolio allocation will be synthesized applying the results presented in the
previous section. We first consider an ODAA problem with a quarter rebalancing
(N = 8).

2 This budget risk corresponds to an ex ante (annual) volatility of 10.42%.
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Table 1. Probabilistic model assumptions

C B E

return (ann) 3.24% 5.46% 10.62%
vol (ann) 0% 4.45% 14.77%

skewness 0 −0.46 −0.34
kurtosis 3 4.25 5.51

corr to C 1 0 0
corr to B 0 1 0.0342

corr to E 0 0.0342 1

The first step consists in building up a probabilistic model that describes the
asset classes’ return dynamics. Risk figures and expected returns3 are reported in
Table 1. Asset classes present significant deviations to the Gaussian nature (Jarque–
Bera test; 99% confidence level): bond and equity markets are leptokurtic and negative
skewed. We assume stationarity in the dynamics of the returns distribution. This
market scenario has been modelled with a 2-states Mixture of Multivariate Gaussian
Models (MMGM), as detailed in the Appendix. The proposed MMGM modelling
exactly fits up to the fourth-order the asset-classes’ performance and risk figures, and
up to the second order the correlation pattern.

The investment requirements are translated into the model as follows. The opti-
misation criterion consists in maximising the probability P(x8 > 1.072), x8 being
the portfolio value at the end of the second year. The target sets �s formalisation is
given below:

�0 = {1}, �k = [0,+∞), ∀k = 1, 2, ..., 7, �8 = [1.072,+∞). (7)

More precisely, the optimisation problem consists in determining the (optimal) dy-
namic allocation grids uk (k = 0, 1, ..., 7) in order to maximise the joint probability
P(x1 ∈ �1, ..., x8 ∈ �8) subjected to the Value-at-Risk budget constraint. By apply-
ing Theorem 1 we obtain the optimal control strategy that is illustrated in Figure 1.
(Budget and long-only constraints have been included in the optimisation process.)

The allocation at the beginning of the investment (see Figure 1, upper-left panel)
is 46% Bond and 54% Equity market. After the first quarter, the fund manager re-
vises the portfolio allocation (see Figure 1, upper-right panel). Abscissas report the
portfolio value x1 at time k = 1. For each portfolio realisation x1, the map gives
the corresponding portfolio allocation. As the portfolio strategy delivers higher and
higher performance in the first quarter, the optimal rebalancing requires a reduction
in the risky exposure. If x1 reaches a value around 1.0832, a 100% cash allocation
guarantees the target objective will be reached at maturity. Conversely, a portfolio

3 In the present work we do not face the problem of returns and risk-figures forecasting.
Volatility, skewness, kurtosis and the correlation pattern have been estimated by taking the
historical average. Expected returns have been derived by assuming a constant Sharpe ratio
(0.50), and a cash level given by the US Generic T-bills 3 months in December 31st 2007.
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Fig. 1. ODAA optimal solution

value of x1 = 0.9982 moves the optimal strategy to the maximum allowed risky
exposure (i.e. 7% VaR99m).

Maps for k = 2, 3, 4, 5, 6, 7 exhibit similar characteristics as for k = 1. The main
difference is that as k increases the portfolio rebalancing gets sharper and sharper.

The ODAA maximal probability p∗ is 68.40%. In order to make a comparison with
more standard approaches, we run the same exercise for a Markowitz constant-mix
investor: in this case the optimal solution requires the full budget-risk to be invested,
with a maximal probability of 61.90%. The ODAA model gets more and more efficient
as the rebalancing frequency increases. Table 2 reports the maximal probabilities for
rebalancing frequency of three months (N = 8), one month (N = 24), two weeks
(N = 52) and one week (N = 104). In fact, this result is a direct consequence of
the Dynamic Programming approach pursued in this paper. It is worth emphasising
that the Markowitz constant-mix approach does not produce similar results: in fact
the probability is rather insensitive to the rebalancing frequency.

The allocation grids reported in Figure 1 clearly show that an (optimal) total return
fund manager should adopt a contrarian rebalancing policy [9]: the investor should
increase the risky exposure in the presence of market drawdowns and reduce it in
case of positive performance. The contrarian attitude of the model is a peculiarity of
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Table 2. Maximal probabilities p∗

3 m 1 m 2 w 1 w

Probability 68.40% 72.50% 76.28% 77.76%

concave strategies.4 This feature makes the model particularly appealing in oscillating
markets.

We conclude this section by making a comparison with a convex strategy. We
run a Constant–Proportional–Portfolio–Insurance (CPPI) model [5] with a 2-years
horizon: the model has been designed to protect the capital at maturity. We assume
that the risky basket is composed by the equity market (multiplier has been set to 6)
and trading is weekly based. In order to make a comparison, we assume the same
Value-at-Risk budget risk as in the previous case.

Table 3 offers a comparison between the two approaches. (The ODAA results
refers to a weekly based strategy; N = 104.) The CPPI strategy works pretty well
to protect the capital (99.60%), but it presents a lower probability of achieving large
returns. (The probability of beating a 7% target return at maturity is 33.64%.) Distri-
bution of performance at maturity is positive skewed and platykurtic, thus revealing a
very stable strategy. Conversely, the ODAA strategy presents a higher probability of
delivering its target return (77.76%), but a lower probability of protecting the capital.
ODAA performance distribution is negative skewed and leptokurtic. Higher-order
risk is paid off by the the large probability of achieving more ambitious returns.

The applications presented in this section should be considered for illustrating the
methodology. The views expressed in this work are those of the author and do not
necessarily correspond to those of Crédit Agricole Asset Management.

Table 3. Comparison between the ODAA and CPPI strategy

ODAA CPPI

Mean perf N (ann) 5.68% 6.15 %
Median perf N (ann) 7.03% 3.64%

Skewness perf N −2.80 1.35
Kurtosis perf N 11.08 4.44

Vol (ann) 2.70% 3.05%
Sharpe (ann) 1.51 0.44

Prob 0% 91.40% 99.60%
Prob cash 85.58% 53.21%

Prob 7% 77.76% 33.64%

4 The exposure diagram reports on the X–axis the portfolio value and on the Y –axis the risky
exposure. Concave (resp. convex) strategies are characterised by a concave (resp. convex)
exposure diagram.
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4 Conclusions

In this paper we considered the Optimal Dynamic Asset Allocation problem. Given
a sequence of target sets that the investor would like his portfolio to stay within, the
optimal strategy is synthesised in order to maximise the joint probability of fulfilling
the investment requirements. The approach does not assume any specific distributions
for the asset classes’ stochastic dynamics, thus being particularly appealing to treat
non-Gaussian asset classes. The proposed optimal control problem has been solved by
leveraging results on stochastic invariance. The optimal solution exhibits a contrarian
attitude, thus performing very well in oscillating markets.

Acknowledgement. The author would like to thank Giordano Pola (University of L’Aquila,
Center of Excellence DEWS, Italy), Roberto Dopudi and Sylvie de Laguiche (Crédit Agricole
Asset Management) for stimulating discussions on the topic of this paper.

Appendix: Markets MMGM modeling

Asset classes used in the case study present significant deviation to gaussianity. This
market scenario has been modelled by a 2-state MMGM. States 1 and 2 are charac-
terised by the following univariate statistics:5

{μ1(i)}i = [0.000611; 0.001373; 0.002340],

{σ1(i)}i = [0.000069; 0.005666; 0.019121],

{μ2(i)}i = [0.000683; −0.016109; −0.017507],

{σ2(i)}i = [0.000062; 0.006168; 0.052513],

and correlation matrix:6

C B E

corr to C 1 0.0633 0.0207

corr to B 0.0633 1 −0.0236

corr to E 0.0207 −0.0236 1

Transition probabilities are uniform and the unconditional probability of State 1 is
98%. The above MMGM model correctly represents the univariate statistics of the
asset classes up to the fourth order (as detailed in Table 1) and up to the second order
concerning the correlation patterns.

5 μs(i) and σs(i) indicate (resp.) the performance and volatility of asset i in the state s. (Values
are weekly based.)

6 We assume the same correlation matrix for the above gaussian models.
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Fair costs of guaranteed minimum death benefit
contracts

François Quittard-Pinon and Rivo Randrianarivony

Abstract. The authors offer a new perspective on the domain of guaranteed minimum death
benefit contracts. These products have the particular feature of offering investors a guaranteed
capital upon death. A complete methodology based on the generalised Fourier transform is
proposed to investigate the impacts of jumps and stochastic interest rates. This paper thus
extends Milevsky and Posner (2001).

Key words: life insurance contracts, variable annuities, guaranteed minimum death benefit,
stochastic interest rates, jump diffusion models, mortality models

1 Introduction

The contract analysed in this article is a Guaranteed Minimum Death Benefit contract
(GMDB), which is a life insurance contract pertaining to the class of variable annuities
(VAs). For an introduction to this subject, see Hardy [4] and Bauer, Kling and Russ [2].
The provided guaranty, only in effect upon death, is paid by continuously deducting
small amounts from the policyholder’s subaccount. It is shown in this chapter how
these fees can be endogenously determined. Milevsky and Posner [8] found these fees
overpriced by insurance companies with respect to their model fair price. To answer
this overpricing puzzle, the effects of jumps in financial prices, stochastic interest
rates and mortality are considered. For this purpose, a new model is proposed which
generalises Milevsky and Posner [8].

2 General framework and main notations

2.1 Financial risk and mortality

Financial risk is related to market risk firstly because the policyholder’s account is
linked to a financial asset or an index, and secondly via interest rates. We denote by r

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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the stochastic process modelling the instantaneous risk-free rate. The discount factor
is thus given by:

δt = e−
∫ t

0 rs ds . (1)

The policyholder’s account value is modelled by the stochastic process S. In that
model, � stands for the fees associated with the Mortality and Expense (M&E) risk
charge.

The future lifetime of a policyholder aged x is the r.v. Tx . For an individual aged
x , the probability of death before time t ≥ 0 is

P(Tx ≤ t) = 1− exp
(
−
∫ t

0
λ(x + s)ds

)
, (2)

where λ denotes the force of mortality. As usual, Fx and fx denote respectively the
c.d.f. and the p.d.f. of the r.v. Tx . To ease notation, we generally omit the x from
the future lifetime and write T when no confusion is possible. We assume stochastic
independence between mortality and financial risks.

2.2 Contract payoff

The insurer promises to pay upon the policyholder’s death the contractual amount
max{S0egT , ST }, where g is a guaranteed rate, S0 is the insured initial investment
and ST is the subaccount value at time of death x + T . We can generalise this payoff
further by considering a contractual expiry date x +". The contract only provides a
guarantee on death. If the insured is otherwise still alive after time" passes, she will
receive the account value by that time. For the sake of simplicity, we keep the first
formulation, and we note that:

max{S0egT , ST } = ST +
[

S0egT − ST

]+
. (3)

Written in this way, the contract appears as a long position on the policyholderaccount
plus a long position on a put option written on the insured account. Two remarks are in
order: firstly, the policyholder has the same amount as if she invested in the financial
market (kept aside the fees), but has the insurance to get more, due to the put option.
Secondly, because T is a r.v., her option is not a vanilla one but an option whose
exercise date is itself random (the policyholder’s death).

The other difference with the option analogy lies in the fact that in this case there is
no upfront payment. In this contract, the investor pays the guarantee by installments.
The paid fees constitute the so-called M&E risk charges. We assume they are con-
tinuously deducted from the policyholder account at the contractual proportional rate
�. More precisely, we consider that in the time interval (t, t + dt), the life insurance
company receives �St dt as instantaneous earnings. We denote by F the cumulative
discounted fees. Fτ is the discounted accumulated fees up to time τ , which can be a
stopping time for the subaccount price process S. The contract can also be designed
in order to cap the guaranteed rate g; in the VA literature, this is known as capping
the rising floor.
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2.3 Main Equations

Under a chosen risk-neutral measure Q, the GMDB option fair price is thus

G(�) = EQ
[
δT (S0egT − ST )

+],
and upon conditioning on the insured future lifetime,

G(�) = EQ

[
EQ

[
δT (S0egT − ST )

+|T = t
]]
, (4)

which – taking into account a contractual expiry date – gives:

G(�) =
∫ "

0
fx (t)EQ

[
δT (S0egT − ST )

+|T = t
]

dt . (5)

If FT denotes the discounted value of all fees collected up to time T , the fair value
of the M&E charges can be written

M E(�) = EQ[FT ],

which after conditioning also gives:

M E(�) = EQ
[
EQ[FT |T = t ]

]
. (6)

Because the protection is only triggered by the policyholder’s death, the endoge-
nous equilibrium price of the fees is the solution in �, if any, of the following equation

G(�) = M E(�). (7)

This is the key equation of this article. To solve it we have to define the investor
account dynamics, make assumptions on the process S, and, of course, on mortality.

3 Pricing model

The zero-coupon bond is assumed to obey the following stochastic differential equa-
tion (SDE) in the risk-neutral universe:

d P(t, T )

P(t, T )
= rt dt + σP(t, T ) dWt , (8)

where P(t, T ) is the price at time t of a zero-coupon bond maturing at time T , rt is
the instantaneous risk-free rate, σP(t, T ) describes the volatility structure and W is a
standard Brownian motion.

In order to take into account a dependency between the subaccount and the interest
rates, we suggest the introduction of a correlation between the diffusive part of the
subaccount process and the zero-coupon bond dynamics. The underlying account
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price process S is supposed to behave according to the following SDE under the
chosen equivalent pricing measure Q:

d St

St−
= (

rt − �
)

dt + ρσ dWt + σ
√

1− ρ2 d Zt + (Y − 1) d Ñt . (9)

Again, rt is the instantaneous interest rate, � represents the fixed proportional insur-
ance risk charge, σ is the asset’s volatility, ρ is the correlation between the asset and
the interest rate, W and Z are two independent standard Brownian motions, and the
last part takes into account the jumps. Ñ is a compensated Poisson process with in-
tensity λ, while Y , a r.v. independent from the former processes, represents the price
change after a jump. The jump size is defined by J = ln(Y ).

Let us emphasise here that the non-drift part M , defined by d Mt = ρσ dWt +
σ
√

1− ρ2 d Zt+(Y −1) d Ñt , is a martingale in the considered risk-neutral universe.

3.1 Modelling stochastic interest rates and subaccount jumps

Denoting by Nt the Poisson process with intensity λ and applying Itō’s lemma, the
dynamics of S writes as:

St = S0 e

∫ t
0 rs ds−(�+ 1

2 σ
2+λκ) t+ρσ Wt+σ

√
1−ρ2 Zt+

Nt∑
i=1

ln
(
(Y )i

)
, (10)

where κ = E(Y − 1). The zero-coupon bond price obeys the following equation:

P(t, T ) = P(0, T ) e
∫ t

0 σP (s,T ) dWs− 1
2

∫ t
0 σ

2
P (s,T ) ds+∫ t

0 rs ds .

The subaccount dynamics can be written as:

St = S0

P(0, t)
e
−(�+ 1

2σ
2+λκ) t+ 1

2

∫ t
0 σ

2
P (s,t) ds+∫ t

0 [ρσ−σP(s,t)]dWs+σ
√

1−ρ2 Zt+
Nt∑

i=1
ln
(
(Y )i

)
.

Let us introduce the T -forward measure QT defined by

d QT

d Q

∣∣Ft
= δt P(t, T )

P(0, T )
= e

∫ t
0 σP (s,T ) dWs− 1

2

∫ t
0 σ

2
P (s,T ) ds, (11)

where δt is the discount factor defined in (1). Girsanov’s theorem states that the
stochastic process W T , defined by W T

t = Wt−
∫ t

0 σP(s, T ) ds, is a standard Brownian
motion under QT . Hence, the subaccount price process can be derived under the T -
forward measure:

St = S0

P(0, t)
eXt , (12)

where X is the process defined by

Xt =− (�+ 1
2σ

2+λκ)t +
∫ t

0

(
σP (s, T )

(
ρσ − σP(s, t)

)+ 1
2σ

2
P (s, t)

)
ds

+
∫ t

0

(
ρσ − σP(s, t)

)
dW T

s + σ
√

1− ρ2 Zt +
Nt∑

i=1

ln
(
(Y )i

)
.

(13)
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A lengthy calculation shows that the characteristic exponent φT (u) of X T under
the T -forward measure, defined by EQT

[
eiuX T

] = eφT (u) , writes:

φT (u) = −iu�T − iu
2 �

2
T − u2

2 �
2
T + λT

(
φJ (u)− φJ (−i)

)
, (14)

where φJ (u) denotes the characteristic function of the i.i.d. r.v.’s Ji = ln
(
(Y )i

)
and

�2
T =

∫ T

0

(
σ 2 − 2ρσσP (s, T )+ σ2

P (s, T )
)
ds. (15)

3.2 Present value of fees

Using the definition of Ft and (6), it can be shown that:

M E(�) = 1−
∫ ∞

0
e−�t fx (t)dt, (16)

where fx is the p.d.f. of the r.v. T . A very interesting fact is that only the mortality
model plays a role in the computation of the present value of fees as seen in (16).

Taking into account the time to contract expiry date", we have:

M E(�) = 1−
∫ "

0
e−�t fx (t)dt − (

1− Fx (")
)
e−�". (17)

3.3 Mortality models

Two mortality models are taken into account, namely the Gompertz model and the
Makeham model. Another approach could be to use the Lee-Carter model, or introduce
a mortality hazard rate as in Ballotta and Haberman (2006). In the case of the Gompertz
mortality model, the force of mortality at age x follows

λ(x) = B.Cx , (18)

where B > 0 and C > 1. It can also be written as λ(x) = 1
b exp

(
x−m

b

)
,where m > 0

is the modal value of the Gompertz distribution and b > 0 is a dispersion parameter.
Starting from (2), it can be shown that the present value of fees1 in the case of a

Gompertz-type mortality model amounts to:

M E(�) =1− ebλ(x)e(x−m)�
[
�
(
1− �b, bλ(x))− �(1− �b, bλ(x)e"b )]

− ebλ(x)
(

1−e
"
b
)
e−�",

(19)

1 It is to be noted that formula (19) corrects typos in Milevsky and Posner’s (2001) original
article.
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where �(a, x) =
∞∫
x

e−t t a−1dt is the upper incomplete gamma function where a must

be positive. This condition entails an upper limit on the possible value of the insurance
risk charge �:

� <
1

b
. (20)

The Makeham mortality model adds an age-independent component to the Gom-
pertz force of mortality (18) as follows:

λ(x) = A + B.Cx , (21)

where B > 0,C > 1 and A ≥ −B.
In this case, a numerical quadrature was used to compute the M&E fees.

3.4 Valuation of the embedded GMDB option

The valuation of this embedded GMDB option is done in two steps:
First, taking the conditional expectation given the policyholder’s remaining life-

time, the option is valued in the context of a jump diffusion process with stochastic
interest rates, with the assumption that the financial asset in the investor subaccount
is correlated to the interest rates.

More precisely, let us recall the embedded GMDB option fair price, as can be
seen in (4):

G(�) = EQ

[
EQ

[
δT (S0egT − ST )

+|T = t
]]
.

Using the zero-coupon bond of maturity T as a new numéraire, the inner expectation
IT can be rewritten as:

IT = EQ
[
δT (S0egT − ST )

+] = P(0, T )EQT

[
(K − ST )

+].
Then this expectation is computed using an adaptation2 of the generalised Fourier
transform methodology proposed by Boyarchenko and Levendorskǐı [3].

4 Empirical study

This section gives a numerical analysis of jumps, stochastic interest rates and mortality
effects. To study the impacts of jumps and interest rates, a numerical analysis is
performed in a first section while a second subsection examines all these risk factors
together.

2 A detailed account is available from the authors upon request.
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4.1 Impact of jumps and interest rates

The GMDB contract expiry is set at age 75. A guaranty cap of 200 % of the initial
investment is also among the terms of the contract.

The Gompertz mortality model is used in this subsection. The Gompertz param-
eters used in this subsection and the next one are those calibrated to the 1994 Group
Annuity Mortality Basic table in Milevsky and Posner [8]. They are recalled in Table 1.

Table 1. Gompertz distribution parameters

Female Male

Age (years) m b m b

30 88.8379 9.213 84.4409 9.888
40 88.8599 9.160 84.4729 9.831
50 88.8725 9.136 84.4535 9.922
60 88.8261 9.211 84.2693 10.179
65 88.8403 9.183 84.1811 10.282

A purely diffusive model with a volatility of 20 % serves as a benchmark through-
out the study. It corresponds to the model used by Milevsky and Posner [8].

The particular jump diffusion model used in the following study is the one pro-
posed by Kou [5]. Another application in life insurance can be seen in Le Courtois
and Quittard-Pinon [6]. In this model, jump sizes J = ln(Y ) are i.i.d. and follow a
double exponential law:

fJ (y) = pλ1e−λ1 y1y>0 + qλ2eλ2 y1y≤0, (22)

with p ≥ 0, q ≥ 0, p + q = 1, λ1 > 0 and λ2 > 0.
The following Kou model parameters are set as follows: p = 0.4, λ1 = 10 and

λ2 = 5. The jump arrival rate is set to λ = 0.5. The diffusive part is set so that the
overall quadratic variation is 1.5 times the variation of the no-jump case.

Table 2 shows the percentage of premium versus the annual insurance risk charge
in the no-jump case and the Kou jump diffusion model case for a female policyholder.
A flat interest rate term structure was taken into account in this table and set at r = 6 %.

The initial yield curve y(0, t) is supposed to obey the following parametric equa-
tion: y(0, t) = α − βe−γ t where α, β and γ are positive numbers. The yield is also
supposed to converge towards r for longer maturities. The initial yield curve equation
is set as follows:

y(0, t) = 0.0595− 0.0195 exp(−0.2933 t). (23)

As stated earlier, the interest rate volatility structure is supposed to be of expo-
nential form. Technically, it writes as follows:

σP(s, T ) = σP
a

(
1− e−a(T−s)), (24)
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Table 2. Jumps impact, female policyholder; r = 6 %, g = 5 %, 200 % cap

Purchase age No-jump case Kou model

(years) (%) (bp) (%) (bp)

30 0.76 1.77 1.16 2.70
40 1.47 4.45 2.04 6.19
50 2.52 10.85 3.21 13.86
60 2.99 21.58 3.55 25.74
65 2.10 22.56 2.47 26.59

Gompertz mortality model. In each case, the left column displays the relative importance of the
M&E charges given by the ratio M E(�)/S0. The right column displays the annual insurance
risk charge � in basis points (bp).

where a > 0. In the sequel, we will take σP = 0.033333, a = 1 and the correlation
between the zero-coupon bond and the underlying account will be set at ρ = 0.35.

Plugging (24) into (15) allows the computation of �2
T :

�2
T =

( 2ρσσP
a2 − 3

2
σ 2

P
a3

)+(
σ2+ σ 2

P
a2 − 2ρσσP

a

)
T+( 2σ 2

P
a3 − 2ρσσP

a2

)
e−aT− σ 2

P
2a3 e−2aT . (25)

The results displayed in Table 3 show that stochastic interest rates have a tremen-
dous impact on the fair value of the annual insurance risk charge across purchase age.
Table 3 shows that a 60-year-old male purchaser could be required to pay a risk charge
as high as 88.65 bp for the death benefit in a stochastic interest rate environment.

Thus, the stochastic interest rate effect is significantly more pronounced than the
jump effect. Indeed, the longer the time to maturity, the more jumps tend to smooth
out, hence the lesser impact. On the other hand, the stochastic nature of interest rates
are felt deeply for the typical time horizon involved in this kind of insurance contract.

It is to be noted that the annual insurance risk charge decreases after age 60. This
decrease after a certain purchase age will be verified again with the figures provided
in the next section. Indeed, the approaching contract termination date, set at age 75
as previously, explains this behaviour.

4.2 Impact of combined risk factors

The impact of mortality models on the fair cost of the GMDB is added in this subsec-
tion. Melnikov and Romaniuk’s [17] Gompertz and Makeham parameters, estimated
from the Human mortality database 1959–1999 mortality data, are used in the se-
quel. As given in Table 4, no more distinction was made between female and male
policyholders. Instead, the parameters were estimated in the USA.

In the following figure, the circled curve corresponds to the no-jump model with
a constant interest rate. The crossed curve corresponds to the introduction of Kou
jumps but still with a flat term structure of interest rates. The squared curve adds
jumps and stochastic interest rates to the no-jump case. These three curves are built
with a Gompertz mortality model. The starred curve takes into account jumps and
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Table 3. Stochastic interest rates impact, male policyholder; g = 5 %, 200 % cap

Purchase age Kou model (flat rate) Kou model (stochastic rates)

(years) (%) (bp) (%) (bp)

30 2.01 4.86 8.87 22.27
40 3.46 10.99 11.38 37.81
50 5.35 24.46 13.38 64.07
60 5.81 44.82 11.14 88.65
65 4.08 46.31 6.82 78.55

Gompertz mortality model. In each case, the left column displays the relative importance of the
M&E charges given by the ratio M E(�)/S0. The right column displays the annual insurance
risk charge �.

Table 4. Gompertz (G) and Makeham (M) mortality model parameters for the USA [7]

A B C

GU S 6.148×10−5 1.09159
MU S 9.566 ×10−4 5.162×10−5 1.09369

Table 5. Mortality impact on the annual insurance risk charge (bp), USA; g = 5 %, 200 % cap

Gompertz Makeham
Age No jumps Kou (flat) Kou (stoch.) Kou (stoch.)

30 4.79 6.99 30.23 32.20
40 11.16 15.15 50.86 52.34
50 24.88 31.50 82.50 83.03
60 44.45 52.97 105.27 104.77
65 45.20 53.18 90.41 89.78

stochastic interest rates but changes the mortality model to a Makeham one. Figure 1
displays the annual risk insurance charge with respect to the purchase age in the USA.
From 30 years old to around 60 years old, the risk charge is steadily rising across all
models. It decreases sharply afterwards as the contract expiry approaches.

The two lower curves correspond strikinglyto the flat term structure of the interest
rate setting. The jump effect is less pronounced than the stochastic interest rate effect
as represented by the two upper curves. The thin band in which these upper curves
lie shows that the change of mortality model has also much less impact than the
stochastic nature of interest rates.

As is reported in Table 5, and displayed in Figure 1, the behaviour of the insurance
risk charge with respect to age is of the same type whatever the considered model.
However, within this type, differences can be seen. First, the jump effect alone does not
change the fees very much but there are more differences when stochastic interest rates
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Fig. 1. Annual risk insurance charge in basis points, USA

are introduced. In this case, fees are notably higher. Second, the choice of mortality
model does not have a significant impact.

5 Conclusions

To analyse the effects of jump risk, stochastic interest rate and mortality on GMDBs,
this paper assumes a particular jump diffusion process, namely a Kou process, for the
return of the policyholder subaccount and a Vasicek term structure of interest rate,
while the mortality is of a Gompertz or a Makeham type. The contract fair value is
obtained using a methodology based on generalised Fourier analysis. It is shown that
the largest impact among the three risk factors on the GMDB fees is due to stochastic
interest rate. Jumps and mortality have smaller influence. The fair insurance risk
charges are found to be significantly higher than Milevsky and Posner [8] reported,
but still below the fees required by insurance companies.
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Solvency evaluation of the guaranty fund at a large
financial cooperative

Jean Roy

Abstract. This paper reports on a consulting project whose objective was to evaluate the
solvency of the guaranty fund of the Mouvement Desjardins, a large federation of financial
cooperatives based in Quebec, Canada. The guaranty fund acts as an internal mutual insurance
company; it collects premiums from the 570 local credit unions of the federation and would
provide funds to any of these local credit unions facing financial difficulties. At the time of the
study, the assetsof the insured credit unions totalled 79 billion CA$ and the fund had a capital of
523 million CA$. The purpose of the study was to estimate the probability of insolvency of the
fund over various horizons ranging from one to 15 years. Two very different approaches were
used to obtain some form of cross-validation. Firstly, under the highly aggregated approach,
three theoretical statistical distributions were fitted on the 25 historical yearly rates of subsidy.
Secondly, a highly disaggregated Monte-Carlo simulation model was built to represent the
financial dynamics of each credit union and the guaranty fund itself, taking into account some
150 parameters for each credit union. Both approaches converged to similar probabilities of
insolvency for the fund, which indicated that the fund was well within an implicit AAA rating.
The study had several significant financial impacts both internally and externally.

Key words: solvency analysis, financial cooperatives, guaranty fund, Monte Carlo method,
credit risk

1 Introduction

The regulatory context brought by the Basel II accord has given a new impetus to the
evaluation of the solvency of financial institutions. Although internationally active
commercial banks have been at the forefront, other financial institutions, such as large
financial cooperatives, are also strongly involved. The decentralised nature of financial
cooperatives brings new challenges to the process, as the case study presented here
will show. Specifically, this paper will report on a consulting project whose objective
was to evaluate the solvency of the guaranty fund of the Mouvement Desjardins, a
large federation of credit unions based in Quebec, Canada. The paper will proceed as
follows. Section 2 will describe the institutional and technical context of the study.
Section 3 will present the preliminary analysis that was conducted to identify and
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eventually select the methods to be applied. The two polar approaches in terms of ag-
gregation of data were implemented to obtain some form of cross-validation. Section
4 will document the aggregated approach, whereas Section 5 will describe the highly
disaggregated approach implemented through a Monte-Carlo simulation model. Sec-
tion 6 will compare the results of the two approaches, whereas Section 7 will report
on the several significant impacts of the study for the organisation. Section 8 will
provide the conclusion.

2 Context of the study

The context of this study had two main dimensions, one internal, namely the institu-
tional context, and the other external, namely the technical context. Both will now be
addressed.

The institution involved in this study is the “Fonds de sécurité Desjardins" or
Desjardins Guaranty Fund (DGF), which is a wholly owned incorporated affiliate of
the “Mouvement Desjardins". The Mouvement Desjardins is a federation of some 570
local “caisses populaires" or credit unions. DGF acts as an internal mutual insurance
company. It collects annual premiums from the local credit unions and would provide
funds to any ot these credit unions in a situation of financial distress. In 2004, DGF
had a capital of 523 million CA$, whereas the insured credit unions had total assets
of 79 billion CA$, leading to a capitalisation ratio of 66.2 basis points. DGF had, at
that point, a capitalisation target of 100 basis points. However, management wanted a
formal evaluation of the solvency of the fund in order to confirm or review this target.
To perform the analysis, data for the 25 years of formal operation of the fund were
available. These showed that the fund had played a major role in keeping the local
credit unions solvent. Indeed, 964 subsidies were granted to 372 different credit unions
for a total of some 220 million un-indexed CA$ from 1980 to 2004. It also needs to
be mentioned that the federation played a key role in managing a consolidation of
the network, bringing the total number of credit unions down from its peak of 1465
credit unions in 1982 to 570 in 2004.

A first look at the data showed that the annual average subsidy rate, total subsidies
to credit unions divided by the total assets of these, was 3.245 basis points, such that
the current capital was equivalent to a 20.4-year reserve at the average rate. However,
a cursory analysis of the time series showed a high volatility (4.75 basis points) and
also high asymmetry and kurtosis. More precisely, two peaks could be identified in
the series: one at 20.8 basis points in 1982 and another one at 5.8 basis points in 1995.
Overall, five high values above 5 basis points could be observed during the period of
25 years. Aside from the historical data of the fund itself, extensive data were also
available on the insured credit unions over the latest period of seven years, allowing
contemplation of highly disaggregated models. At that point, a review of the literature
was conducted to survey the status of current practices for the solvency evaluation of
similar organisations.

DGF is an organisation that shares many similarities with public deposit insurers.
Thus the literature on the solvency evaluation of the US and Canadian deposit insurers
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was reviewed: the three studies of the Federal Deposit Corporation by Sheehan [5],
Bennett [1] and Kuritzkes et al. [2] and the study of the Canada Deposit Insurance
Corporation by McIntyre [3]. Overall, the survey of this literature showed that the
dominant approach to estimate the solvency of a deposit insurer was the use of a credit
risk simulation model and it appeared natural to follow this practice. However, before
proceeding, it seemed appropriate to identify the methodological options and make a
deliberate choice.

3 Analysis and selection of methodologies

The process consisted in identifying the various possible approaches, evaluating them
and eventually selecting one or several for implementation. After some analysis, four
dimensions emerged to characterise the possible approaches, namely, the level of
aggregation of the data, the estimation technique, the depth of historical data and the
horizon considered for the future. The following sections will look at each in turn.

The demand for subsidies by the credit unions depends on the losses that these
incur, which depends in turn on the risks they bear. This observation leads to consider
the credit unions as a single aggregated entity or to proceed to a disaggregated analysis
of each credit union one by one. Similarly, the total risk can be analysed as an aggregate
of all risks or risks can be analysed individually (e.g., credit risk, market risk and
operational risk). Finally, credit risk itself can be analysed at the portfolio level or can
be analysed by segments according to the type, the size and the risk of loans.

To estimate the distribution of the demand for subsidies by credit unions, two
techniques appeared possible. If aggregate data were used, it would be possible to fit
theoretical statistical distributions to the historical distribution. However if disaggre-
gated data were used, a Monte Carlo simulation model would be more appropriate to
estimate the distribution of the demand for subsidies.

If aggregated data were used, 25 years of data would be available. On the other
hand, if disaggregated data were used, only seven years of data would be available.

If theoretical statistical distribution were used, the model would be static and the
horizon of one year would logically follow from the yearly period of observation
of historical data. If a simulation model was used, the financial dynamics of credit
unions and of the guaranty fund itself could be modelled and trajectories over time
could be built. In this case, a horizon of 15 years was considered relevant.

As the analysis above has shown, even though the four dimensions were not
independent, several combinations of choices could be implemented and these could
be viewed as forming a spectrum mainly according to the level of aggregation of data,
which seemed to be the dimension that had the strongest impact on conditioning the
other choices. In this light, it was decided to move forward with the implementation of
two polar choices, namely a highly aggregated approach and a highly disaggregated
approach. Table 1 summarises the characteristics of each of these two approaches.

It was deemed interesting to implement two very different approaches and to ob-
serve whether they would converge or not to similar results. If similarity was obtained,
then a cross-validation effect would increase confidence in the results. If dissimilarity
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Table 1. Characterisation of the two approaches selected for implementation

Aggregated Disaggregated

Aggregation of data High Low
Estimation technique Theoretical distributions Monte Carlo Simulation
Depth of historical data 25 years 7 years
Horizon for projection 1 year – static 15 years – dynamic

was obtained, then an analysis would have to be conducted to understand the sources
of differences and eventually decide on which approach seems more reliable. The
next two sections will describe the implementation and the results obtained under the
two approaches.

4 The aggregated approach

Under this approach, the aggregate demand for subsidies by the credit unions will be
estimated using 25 historical observations of the aggregate rate of subsidy defined as
the sum of the subsidies for the year divided by the total assets of the credit unions
at the beginning of the year. Three theoretical distributions were selected, namely
the Weibull, the Gamma and the Lognormal. Each of these distributions was fitted to
the historical cumulative distribution of the rate of subsidy. These three distributions
have some common features: they are characterised by two parameters and they
accommodate asymmetry.

Before providing the results of the estimation process, it is appropriate to mention
that this approach implies two strong hypotheses. First, one must assume that the de-
mand for subsidy has had and will continue to have a distributionthat is stable in time.
This is indeed a strong assumption as both internal and external structural conditions
have evolved significantly. Internally, a strong consolidation of credit unions has taken
place which resulted in more than halving their total number giving rise to bigger and
hopefully stronger units. Externally, the monetary policy of the Bank of Canada has
changed over the years and the strong emphasis now put on the control of inflation
will avoid the high nominal interest rates that took place in the early 1980s and which
generated massive credit problems. Second, this approach also assumes implicitly
that there is no serial correlation, which is most likely contrary to reality as there
were clearly periods of good times and bad times that extended over several years.
Overall, the first assumption points to overestimating the current demand, whereas
the second may lead to underestimating demand in extended periods of difficulties.
One may hope that the net effect of the two biases is small. Finally, the depth of the
historical data allows the inclusion of two periods of difficulties, which may represent
other unknown difficulties that may arise in the future.

With these considerations in mind, we estimated the parameters of the three distri-
butions using non-biased OLS; the results are shown in Table 2 together with various
statistics. Overall, the statistics seem to show a reasonably good fit of the distributions
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to the historical data. With these distributions on hand, one now needs to evaluate the
probability that the demand for subsidies is inferior to the current level of capital.
It must be remembered that historical values have occurred in the interval ranging
from 0 to 20.8 basis points. On the other hand the current level of capital was 66.2
bp. Thus one must extrapolate the distributions to a point that is more than three
times bigger than the biggest value ever observed. With the awareness of this fact, we
proceeded to evaluate the three estimated distributions at the point corresponding to
the current level of capital. Table 3 presents the results that were obtained together
with the implied rating according to the scales of S&P and Moody’s.

Table 2. Three estimated distributions of the aggregate demand for subsidies

Distribution Weibull Gamma Log-normal

Parameter 1 α = 0.742 α = 0.527 μ = −8.95
Parameter 2 β = 0.000225 β = 0.000616 σ = 1.36
Mean value 0.03245 0.03245 0.03245
R2 99.14 % 98.37 % 99.06 %
Kolmogorov-Smirnov Test 0.943 0.964 0.964
Chi squared test 0.139 0.505 0.405
Chi squared test w/o the greatest contribution 0.964 0.948 0.954

Table 3. Solvency estimates of the guaranty fund using statistical distributions

Distribution Probability Probability of S&P rating Moody’s rating
of solvency default (in bp)

Weibull 99.9995% 0.05 AAA Aaa
Gamma 99.9996% 0.04 AAA Aaa
Log-normal 99.8142% 18.58 BBB Baa2

As can be observed, the Weibull and the Gamma distributions give very similar
results, whereas the log-normal distribution points to a higher probability of default
and accordingly a lower credit risk rating. Under the first two distributions, the guar-
anty fund achieves the implied triple A rating very easily because a probability of
default of less than 1 basis point is enough to obtain this rating.

Thus, the aggregated approach has allowed the estimation of the solvency of the
fund. Accepting their admittedly strong assumptions, two out of three theoretical
distributions lead to a very strong evaluation of the solvency of the fund, the third
distribution showing a somewhat weaker position of the fund.
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5 The disaggregated approach

Under the disaggregated approach, the income statement of each credit union is simu-
lated using six stochastic variables: namely, the net interest income, loan losses, other
income, other expenses, operating expenses and operational losses. Overall, these six
variables are meant to capture interest rate risk, market risk, credit risk and opera-
tional risk. Once the income statements are simulated, the balance sheets of the credit
unions are computed. Should the capital be under the regulatory requirement, then a
demand for subsidy at the guaranty fund will be generated. After the total demand for
subsidies is computed, the financial statements of the guaranty fund are simulated.
Trajectories simulating 15 consecutive years are run using 50 000 trials in order to
obtain the distribution of the level of capital of the fund and thus estimate its solvency
over the 15-year horizon.

Let us now examine in more details how the six stochastic variables were modelled.
Special attention was devoted to credit risk, as it is believed to be the most important
source of risk. Thus, the loan portfolio of each credit union was in turn divided into
ten types of loans, namely: consumer loans, mortgages, investment loans, commercial
loans, agricultural loans, institutional loans, lines of credit to individuals, commercial
lines of credit, agricultural line of credit and institutional lines of credit. In turn, each
of these ten types of loans was divided into three size categories, namely: below
$100 000, between $100 000 and $1 000 000, and above $1 000 000. Now, for each of
these 30 credit segments, five historical parameters were available: the probability of
default (PD), the exposition at default (EAD), the loss given default (LGD), the number
of loans in the segment (N) and the correlation factor with a global latent economic
factor (ρ). A Merton-type model is then used. First, the value of the latent economic
factor is drawn and then the PD of each segment is conditioned on its value. Secondly,
the number of defaults (ND) in a segment is generated with a binomial distribution
using the number of loans in the segment N and the conditional PD. Finally, the loan
losses are obtained as the product of the number of default ND, the exposure at default
EAD and the loss given default LGD. The five other stochastic variables are simulated
using normal distributions using expected values and standard deviations. Two sets
of assumptions are used: a base case using historical values and a stressed case where
the standard deviations were increased by 50 % to represent higher risks. Finally,
a correlation structure was modelled. Serial correlation factors were assumed for
the latent economic factor (0.5) to represent business/credit cycles, for the operating
expenses (0.5) and for net interest revenue (0.5) to represent the inertia of these. A
negative cross correlation factor (−0.55) was also introduced between net interest
revenues and operational losses.

Following the simulation of the financial statements of the credit unions, those
of the guaranty fund are generated. The fund has two types of revenues: revenues
obtained from investing its assets and premiums collected from the credit unions. It
has three main types of expenses: fixed administrative expenses, payment of subsidies
to the needing credit unions and taxes on its profit. Stochastic values were generated
for investment income, which were correlated to the latent economic factor, and for
the subsidies paid through the simulation described in the above subsection. Finally,
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two policies for premiums were simulated: the current policy which is expressed as
1/14 of 1% of the risky assets of the insured credit union and a hypothetical relaxed
policy of 1/17 of 1% of the risky assets. The latter policy was simulated because it
was anticipated that given the excellent capital of the fund it could maintain a good
solvency level while easing its burden on its insured members.

In total four combinations of scenarios were simulated according to whether the
parameters had base-case or stressed values and to whether the policy for premiums
was modelled as base-case or relaxed. Table 4 below shows the results for each of
the four cases. The probabilities estimated over the 15-year horizon were converted
to a one-year horizon as it is this latter horizon that is used for reference by rating
agencies such as S&P and Moody’s.

It is striking that under the two base case scenarios, the level of insolvency is
much lower than one basis point, thus allowing an implied credit rating of AAA to
be granted to the fund. Under the two stressed cases, the level of solvency is close to
the threshold needed to get a triple A rating. Overall, the simulation model leads to
the belief that the solvency of the fund is indeed excellent.

Table 4. Solvency estimates of the guaranty fund by Monte Carlo simulation

Parameters Base case Stressed case

Policy for premiums 1/14 % 1/17 % 1/14 % 1/17 %
Nb of cases of insolvency 6 10 74 101
Nb of cases of solvency 49994 49990 49926 49899
Total number of cases 50000 50000 50000 50000
Solvency over 15 years 99.9880% 99.9800 % 99.8520 % 99.7980%
Solvency over 1 year 99.9992% 99.9987 % 99.9901 % 99.9865%
Insolvency over 15 years 0.0120 % 0.0200 % 0.1480 % 0.2020 %
Insolvency over 1 year 0.0008 % 0.0013 % 0.0099 % 0.0135 %
Implied rating AAA AAA AAA AAA

6 Comparison of the two approaches

It is now interesting to compare the results obtained under the aggregated and dis-
aggregated approaches. Table 5 summarises these results. Overall, Table 5 provides
a sensitivity analysis of the solvency estimates while varying methods and hypothe-
ses about distributions, parameters and premium policies. Obviously, there is a wide
margin between the best and the worst estimates. However, apart from the log-normal
distribution, all other results are basically in the same range. One clear advantage of
the simulation model is that it allows the analysis of hypothetical cases, as was done
in the last three scenarios considered. So, to make a fair comparison between the
statistical distribution approach and the simulation approach one must use the first
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Table 5. Summary of solvency estimates under the two approaches

Approach Probability of Probability of Implied S&P
solvency default (bp) rating

Statistical distribution
Weibull 99.9995 % 0.05 AAA
Gamma 99.9996 % 0.04 AAA
Log-normal 99.8142 % 18.58 BBB
Monte Carlo simulation
Base case and premiums at 1/14 % 99.9992 % 0.08 AAA
Base case and premiums at 1/17 % 99.9987 % 0.13 AAA
Stressed case and premiums at 1/14 % 99.9901 % 0.99 AAA
Stressed case and premiums at 1/17 % 99.9865 % 1.35 AAA

base case scenario. Then one observes that the probability of insolvency obtained
(0.08 bp) is quite consistent with the values obtained using the Weibull and Gamma
distributions (0.05 bp and 0.04 bp). This observation is quite comforting as we inter-
pret it as each result being reinforced by the other. It is striking indeed that the two
very different approaches did in fact converge to basically similar results. Overall, it
can be concluded that the solvency of the guaranty fund was excellent and that this
conclusion could be taken with a high level of confidence considering the duplication
obtained.

7 Financial impact of the study

The study led the management of the fund to take several significant actions. First,
the target capital ratio, which was previously set to 1% of the aggregate assets of the
credit unions, was brought down to an interval between 0.55% and 0.65%, basically
corresponding to the current level of capital of 0.62%. Secondly, management decided
to lower the premiums charged to the credit unions. Finally, the deposits made at any of
the credit unions of the Mouvement Desjardins are also guaranteed by a public deposit
insurer managed by the Financial Market Authority of Quebec (FMA) to which the
Mouvement Desjardins has to pay an annual premium. The solvency study that we
have described above was presented to the FMA to request a reduction of the premium
and after careful examination the FMA granted a very significant reduction. Thus,
one could argue that the study achieved its goals. First, it provided management of the
guaranty fund with the information it requested, that is a well grounded estimation of
the solvency of the fund. Secondly, the very favourable assessment of the solvency
allowed management to take several actions to reap the benefits of the excellent state
of solvency of the fund.
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8 Conclusions

This study faced the challenge of estimating the solvency of the guaranty fund of
523 million CA$ insuring a network of 570 credit unions totalling some 79 billion
CA$ in assets invested in a broad spectrum of personal, commercial, agricultural and
institutional loans. As a preliminary step, the array of possible approaches according
to the aggregation of data, the estimation technique, the depth of historical data and
the projection horizon was examined. After analysis, two polar approaches in terms
of the aggregation of data were selected for implementation. Under the aggregated
approach three statistical distributions were fitted to twenty five yearly observations
of the total rate of subsidy. Under the disaggregated approach, an elaborate Monte
Carlo simulation model was set up whereby the financial statements of each credit
union and those of the guaranty fund itself were generated, integrating four types of
risks and using more than 7500 risk parameters, mainly representing credit risk at
a very segmented level. The Monte Carlo simulation was also used to evaluate the
impact of stressed values of the risk parameters and of a relaxation of the policy for
the premiums charged by the fund. Overall, both approaches converged to similar
estimates of the solvency of the fund, thus reinforcing the level of confidence in the
results. Accordingly, the solvency of the fund could be considered as excellent, being
well within an implied triple A rating under the base case scenario, and still qualifying,
although marginally, for this rating under stressed hypotheses. The detailed analysis
of the solvency of the fund and the good evaluation it brought had three significant
financial impacts: the target capital ratio of the fund was revised downward, the
premiums charged to credit unions were reduced and the Mouvement Desjardins
itself obtained a sizable reduction of the premium it pays to the public deposit insurer.
Needless to say, management of the guaranty fund was quite satisfied with these
outcomes. Finally, it was decided to update the study every five years. From this
perspective, several improvements and extensions, namely regarding a more refined
modelling of the risk factors other than credit risk and a more adaptive premium
policy, are already envisaged.

Acknowledgement. I would like to thank Miguel Mediavilla, M.Sc., of Globevest Capital for
programming the simulation model.
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A Monte Carlo approach to value exchange options
using a single stochastic factor

Giovanni Villani

Abstract. This article describes an important sampling regarding modification of the Monte
Carlo method in order to minimise the variance of simulations. In a particular way, we propose
a generalisation of the antithetic method and a new a-sampling of stratified procedure with
a �= 1

2 to value exchange options using a single stochastic factor. As is well known, exchange
options give the holder the right to exchange one risky asset V for another risky asset D and
therefore, when an exchange option is valued, we generally are exposed to two sources of
uncertainity. The reduction of the bi-dimensionality of valuation problem to a single stochastic
factor implies a new stratification procedure to improve the Monte Carlo method. We also
provide a set of numerical experiments to verify the accuracy derived by a-sampling.

Key words: exchange options, Monte Carlo simulations, variance reduction

1 Introduction

Simulations are widely used to solve option pricing. With the arrival of ever faster
computers coupled with the development of new numerical methods, we are able to
numerically solve an increasing number of important security pricing models. Even
where we appear to have analytical solutions it is often desirable to have an alternative
implementation that is supposed to give the same answer. Simulation methods for
asset pricing were introduced in finance by Boyle [3]. Since that time simulation has
been successfully applied to a wide range of pricing problems, particularly to value
American options, as witnessed by the contributions of Tilley [10], Barraquand and
Martineau [2], Broadie and Glasserman [4], Raymar and Zwecher [9].

The aim of this paper is to improve the Monte Carlo procedure in order to evaluate
exchange options generalizing the antithetic variate methodology and
proposing a new stratification procedure. To realise this objective, we price the most
important exchange options using a single stochastic factor P that is the ratio between
the underlying asset V and the delivery one D. For this reason, we need a particular
sampling to concentrate the simulations in the range in which the function P is more
sensitive.

M. Corazza et al. (eds.), Mathematical and Statistical  Methods for  Actuarial Sciences and Finance    
© Springer-Verlag Italia 2010
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The most relevant models that value exchange options are given in Margrabe [7],
McDonald and Siegel [8], Carr [5, 6] and Armada et al. [1]. Margrabe [7] values an
European exchange option that gives the right to realise such an exchange only at
expiration. McDonald and Siegel [8] value an European exchange option considering
that the assets distribute dividends and Carr [5] values a compound European exchange
option in which the underlying asset is another exchange option. However, when the
assets pay sufficient large dividends, there is a positive probability that an American
exchange option will be exercised strictly prior to expiration. This positive probability
induced additional value for an American exchange option as given in Carr [5,6] and
Armada et al. [1].

The paper is organised as follows. Section 2 presents the estimation of a Simple
European Exchange option, Section 3 introduces the Monte Carlo valuation of a
Compound European Exchange option and Section 4 gives us the estimation of a
Pseudo American Exchange option. In Section 5, we apply new techniques that allow
reduction of the variance concerning the above option pricing and we also present
some numerical studies. Finally, Section 6 concludes.

2 The price of a Simple European Exchange Option (SEEO)

We begin our discussion by focusing on a SEEO to exchange asset D for asset V at
time T . Denoting by s(V , D, T − t) the value of SEEO at time t , the final payoff at
the option’s maturity date T is s(V , D, 0) = max(0, VT − DT ), where VT and DT

are the underlying assets’ terminal prices. So, assuming that the dynamics of assets
V and D are given by:

dV

V
= (μv − δv)dt + σvd Zv, (1)

d D

D
= (μd − δd)dt + σdd Zd , (2)

Cov

(
dV

V
,

d D

D

)
= ρvdσvσd dt, (3)

where μv and μd are the expected rates of return on the two assets, δv and δd are the
corresponding dividend yields, σ 2

v and σ2
d are the respective variance rates and Zv and

Zd are two Brownian standard motions with correlation coefficient ρvd , Margrabe [7]
and McDonald and Siegel [8] show that the value of a SEEO on dividend-paying
assets, when the valuation date is t = 0, is given by:

s(V , D, T ) = V e−δvT N(d1(P, T ))− De−δdT N(d2(P, T )), (4)

where:

• P = V
D ; σ =

√
σ2
v − 2ρvdσvσd + σ 2

d ; δ = δv − δd ;

• d1(P, T ) = log P+
(
σ2
2 −δ

)
T

σ
√

T
; d2(P, T ) = d1(P, T )− σ√T ;
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• N(d) is the cumulative standard normal distribution.

The typical simulation approach is to price the SEEO as the expectation value of
discounted cash-flows under the risk-neutral probability Q. So, for the risk-neutral
version of Equations (1) and (2), it is enough to replace the expected rates of returnμi
by the risk-free interest rate r plus the premium-risk, namely μi = r + λiσi , where
λi is the asset’s market price of risk, for i = V , D. So, we obtain the risk-neutral
stochastic equations:

dV

V
= (r − δv )dt + σv (d Zv + λvdt) = (r − δv )dt + σvd Z ∗v , (5)

d D

D
= (r − δd)dt + σd (d Zd + λddt) = (r − δd)dt + σd d Z ∗d. (6)

The Brownian processes d Z∗v ≡ d Zv + λvdt and d Z∗d ≡ d Zd + λddt are the new
Brownian motions under the risk-neutral probabilityQ and Cov(d Z ∗v , d Z ∗d) = ρvd dt .
Applying Ito’s lemma, we can reach the equation for the ratio-price simulation P = V

D
under the risk-neutral measure Q:

d P

P
= (−δ + σ 2

d − σvσdρvd ) dt + σvd Z ∗v − σdd Z ∗d . (7)

Applying the log-transformation for DT , under the probabilityQ, it results in:

DT = D0 exp {(r − δd)T } · exp

(
−σ

2
d

2
T + σd Z∗d(T )

)
. (8)

We have that U ≡
(
−σ 2

d
2 T + σd Z∗d(T )

)
∼ N

(
−σ 2

d
2 T, σd

√
T

)
and

therefore exp(U ) is a log-normal whose expectation value is EQ
[
exp(U )

] =
exp

(
−σ 2

d
2 T + σ 2

d
2 T

)
= 1. So, by Girsanov’s theorem, we can define the new prob-

ability measure
∼
Q equivalent toQ and the Radon-Nikodym derivative is:

d
∼
Q

d Q
= exp

(
−σ

2
d

2
T + σd Z∗d(T )

)
. (9)

Hence, using Equation (8), we can write:

DT = D0 e(r−δd )T · d
∼
Q

d Q
. (10)

By the Girsanov theorem, the processes:

d Ẑd = d Z ∗d − σddt, (11)

d Ẑv = ρvdd Ẑd +
√

1− ρ2
vd d Z ′, (12)
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are two Brownian motions under the risk-neutral probability measure
∼
Q and Z ′ is

a Brownian motion under
∼
Q independent of Ẑd . By the Brownian motions defined

in Equations (11) and (12), we can rewrite Equation (7) for the asset P under the

risk-neutral probability
∼
Q. So it results that:

d P

P
= −δ dt + σv d Ẑv − σd d Ẑd . (13)

Using Equation (12), it results that:

σvd Ẑv − σd d Ẑd = (σvρvd − σd) d Ẑd + σv
(√

1− ρ2
vd

)
d Z ′, (14)

where Ẑv and Z ′ are independent under
∼
Q. Therefore, as (σvd Ẑv − σdd Ẑd) ∼

N (0, σ√dt), we can rewrite Equation (13):

d P

P
= −δ dt + σd Z p, (15)

where σ =
√
σ2
v + σ 2

d − 2σvσdρvd and Z p is a Brownian motion under
∼
Q. Using the

log-transformation, we obtain the equation for the risk-neutral price simulation P:

Pt = P0 exp

{(
−δ − σ

2

2

)
t + σ Z p(t)

}
. (16)

So, using the asset DT as numeraire given by Equation (10), we price a SEEO as the
expectation value of discounted cash-flows under the risk-neutral probability measure:

s(V , D, T ) = e−rT EQ[max(0, VT − DT )]

= D0e−δd T E∼
Q

[gs(PT )], (17)

where gs(PT ) = max(PT −1, 0). Finally, it is possible to implement the Monte Carlo
simulation to approximate:

E∼
Q

[gs(PT )] ≈ 1

n

n∑
i=1

gi
s(P̂

i
T ), (18)

where n is the number of simulated paths effected, P̂i
T for i = 1, 2...n are the simulated

values and gi
s(P̂

i
T ) = max(0, P̂i

T − 1) are the n simulated payoffs of SEEO using a
single stochastic factor.

3 The price of a Compound European Exchange Option (CEEO)

The CEEO is a derivative in which the underlying asset is another exchange option.
Carr [5] develops a model to value the CEEO assuming that the underlying asset is
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a SEEO s(V , D, τ ) whose time to maturity is τ = T − t1 with t1 < T , the exercise
price is a ratio q of asset D at time t1 and the expiration date is t1. So, considering
that the valuation date is t = 0, the final payoff of CEEO at maturity date t1 is:

c(s(V , D, τ ), q D, 0) = max[0, s(V , D, τ )− q D].

Assuming that the evolutions of assets V and D are given by Equations (1) and (2),
under certain assumptions, Carr [5] shows that the CEEO price at evaluation date
t = 0 is:

c(s(V , D, τ ), q D, t1) = V e−δvT N2

(
d1

(
P

P∗1
, t1

)
, d1 (P, T ) ; ρ

)
− De−δd T N2

(
d2

(
P

P∗1
, t1

)
, d2 (P, T ) ; ρ

)
− q De−δdt1 N

(
d2

(
P

P∗1
, t1

))
, (19)

where N2(x1, x2; ρ) is the standard bivariate normal distribution evaluated at x1 and

x2 with correlation ρ =
√

t1
T and P∗1 is the critical price ratio that makes the underlying

asset and the exercise price equal and solves the following equation:

P∗1 e−δv τ N(d1(P
∗
1 , τ ))− e−δdτ N(d2(P

∗
1 , τ )) = q. (20)

It is obvious that the CEEO will be exercised at time t1 if Pt1 ≥ P∗1 . We price the CEEO
as the expectation value of discounted cash-flows under the risk-neutral probability
Q and, after some manipulations and using Dt1 as numeraire, we obtain:

c(s, q D, t1) = e−rt1 EQ[max(s(Vt1 , Dt1, τ )− q Dt1, 0)]

= D0e−δd t1 E∼
Q

[gc(Pt1)], (21)

where

gc(Pt1) = max[Pt1 e−δvτ N(d1(Pt1 , τ ))− e−δdτN(d2(Pt1 , τ )− q, 0]. (22)

Using a Monte Carlo simulation, it is possible to approximate the value of CEEO as:

c(s, q D, t1) ≈ D0e−δd t1

(∑n
i=1 gi

c(P̂
i
t1)

n

)
, (23)

where n is the number of simulated paths and gi
c(P̂

i
t1) are the n simulated payoffs of

CEEO using a single stochastic factor.

4 The price of a Pseudo American Exchange Option (PAEO)

Let t = 0 be the evaluation date and T be the maturity date of the exchange option. Let
S2(V , D, T ) be the value of a PAEO that can be exercised at time T

2 or T . Following
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Carr [5,6], the payoff of PAEO can be replicated by a portfolio containing two SEEOs
and one CEEO. Hence, the value of PAEO is:

S2(V , D, T ) = V e−δvT N2

(
−d1

(
P

P∗2
,

T

2

)
, d1(P, T ); −ρ

)
+V e−δv

T
2 N

(
d1

(
P

P∗2
,

T

2

))
− De−δd T N2

(
−d2

(
P

P∗2
,

T

2

)
, d2(P, T ); −ρ

)
−De−δd

T
2 N

(
d2

(
P

P∗2
,

T

2

))
, (24)

where ρ =
√

T/2
T = √0.5 and P∗2 is the unique value that makes the PAEO exercise

indifferent or note at time T
2 and solves the following equation:

P∗2 e−δv
T
2 N

(
d1

(
P∗2 ,

T

2

))
− e−δd

T
2 N

(
d2

(
P∗2 ,

T

2

))
= P∗2 − 1.

The PAEO will be exercised at mid-life time T
2 if the cash flows (VT/2−DT/2) exceed

the opportunity cost of exercise, i.e., the value of the option s(V , D, T/2):

VT/2 − DT/2 ≥ s(V , D, T/2). (25)

It is clear that if the PAEO is not exercised at time T
2 , then it’s just the value of a

SEEO with maturity T
2 , as given by Equation (4). However, the exercise condition

can be re-expressed in terms of just one random variable by taking the delivery asset
as numeraire. Dividing by the delivery asset price DT/2, it results in:

PT/2 − 1 ≥ PT/2 e−δv
T
2 N(d1(PT/2, T/2))− e−δd

T
2 N(d2(PT/2, T/2)). (26)

So, if the condition (26) takes place, namely, if the value of P is higher than P∗2 at
moment T

2 , the PAEO will be exercised at time T
2 and the payoff will be (VT/2−DT/2);

otherwise the PAEO will be exercised at time T and the payoff will be max[VT −
DT , 0].So, using the Monte Carlo approach, we can value the PAEO as the expectation
value of discounted cash flows under the risk-neutral probability measure:

S2(V , D, T ) = e−r T
2 EQ[(VT/2 − DT/2)1(PT/2≥P∗2 )]

+e−rT EQ[max(0, VT − DT )1(PT/2<P∗2 )]. (27)

Using assets DT/2 and DT as numeraires, after some manipulations, we can write
that:

S2(V , D, T ) = D0

(
e−δd

T
2 E∼

Q
[gs(PT/2)]+ e−δd T E∼

Q
[gs(PT )]

)
, (28)
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where gs(PT/2) = (PT/2 − 1) if PT/2 ≥ P∗2 and gs(PT ) = max[PT − 1, 0] if
PT/2 < P∗2 .

So, by the Monte Carlo simulation, we can approximate the PAEO as:

S2(V , D, T ) $ D0

(∑
i∈A gi

s(P̂
i
T/2)e

−δd T/2 +∑
i∈B gi

s(P̂
i
T )e

−δd T

n

)
, (29)

where A = {i = 1..n s.t. P̂i
T/2 ≥ P∗2 } and B = {i = 1..n s.t. P̂i

T/2 < P∗2 }.

5 Numerical examples and variance reduction techniques

In this section we report the results of numerical simulations of SEEO, CEEO and
PAEO and we propose a generalisation of the antithetic method and a new a-stratified
sampling in order to improve on the speed and the efficiency of simulations. To
compute the simulations we have assumed that the number of simulated paths n is
equal to 500 000. The parameter values are σv = 0.40, σd = 0.30, ρvd = 0.20,
δv = 0.15, δd = 0 and T = 2 years. Furthermore, to compute the CEEO we assume
that t1 = 1 year and the exchange ratio q = 0.10. Table 1 summarises the results of
SEEO simulations, while Table 2 shows the CEEO’s simulated values. Finally, Table
3 contains the numerical results of PAEO.

Using Equation (16), we can observe that Y = ln( Pt
P0
) follows a normal distribution

with mean (−δ− σ 2

2 )t and variance σ 2t . So, the random variable Y can be generated
by the inverse of the normal cumulative distribution function Y = F−1(u; (−δ −
σ 2

2 )t, σ
2t) where u is a function of a uniform random variable U [0, 1]. Using the

Matlab algorithm, we can generate the n simulated prices P̂i
t , for i = 1...n, as:

Pt=P0*exp(norminv(u,-d*t-0.5*sig^2*t,sig*sqrt(t))),

where u = rand(1, n) are the n random uniform values between 0 and 1. As the
simulated price P̂i

t depends on random value ui , we write henceforth that the SEEO,
CEEO and PAEO payoffs gi

k , for k = s, c using a single stochastic factor depend

Table 1. Simulation prices of Simple European Exchange Option (SEEO)

V0 D0 SEEO (true) SEEO (sim) σ̂ 2
n εn σ̂2

av Effav σ̂ 2
st Effst σ̂ 2

gst Effgst

180 180 19.8354 19.8221 0.1175 0.0011 0.0516 1.13 0.0136 4.32 1.02e-8 22.82
180 200 16.0095 16.0332 0.0808 8.98e-4 0.0366 1.10 0.0068 5.97 8.08e-9 19.98
180 220 12.9829 12.9685 0.0535 7.31e-4 0.0258 1.03 0.0035 7.56 5.89e-9 18.15
200 180 26.8315 26.8506 0.1635 0.0013 0.0704 1.16 0.0253 3.23 1.27e-8 25.54
200 200 22.0393 22.0726 0.1137 0.0011 0.0525 1.08 0.0135 4.19 1.03e-8 21.97
200 220 18.1697 18.1746 0.0820 9.05e-4 0.0379 1.08 0.0072 5.65 8.37e-9 19.58
220 180 34.7572 34.7201 0.2243 0.0015 0.0939 1.19 0.0417 2.68 1.54e-8 28.94
220 200 28.9873 28.9479 0.1573 0.0013 0.0695 1.13 0.0238 3.30 1.23e-8 25.45
220 220 24.2433 24.2096 0.1180 0.0011 0.0517 1.14 0.0135 4.35 1.03e-8 22.88
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Table 2. Simulation prices of Compound European Exchange Option (CEEO)

V0 D0 CEEO (true) CEEO (sim) σ̂ 2
n εn σ̂ 2

av Effav σ̂ 2
st Effst σ̂ 2

gst Effgst

180 180 11.1542 11.1590 0.0284 2.38e−4 0.0123 1.15 0.0043 3.30 2.23e−9 25.44
180 200 8.0580 8.0830 0.0172 1.85e−4 0.0078 1.10 0.0019 4.64 1.61e−9 21.28
180 220 5.8277 5.8126 0.0103 1.43e−4 0.0048 1.06 0.0008 6.30 1.15e−9 17.89
200 180 16.6015 16.6696 0.0464 3.04e−4 0.0184 1.25 0.0089 2.60 2.99e−9 30.94
200 200 12.3935 12.4010 0.0283 2.37e−4 0.0124 1.14 0.0043 3.28 2.22e−9 25.40
200 220 9.2490 9.2226 0.0179 1.89e−4 0.0080 1.11 0.0020 4.42 1.67e−9 21.37
220 180 23.1658 23.1676 0.0684 3.69e−4 0.0263 1.30 0.0158 2.15 3.83e−9 35.71
220 200 17.7837 17.7350 0.0439 2.96e−4 0.0180 1.21 0.0083 2.65 2.91e−9 30.07
220 220 13.6329 13.6478 0.0285 2.38e−4 0.0122 1.17 0.0043 3.33 2.22e−9 25.66

Table 3. Simulation prices of Pseudo American Exchange Option (PAEO)

V0 D0 PAEO (true) PAEO (sim) σ̂ 2
n εn σ̂ 2

av Effav σ̂ 2
st Effst σ̂ 2

gst Effgst

180 180 23.5056 23.5152 0.0833 9.12e–4 0.0333 1.26 0.0142 2.93 3.29e–8 25.31
180 200 18.6054 18.6699 0.0581 7.62e–4 0.0250 1.16 0.0083 3.51 3.96e–8 14.65
180 220 14.8145 14.8205 0.0411 6.41e–4 0.0183 1.12 0.0051 4.00 3.72e–8 11.03
200 180 32.3724 32.3501 0.1172 0.0011 0.0436 1.34 0.0247 2.36 3.44e–8 24.86
200 200 26.1173 26.1588 0.0839 9.16e–4 0.0328 1.27 0.0142 2.95 3.27e–8 25.64
200 220 21.1563 21.1814 0.0600 7.74e–4 0.0253 1.18 0.0053 3.43 3.83e–8 15.63
220 180 42.5410 42.5176 0.1571 0.0013 0.0536 1.46 0.0319 2.46 3.97e–8 32.82
220 200 34.9165 34.9770 0.1134 0.0011 0.0422 1.34 0.0233 2.43 2.36e–8 27.90
220 220 28.7290 28.7840 0.0819 9.04e–4 0.0338 1.21 0.0142 2.87 3.35e–8 24.41

on ui . We can observe that the simulated values are very close to true ones. In a

particular way, the Standard Error εn =
∧
σ n√

n
is a measure of simulation accurancy

and it is usually estimated as the realised standard deviation of the simulations σ̂n =√∑n
i=1

(
gi

k(ui )
)2

n −
(∑n

i=1 gi
k(ui )

n

)2

divided by the square root of simulations. Moreover,

to reduce the variance of results, we propose the Antithetic Variates (AV), the Stratified
Sample with two intervals (ST) and a general stratified sample (GST). The Antithetic
Variates consist in generating n independent pairwise averages 1

2 (g
i
k(ui )+gi

k (1−ui ))

with ui ∼ U [0, 1]. The function gi
k(1−ui ) decreases whenever gi

k(ui ) increases, and
this produces a negative covariance cov[gi

k(ui ), gi
k(1 − ui )] < 0 and so a variance

reduction. For instance, we can rewrite the Monte Carlo pricing given by Equation
(18) as:

E AV∼
Q

[gs(PT )] ≈ 1
n

(
n∑

i=1

1

2
gi

s(ui )+ 1
2

gi
s(1− ui ))

)
. (30)

We can observe that the variance σ̂ 2
av is halved, but if we generate n = 500 000

uniform variates u and we also use the values of 1−u, it results in a total of 1 000 000
function evaluations. Therefore, in order to determine the efficiency Effav , the variance
σ̂ 2

n should be compared with the same number (1 000 000) of function evaluations.
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We can conclude that efficiency Effav = σ̂ 2
n /2n
σ̂ 2

av /n
and the introduction of antithetic

variates has the same effect on precision as doubling the sample size of Monte Carlo
path-simulations.

Using the Stratified Sample, we concentrate the sample in the region where the
function g is positive and, where the function is more variable, we use larger sam-
ple sizes. First of all, we consider the piecewise agi

k(u1) + (1 − a)gi
k(u2) where

u1 ∼ U [0, a] and u2 ∼ U [a, 1], as an individual sample. This is a weighted average
of two function values with weights a and 1 − a proportional to the length of the
corresponding intervals. If u1 and u2 are independent, we obtain a dramatic improve-
ment in variance reduction since it becomes a2var[gi

k (u1)] + (1 − a)2var[gi
k(u2)].

For instance, the payoff of SEEO gi
s(P

i
T ) = max[0, Pi

T − 1] with V0 = 180 and
D0 = 180 has a positive value starting from as = 0.60, as shown in Figure 1(a),
while the CEEO will be exercised when Pt1 ≥ 0.9878 and the payoff will be positive
from ac = 0.50, as illustrated in Figure 1(b). Assuming a = 0.90, Tables 1, 2 and
3 show the variance using the Stratified Sample (ST) and the efficiency index. For
the same reason as before, we should to compare this result with the Monte Carlo
variance with the same number (1 000 000) of path simulations. The efficiency index

Effst = σ̂ 2
n /2n
σ̂ 2

st/n
shows that the improvement is about 4. We can assert that it is possibile

to use one fourth the sample size by stratifying the sample into two regions: [0, a]
and [a, 1].

Finally, we consider the general stratified sample subdividing the interval [0, 1]
into convenient subintervals. Then, if we use the stratified method with two strata
[0.80, 0.90], [0.90, 1], Tables 1, 2 and 3 show the variance and also the efficiency

gain Effgst = σ̂ 2
n∑k

i=1 ni σ̂
2
gst

. Moreover, for the first simulation of SEEO we have that

the optimal choice sample size is n = 66 477, 433 522, for the first simulation of
CEEO we obtain that n = 59 915, 440084, while for the PAEO it results that n =
59 492, 440 507. It’s plain that the functions gi

k are more variables in the the interval
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[0.90, 1] and so the sample size is about 440 000. We can observe that this stratified
sample can account for an improvement in efficiency of about 23.

6 Conclusions

In this paper we have shown a generalisation of the antithetic method and an a-
sampling procedure to value exchange options improving on the Monte Carlo simu-
lation. Using the delivery asset D as numeraire, we have reduced the bi-dimensionality
of evaluation to one stochastic variable P that is the ratio between assets V and D.
But the particular evolution of asset P requires a new sampling procedure to concen-
trate the simulations in the range in which P is more sensitive in order to reduce the
variance. The paper can be improved choosing a∗ in order to minimise the variance of
simulation through an endogenic process. To realise this objective, a short simulation,
to estimate some optimal a∗, and then the a∗-stratification, may be used.
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